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Flux-Linkage State-Space Model 

(Section 4.12) 
 

One limitation of the current state-space model is that the effects of 

saturation are difficult to represent.  

 

This is because in the current state-space model, the effects of 

saturation cannot be isolated to a single current, whereas in the 

flux-linkage state-space model, it can. The reason saturation can be 

isolated to a single parameter in the flux-linkage state space model 

is because saturation occurs in the mutual fluxes, since mutual flux 

exists in the core material, which is quite saturable (i.e., the 

permeability decreases with high currents), whereas leakage flux 

exists largely external to the core material, i.e., in the air, which has 

permeability that is nearly constant with current.  

 

So we will develop the flux-linkage state-space model, which uses 

the ’s as the state variables rather than the currents.  

 

Our approach will follow four steps: 

1. Develop d- and q- axis currents as function of ’s and mutual 

fluxes AD and AQ (we will define these shortly). 

 

2. Develop state equations for ’s by substituting current 

expressions (from step 1) into voltage equations.  

 

3. Develop the torque equation in terms of flux linkages. 

 

4. Approximate the effects of saturation. 

 

Step 1: Develop d- and q- axis currents as function of ’s and mutual 

fluxes AD and AQ: 

 

(This comes partly from Section 4.11 and partly from 4.12 of 

VMAF) 
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We will take three sub-steps here. 

• Step 1a: d-axis currents 

• Step 1b: q-axis currents 

• Step 1c: put them together 

 

Step 1a: d-axis currents:  

Recall that in per-unit, from eqs. (4.107-4.108) (see p. 30 of 

“perunitization” notes), all d-axis mutuals are equal, called LAD,  

Ld-ld=LD-lD=LF-lF=LAD 

We can replace the second and third terms to write (first term is Lmd) 

Ld-ld=kMD=kMF=LAD 

As we have seen, the d-axis mutual fluxes can be expressed as the 

total flux less the leakage flux, and we name it AD: 

AD=d-ldid=F-lFiF=D-lDiD    (4.110) 

where λd, λF, λD are defined by eq. (4.20) (see p. 29 of “macheqts”). 

This says the following:   

• If in each circuit on the d-axis (d, F, D),  

• the pu leakage flux linkage is subtracted from the pu main  

flux linkage, 

• the remaining pu flux linkage is the same for all other circuits  

coupled to it. 

Solving (4.110) for each current in terms of flux linkages, we obtain: 
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    (4.118) 

Now this appears to be enough to allow us to go to step 2 (develop 

state equations for ’s), by substituting the (4.118) expressions into 

the voltage equations to obtain voltage equations that are functions 

of flux linkages; however, we introduced an extra variable, AD. But 



 3 

we may address this, because AD depends on the other fluxes (i.e., 

λd, λF, and λD). 

So let’s see if we can express AD in terms of the other fluxes. From 

(4.110), we have 

dddAD il−=      (d*) 

Expand the total flux term, d, as a function of the currents. From 

eq. 4.20 (p. 29 of “macheqts.doc”), we have that: 

DDFFddd ikMikMiL ++=     (d**) 

Although eq. 4.20, p. 29 of macheqts, is written for MKS units, 

recall that we per-unitized so that relations have the same form in pu 

as they do when written in MKS units. Therefore, we may consider 

eq. (d**) to be pu. 

 

Making the substitution of (d**) into (d*) results in  

  ddDDFFddAD ilikMikMiL −++=  

Now combining the two terms containing id results in: 

DDFFdddAD ikMikMilL ][][][ ++−=     (d***) 

where we recognize each term in brackets as LAD, which was defined 

in the “perunitization” notes (p. 30) as the per-unit value of any d-

axis mutual inductance, i.e., 

RuDuFumduAD MkMkMLL ===  

Paralleling what we did in the “perunitization” notes (p. 32) for the 

vd voltage equation, we substitute LAD into (d***), to obtain: 

 DFdADDADFADdADAD iiiLiLiLiL ++=++= ][][][  (4.111) 

Here, we recognize the flux linkage λAD as that seen by the “center-

leg” inductance of our d-axis circuit model, as shown below (see 

“perunitization” notes, p. 33). 
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Substitution of (4.118),p.2, into (4.111),p.3, eliminates the currents: 
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Now divide through by LAD and then collect terms in AD: 
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Recognizing that the term in the brackets is the inverse of a parallel 

combination of the inductances, we define this term as: 
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Making this substitution into (d****) results in: 
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(4.120) 

Step 1b: q-axis currents: 

 

We repeat the above procedure for the q-axis currents. We will 

actually do this, despite its similarity to step 1a, to be sure we 

correctly deal with the G-circuit. 

 

Recall that in per-unit, all q-axis mutual flux linkages are equal.  
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As we have seen, these q-axis mutual fluxes can be expressed as the 

total flux less the leakage flux, and we call it AQ: 

AQ=q-lqiq=Q-lQiQ=G-lGiG   (4.110-Q) 

where λq, λQ, λG are defined by eq. (4.20) (see p. 29 of “macheqts”). 

This says the following:   

• If in each circuit on the q-axis,  

• the pu leakage flux linkage is subtracted from the pu main  

flux  linkage, 

• the remaining pu flux linkage is the same for all other circuits  

coupled to it. 

 

Solving (4.110-Q) for each of the currents, we obtain: 
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     (4.123) 

Now this appears to be enough to allow us to go to step 2 (develop 

state equations for ’s), by substituting the (4.123) expressions into 

the voltage equations to obtain voltage equations that are functions 

of flux linkages; however, we introduced an extra variable, AQ. But 

we may address this, because AQ depends on the other fluxes (i.e., 

λq, λG, and λQ). 

 

So let’s see if we can express AQ in terms of the other fluxes.  

qqqAQ il−=      (q*) 

Expand the total flux term, q, as a function of the currents. From 

eq. 4.20 (p. 29 of “macheqts.doc”), we have that: 

GGQQqqq ikMikMiL ++=    (q**) 
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Although eq. 4.20, p. 29 of macheqts, is written for MKS units, 

recall that we per-unitized so that relations have the same form in pu 

as they do when written in MKS units. Therefore, we may consider 

eq. (q**) to be pu. 

 

Making this substitution of (q**) into (q*) results in  

  qqGGQQqqAQ ilikMikMiL −++=  

 

Now combining the two terms containing iq results in: 

GGQQqqqAQ ikMikMilL ][][][ ++−=   (q***) 

 

where we recognize each term in brackets as LAQ, which was defined 

in the “perunitization” notes (pg 30) as the per-unit value of any q-

axis mutual inductance, i.e., 

YuGuQumquAQ MkMkMLL ===  

Substitution of LAQ into (q***) yields: 

 GQqAQGAQQAQqAQAQ iiiLiLiLiL ++=++= ][][][   (4.112) 

 

Here, we recognize the flux linkage λAQ as that seen by the “center-

leg” inductance of our q-axis circuit model, as shown below. (See 

“perunitization” notes, p. 34) 
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Substitution of (4.123) into (4.112) eliminates the currents: 
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Now divide through by LAQ and then collect terms in AQ, resulting 

in: 
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Recognizing that the term in the brackets is the inverse of a parallel 

combination of the inductances, we define it as: 
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Making this substitution results in: 
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=============================================== 

We refer to eqs. (4.120) and (4.121) as the auxiliary equations. 
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Step 1c: Put them together: 

 

Now combine equations 4.118 with 4.123, and write them all into a 

single matrix expression of currents in terms of the fluxes: 
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where we know from 4.120 and 4.121 that AD and AQ are 

“combination” states developed from the other flux-linkage states. 

Note 4.124 is “sort of” the inverse of (4.20) (p. 29 of “macheqts”) 

except the variables are ordered differently, and (4.124) has AD. 

 

Step 2: Develop state equations for ’s by substituting currents 

(from step 1) into voltage equations (see Section 4.12.1) 

 

So we want derivatives on flux linkages. The procedure here is: 

a. Start from a preliminary form of the voltage equation that 

contains flux linkage derivatives instead of current derivatives. 

This is convenient because it immediately provides us with the 

derivatives on the states we desire. The form that we will use is 

given by eq. 4.36 in the text, which is  
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b. Substitute for the currents using 4.124, and do some algebra. 

 

We need to perform this procedure for all six equations, but the 

procedure is similar for all of them. Therefore, let’s do it only for 

the d-axis flux linkage (as in the text) and the G-axis flux linkage. 

 

d-axis flux linkage equation: 

Step a:    qddd riv  −−−= 
 

 

Step b: From eq. 4.124, we have that:  
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G-axis flux linkage equation: 

 

Step a:    GGGG irv −−== 0  

 

Step b: From eq. 4.124, we have that:  
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Solving for dG/dt results in: 
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Summarize all equations  
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Step 3: Develop the torque equation in terms of flux linkages. 

We must also write the torque equation as a function of the flux 

linkages. 

 

Here, we return to the expression we developed for the torque 

corresponding to the power crossing the air gap. This was given as: 

qddque iiT  +−=  

When developing the current state-space equations, you recall that 

at this point we substituted for the flux linkages, using 4.20. Now, 

when developing the flux-linkage state-space equations, we 
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substitute for the currents, using 4.124 from above, which, for iq and 

id, is:  
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Performing the multiplication, and then gathering terms, results in 
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VMAF in 4.12.2 indicate that the leakage inductance is the same in 

the d- and q-axis, that is, lq=ld, and indicates it is called la by many 

references. Kundur, p. 153, calls it the “stator leakage inductance,” 

and denotes it Xl. Although Kundur in his Table 4.2, p. 153, gives 

salient pole and round rotor machines the same range for Xl (0.1-

0.2), and VMAF is consistent with this in Examples 4.1, 4.2, with 

ld=lq=0.15, and though I feel it is true for round rotor machines, I am 

unsure it is as true for salient pole machines – it be only approximate 

for salient-pole machines. Application of lq=ld to (4.132a) results in: 
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Recall the torque equation derived for the current-state-space model: 
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Substitution of (4.132b) yields: 
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And so we may gather our equations for the flux-linkage model as: 
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1−=       (4.102) 

where circled terms given by auxiliary equations (p.7 these notes): 
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The state variables are d, F, D, q, Q, G, , and . 

The forcing functions are vd, vq, vF, and Tm (vd and vq depend on the 

currents, which in turn depend on the network loading). 



 13 

Recall that AD, AQ represents the per-unit d-axis and q-axis mutual 

flux linkages, respectively, i.e.,  

AD=d-ldid=F-lFiF=D-lDiD                 (4.110) 

AQ=q-lqiq=Q-lQiQ=G-lGiG    (4.110-Q) 

and that it is only in them, the mutual flux, where saturation occurs. 

That is, of the total flux seen by each winding, saturation does not 

affect the leakage, only the mutual. Since these mutual fluxes occur 

in the same material, it is reasonable to assume the saturation 

characteristics are the same for all. This allows us to address 

saturation in a very simple way, through AD, AQ.  

 

If we were to eliminate these two terms by making the appropriate 

substitution, then the effects of saturation would be distributed 

throughout our model, and its treatment would be very complex.  

➔ So how do we deal with saturation? 


