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Equal Area Criterion 

1.0 Development of equal area criterion 

As in previous notes, all powers are in per-unit.  

I want to show you the equal area criterion a little 

differently than the book does it. 

Let’s start from Eq. (2.43) in the book. 

aem PPP
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dH
=−=
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     (1) 

Note in (1) that the book calls ωRe as ωR; this needs to be 

377 rad/sec (for a 60 Hz system). 

We can also write (1) as 
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Now multiply the left-hand-side by ω and the right-hand 

side by dδ/dt (recall ω= dδ/dt) to get: 
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Note:  
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Substitution of (4) into the left-hand-side of (3) yields: 
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Multiply by dt to obtain: 
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    (6) 

Now consider a change in the state such that the angle 

goes from δ1 to δ2 while the speed goes from ω1 to ω2. 

Integrate (6) to obtain: 
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Note the variable of integration on the left is ω2. This 

results in 
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The left-hand-side of (8) is proportional to the change in 

kinetic energy between the two states, which can be 

shown more explicitly by substituting 

H=Wk/SB=(1/2)JωR
2/SB into (8), for H: 
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Returning to (8), let ω1 be the speed at the initial moment 

of the fault (t=0+, δ=δ1), and ω2 be the speed at the 

maximum angle reached (δ=δr), as shown in Fig. 1 below.  

Note that the fact that we identify a maximum angle δ=δr 

indicates an implicit assumption that the performance is 

stable. Therefore the following development assumes 

stable performance. 
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Fig. 1 

Since speed is zero at t=0, it remains zero at t=0+. Also, 

since δr is the maximum angle, the speed is zero at this 

point as well. Therefore, the angle and speed for the two 

points of interest to us are (note the dual meaning of δ1: 

it is lower variable of integration; it is initial angle): 

δ=δ1    δ=δr 

ω1=0    ω2=0 
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Therefore, (8) becomes: 
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We have developed a criterion under the assumption of 

stable performance, and that criterion is: 

  0

1

=−
r

dPP em






     (9b) 

Recalling that Pa=Pm-Pe, we see that (9b) says that for 

stable performance, the integration of the accelerating 

power from initial angle to maximum angle must be zero. 

Recalling again (8b), which indicated the left-hand-side 

was proportional to the change in the kinetic energy 

between the two states, we can say that (9b) indicates 

that the accelerating energy must exactly counterbalance 

the decelerating energy. 

Inspection of Fig. 1 indicates that the integration of (9b) 

includes a discontinuity at the moment when the fault is 

cleared, at angle δ=δc. Therefore we need to break up the 

integration of (9b) as follows: 
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Taking the second term to the right-hand-side: 
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Carrying the negative inside the right integral: 
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Observing that these two terms each represent areas on 

the power-angle curve, we see that we have developed 

the so-called equal-area criterion for stability. This 

criterion says that stable performance requires that the 

accelerating area be equal to the decelerating area, i.e.,  

21 AA =      (13) 

where 

  −=
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dPPA em
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Figure 2 illustrates. 

 

Fig. 2 

Figure 2 indicates a way to identify the maximum swing 

angle, δr. Given a particular clearing angle δc, which in turn 

fixes A1, the machine angle will continue to increase until 

it reaches an angle δr such that A2=A1.  
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2.0 Stability performance 

In the notes called “PowerAngleTimeDomain.pdf,” on pp. 

10-21, we considered stability performance in terms of 

what causes increased acceleration, or, decreased 

deceleration. We can consider similarly here, in terms of 

A1 and A2. 

Stability performance become more severe, or moves 

closer to instability, when A1 increases, or if available A2 

decreases. We consider A2 as being bounded on the right 

by δm, because, as we have seen in previous notes, δ 

cannot exceed δm because δ>δm results in more 

accelerating energy, not more decelerating energy. Thus 

we speak of the “available A2” as being the area within Pe3-

Pm bounded on the left by δc and on the right by δm. 

Contributing factors to making stability performance 

worse by increasing A1, and/or decreasing available A2, are 

summarized in the following four bullets and 

corresponding illustrations. 
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1. Pm increases➔A1 increases, available A2 decreases; 

both effects are extended by increase in δc 

 

Fig. 3 
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2. Pe2 decreases➔A1 increases; A2 would decrease as well 

due to increase in δc. 

 

Fig. 4 
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3. tc increases➔A1 increases, available A2 decreases 

 

Fig. 5 
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4. Pe3 decreases➔available A2 decreases. 

 

Fig. 6 

3.0 Instability and critical clearing angle/time 

Instability occurs when available A2<A1. This situation is 

illustrated in Fig. 7. 
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Fig. 7 

Consideration of Fig. 7 raises the following question: Can 

we express the maximum clearing angle for marginal 

stability, δcr, as a function of Pm and attributes of the three 

power angle curves, Pe1, Pe2, and Pe3? 

The answer is yes, by applying the equal area criterion and 

letting δc=δcr and δr= δm. The situation is illustrated in Fig. 

8. 
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Fig. 8 

Applying A1=A2, we have that 

     −=−
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The approach to solve this is as follows (this is #7 in your 

homework #1): 

1. Substitute Pe2=PM2sinδ, Pe3=PM3sinδ 

2. Do some calculus and then some algebra. 

3. Define r1=PM2/PM1, r2=PM3/PM1, which is the same as 

r1=X1/X2, r2=X1/X3.  

4. Then you obtain: 

( )

12

1121

1

coscos

cos
rr

rr
P

P
mm

M

m

cr
−

−+−

=




 (15) 

And this is equation (2.51) in your text. 

Your text, section 2.8.2, illustrates application of (15) for 

the examples 2.4 and 2.5 (we also worked these examples 

in the notes called “ClassicalModel”). We will do a slightly 

different example here but using the same system. 
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Example: Consider the system of examples 2.3-2.5 in your 

text, but assume that the fault is 

• At the machine terminals➔r1=PM2/PM1=0. 

• Temporary (no line outage)➔r2=PM3/PM1=1. 

The pre-fault swing equation, given by equation (22) of 

the notes called “ClassicalModel,” is 




sin223.28.0)(
2

Re

−=t
H 

   (16) 

with H=5. Since the fault is temporary, the post-fault 

equation is also given by (16) above. 

Since the fault is at the machine terminals, then the fault-

on swing equation has Pe2=0, resulting in: 

8.0)(
2

Re

=t
H





     (17) 

With r1=0 and r2=1, the equation for critical clearing angle 

(15) becomes: 

( ) mm

M

m
cr

P

P
 coscos 1

1

+−=
   (18) 
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Since pre and post-fault power-angle curves are identical 

in this case, we have δm=π-δ1; substituting in (18) results 

in 

( ) ( )11

1

cos2cos  −+−=
M

m
cr

P

P

   (19) 

Recall the trig identity that cos(π-x)=-cos(x). Then (19) 

becomes: 

( ) 11

1

cos2cos  −−=
M

m
cr

P

P

    (20) 

We can solve for δ1 from the pre-fault swing equation, 

(with 0 acceleration) according to 

==

−=

0925.213681.0

sin223.28.00

1

1

rad



   (21) 

In this case, because pre-fault and post-fault power angle 

curves are same, δm is determined from δ1 according to  

=−=−= 9075.1580925.21180180 1m   (22) 

This is illustrated in Fig. 9. 
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Fig. 9 

From (16), we see that Pm=0.8 and PM1=2.223, and (20) can 

be evaluated as 

( )

( )
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)3681.0cos()3681.0(2
223.2
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Therefore δcr=1.6382rad=93.86°. 

It is interesting to note that in this particular case, we can 

also express the clearing time corresponding to any 

clearing angle δc by performing two integrations of the 

swing equation. We start with the basic swing equation: 

em PP
dt

dH
−=

2

2

Re

2 

     (23) 

For a fault at the machine terminals, Pe=0, so  

mm P
Hdt

d
P

dt

dH

2

2 Re

2

2

2

2

Re




==

   (24a) 

Thus we see that for the condition of fault at the machine 

terminals, the acceleration is a constant. This makes it 

easy to obtain t in closed form, as follows. 

To solve (24a), we recall that ω=dδ/dt, so that (24a) may 

be rewritten as 

𝑑𝜔

𝑑𝑡
=

𝜔𝑅𝑒

2𝐻
𝑃𝑚      (24b) 

➔𝑑𝜔 =
𝜔𝑅𝑒

2𝐻
𝑃𝑚𝑑𝑡     (24c) 
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Then we may integrate (24c) from t=0 to t=t (on the right) 

and, correspondingly, ω=0  to ω (on the left), resulting in 

∫ 𝑑𝜔
𝜔

0
= ∫

𝜔𝑅𝑒

2𝐻
𝑃𝑚𝑑𝑡

𝑡

𝑜
    (24d) 

Integration of (24d) results in 

𝜔 =
𝜔𝑅𝑒

2𝐻
𝑃𝑚𝑡      (24e) 

Again, recalling that ω=dδ/dt, we can express (24e) as 

𝑑𝛿

𝑑𝑡
=

𝜔𝑅𝑒

2𝐻
𝑃𝑚𝑡      (24f) 

which can be written as 

𝑑𝛿 =
𝜔𝑅𝑒

2𝐻
𝑃𝑚𝑡𝑑𝑡      (25) 

Then we may again integrate from t=0 to t=t (on the right) 

and, correspondingly, δ=δ1 to δ (on the left), resulting in 

∫ 𝑑𝛿
𝛿

𝛿1
= ∫

𝜔𝑅𝑒

2𝐻
𝑃𝑚𝑡𝑑𝑡

𝑡

𝑜
    (26) 

Now integrate the right-hand side of (26) from t=0 to t=t 

and the left-hand-side from corresponding angles δ1 to δ, 

resulting in 
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22
)(
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Re
1
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H
t m


 =−      (27) 

Solving for t yields: 

( )1

Re

)(
4




−= t
P

H
t

m
    (28) 

So we obtain the time t corresponding to any clearing 

angle δc, when fault is temporary (no loss of a component) 

and fault is at machine terminals, using (28), by setting 

δ(t)=δc. 

Returning to our example, where we had Pm=0.8, H=5sec, 

δ1=0.3681rad=21.09°, and δcr=1.6382rad=93.86°, we can 

compute critical clearing time tcr according to 

( ) 2902.03681.06382.1
)8.0)(377(

)5(4
=−=crt

 

The units should be seconds, and we can check this from 

(28) according to the following: 

( ) sec
)sec)(/(

sec
=rad

purad  
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I have used my Matlab numerical integration tool to test 

the above calculation. I have run three cases: 

tc=0.28 seconds (16.8 cycles) 

tc=0.2902 seconds (17.412 cycles) 

tc=0.2903 seconds (17.418 cycles) 

Results for angles are shown in Fig. 10, and results for 

speeds are shown in Fig. 11. 

 

Fig. 11 
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Fig. 12 

Some interesting observations can be made for the two 

plots in Figs. 11 and 12. 

In the plots of angle: 

• The plot of asterisks has clearing time 0.2903 seconds 

which exceeds the critical clearing time of 0.2902 

seconds by just a little. But it is enough; exceeding it by 

any amount at all will cause instability, where the rotor 

angle increases without bound. 
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• The plot with clearing time 0.28 seconds looks almost 

sinusoidal, with relatively sharp peaks. In contrast, 

notice how the plot with clearing time 0.2902 seconds 

(the critical clearing time) has very rounded peaks. This 

is typical: as a case is driven more closely to the marginal 

stability point, the peaks become more rounded. 

In the plots of speed: 

• The speed increases linearly during the first ~0.28-0.29 

seconds of each plot. This is because the accelerating 

power is constant during this time period, i.e., Pa=Pm, 

since the fault is at the machine terminals (and 

therefore Pe=0). 

• In the solid plot (clearing time 0.28 seconds), the speed 

passes straight through the zero speed axis with a 

constant deceleration; in this case, the “turn-around 

point” on the power-angle curve (where speed goes to 

zero) is a point having angle less than δm. But in the 

dashed plot (clearing time 0.2902 seconds), the speed 

passes through the zero speed axis with decreasing 

deceleration; in this case, the “turn-around point” on 

the power angle curve (where speed goes to zero) is a 
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point having angle equal to δm. This point, where angle 

equals δm, is the unstable equilibrium point. You can 

perhaps best understand what is happening here if you 

think about a pendulum. If it is at rest (at its stable 

equilibrium point), and you give it a push, it will swing 

upwards. The harder you push it, the closer it gets to its 

unstable equilibrium point, and the more slowly it 

decelerates as it “turns around.” If you push it just right, 

then it will swing right up to the unstable equilibrium 

point, hover there for a bit, and then turn around and 

come back. 

• In the speed plot of asterisks, corresponding to clearing 

time of 0.2903 seconds, the speed increases, and then 

decreases to zero, where it hovers for a bit, and then 

goes back positive, i.e., it does not turn-around at all. 

This is equivalent to the situation where you have 

pushed the pendulum just a little harder so that it 

reaches the unstable equilibrium point, hovers for a bit, 

and then falls the other way. 

• It is interesting that the speed plot of asterisks 

(corresponding to clearing time of 0.2903 seconds) 
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increases to about 24 rad/sec at about 1.4 second and 

then seems to turn around. What is going on here? To 

get a better look at this, I have plotted this to 5 seconds, 

as shown in Fig. 13. 

 

Fig. 13 

In Fig. 13, we observe that the oscillatory behavior 

continues forever, but that oscillatory behavior occurs 

about a linearly increasing speed. This oscillatory 
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behavior may be understood in terms of the power 

angle curve, as shown in Fig. 14. 

 

Fig. 14 

We see that Fig. 14 indicates that the machine does in 

fact cycle between a small amount of decelerating 

energy and a much larger amount of accelerating 

energy, and this causes the oscillatory behavior. The 

fact that, each cycle, the accelerating energy is much 

larger than the decelerating energy is the reason why 

the speed is increasing with time. 
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You can think about this in terms of the pendulum: if 

you give it a push so that it “goes over the top,” if there 

are no losses, then it will continue to “go round and 

round.” In this case, however, the average velocity 

would not increase but would be constant. This is 

because our analogy of a “one-push” differs from the 

generator case, where the generator is being “pushed” 

continuously by the mechanical power into the 

machine. 

You should realize that Fig. 14 fairly reflects what is 

happening in our plot of Fig. 13, i.e., it appropriately 

represents our model. However, it differs from what 

would actually happen in a synchronous machine. In 

reality, once the angle reaches 180 degrees, the rotor 

magnetic field would be reconfigured with respect to 

the stator magnetic field. This is called “slipping a pole,” 

and without out-of-step relaying (OOR), the unit will 

experience multiple pole slips in rapid succession 

thereafter. Most generators have out-of-step 

protection that is able to determine when this happens 

and would then trip the machine. We will study OOR at 

the end of the course. 
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4.0 A few additional comments 

4.1 Critical clearing time 

Critical clearing time, or critical clearing angle, was very 

important many years ago when protective relaying was 

very slow, and there was great motivation for increasing 

relaying speed. Part of that motivation came from the 

desire to lower the critical clearing time. Today, however, 

we use protection with the fastest clearing times and so 

there is typically no option to increase relaying times 

significantly. 

Perhaps of most importance, however, is to recognize that 

critical clearing time has never been a good operational 

performance indicator because clearing time is not 

adjustable once a protective system is in place. 

4.2 Small systems 

What we have done applies to a one-machine-infinite bus 

system. It also applies to a 2-generator system (see 

problem 2.14 in the book which is your assigned #8 on 

HW1). It does not apply to multimachine systems, except 

in a conceptual sense. 
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4.2 Multimachine systems 

We will see that numerical integration is the main way we 

have of analyzing multimachine systems. We will take a 

brief look at this in the next set of notes. 

 

 

 

 

 

 

 

 

 

 


