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Direct Solutions of Sparse Network Equations by 
Optimally Ordered Triangular  Factorization 

WILLIAM F. TINNEY, SENIOR MEMBER, IEEE, AND JOHN W. WALKER, MEMBER, IEEE 

I. INTRODUCTION 
SUALLY, the objective  in the matrix analysis of 
networks is to obtain  the inverse of the matrix of 
coefficients of a system of simultaneous linear net- 

work equations. However, for large sparse systems such as 
occur in many network problems, the use  of the inverse is 
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very  inefficient. In general, the matrix of the equations 
formed from the given conditions of a network problem is 
sparse, whereas its inverse is full. By means of an appro- 
priately ordered triangular decomposition, the inverse of a 
sparse matrix can be expressed as  a product of sparse matrix 
factors, thereby gaining an advantage in computational 
speed, storage, and reduction of round-off error. 

The method consists of two parts : 1) a scheme  of record- 
ing the operations of triangular decomposition of a matrix 
such that repeated direct solutions based on the matrix can 
be obtained without repeating the triangularization, and 
2) a scheme of ordering the  operations  that tends to  con- 
serve the sparsity of the original system. The first part of 
the method is not altogether new, but its computational 
possibilities are  not widely recognized. The second part 
appears to be of recent origin, but it is probably only a 
rediscovery. Either part of the method can be applied in- 
dependently, but the greatest benefit  is obtained from the 
combined application of both parts. 

The first part of the method is applicable to any matrix. 
Application of the second part, ordering to conserve 
sparsity, is limited to sparse matrices in which the pattern 
of nonzero elements is symmetric and for which an  arbitrary 
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order of decomposition does not adversely  affect numerical 
accuracy. Such matrices are usually characterized by a 
strong diagonal, and ordering to conserve sparsity in- 
creases the accuracy of the decomposition. A large class 
of network problems fulfills this condition. Generally it is 
not worth considering optimal ordering unless at least 80 
percent of the matrix elements are zero. 

At least three have  been written on various 
aspects of optimally ordered triangular decomposition ap- 
plied to power system problems. Another paperL4] has been 
written on the related subject of optimally ordered Gauss- 
Jordan decomposition. 

This paper extends previous work and presents it in a 
new matrix form. The method is used at Bonneville Power 
Administration (BPA) in many applications including 
power short circuit, transient stability, network re- 
duction, switching transients,[*] reactive optimization,[g1 
tower design,[”] and others. 

11. FACTORED DIRECT SOLUTIONS 

This section, covering the first part of the method, shows 
how to derive an  array of numbers from a nonsingular 
matrix A that can be used to obtain the effects of any or all 
of the following: A, A - ’ ,  A‘, (Ar)-’, and certain two-way 
hybrid combinations of these matrices. The superscript - 1 
means inverse and  the superscript t means transpose. The 
scheme  is applicable to any nonsingular matrix, real or 
complex, sparse or full, symmetric or nonsymmetric. Al- 
though  the examples in this paper are limited to nodal 
equations, the method is also applicable to mesh equations. 
Its greatest advantage is  realized in problems involving 
large sparse matrices. 

The scheme to be described in this section  is similar to 
those associated with the names of Gauss, Doolittle, 
Choleski, Banachiewicz, and others. All of these  closely 
related schemes are  computational variations of the basic 
process of triangularizing a matrix by equivalence trans- 
formations. They  were originally developed for, and until 
very recently have  only  been described in terms of, manual 
computational procedures. Very little attention  has been 
given to their special suitability for sparse matrices. 

The basic scheme  is  first presented for the most general 
case, a full nonsymmetric matrix. Symmetry  is then treated 
as a special case. Sparsity with optimal ordering, which is 
the primary objective of this development, is explained in 
Section 111. Numerical examples of the basic  scheme are 
given in Appendix  I. 

A. Triangular  Decomposition 
Triangular decomposition of a matrix by Gaussian elim- 

ination is described in many books on matrix analy~is.[~]*[~] 
Ordinarily, the decomposition is accomplished by elimina- 
tion of elements below the main diagonal in successive 
columns. From  the  standpoint of computer programming 
for a sparse matrix, it  is usually much more efficient to 
eliminate by  successive  rows. Therefore, this less familiar, 
but mathematically equivalent, scheme  is illustrated here. 
The development is based on  the equation 
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AX = b (1) 

where A is a nonsingular matrix, x is a column vector of 
unknowns, and b is a known vector with at least one non- 
zero element. In the computer algorithm A is augmented by 
b as shown in (2) for an nth-order system. 

[ *  

. . . .  . . ] (2) 

a11 a12 . . . aln b1 

a21 a22 . . a2n b, 

a n 1  an2 . . . ann bn 

The first step is to divide the elements of the first  row 
by a, as indicated in (3). 

a‘” = 

b\” = (l/all)bl. (3) 
The superscripts indicate the order of the derived system. 

The second step, as indicated in (4a) and (4b),  is to elim- 
inate a,, from the second row by linear combination with 
the derived first  row, and then to divide the remaining 
derived elements of the second row by its derived diagonal 
element. 

l j  (l/all)aIj j = 2, n 

The third step, as indicated in (sa) and (5b), is to eliminate 
elements to the left of the diagonal of the third row and  to 
divide the remaining derived elements of the row by the 
derived diagonal element. 
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It should be noted  that at the end of the kth step, work 
on rows 1 to k has been  completed and rows k +  1 to n 
have not yet entered the process in  any  way. 

The solution can now  be obtained by  back substitution. 

x, = b(") 

x n - 1  = b n - 1  4 - 1 , n X n  (7) 

x. = b!i) - .!:)xj. 

(a -  1 )  - 0- 1 )  

I 1  
j = i +  1 

In programming, the xi's replace the hi's one by one as 
they are  computed,  starting with x, and working  back to  xl. 

When A is  full and n large, it can be  shown that  the 
number of multiplication-addition operations for triangular 
decomposition  is  approximately 1/3n3 compared  with n3 
for 

It can  easily  be  verified that  triangularization in the same 
order by columns instead of rows  would  have  produced 
identically the same result. Each eliminated element a$-'), 
i>  j ,  would  have  been the same and  the  number of opera- 
tions would  have  been the same. The back substitution also 
could  have  been  accomplished by columns instead of rows 
in the same number of operations. 

B. Recording  the Operations 
If the forward operations on b had been  recorded so that 

they could be repeated, it is  obvious that with this record 
and the upper triangle (6) for the back substitution, (1) 
could  be  solved  for  any vector 6 without repeating the 
triangularization. The recording of the forward operations, 
however,  is trivial. Each  forward operation is  completely 
defined  by the row and  column  coordinates and value of 
a single element a$-'), i 2 j ,  that occurs in the process. 
Therefore, it is  unnecessary to  do anything to record these 
elements except to leave  them. 

The rules for recording the forward operations of tri- 
angularization  are : 

1) when a term l/u!;-') is computed, store  it in location ii 
2) leave every derived term ag-'), i> j ,  in the lower 

triangle. 

Since the forward as well as the back substitution  opera- 
tions  are recorded in this scheme, it is no longer necessary 
to include the vector b. The final result of triangularizing A 
and recording the forward operations is symbolized in (8). 

u12 u13 . * * "In 

I21 d22 u23 . . . "2, 

131 4 2  d33 . . '43,. (8) 

4 1  4 2  4 3  . ' dnn 
. . . .  . 

The elements of (8), defined  in  terms of the derived sys- 
tems of A in (2H6), are : 

d.. = 

u . .  = a!') 
IJ V i < j  (9) 
IJ  IJ 

1.. = aQ-1)  i > j .  

The matrix brackets are omitted  in (8) to emphasize that 
the array is not strictly a matrix in the same  sense as pre- 
ceding examples, but only a scheme of recording. It will be 
referred to  as the  table of factors. In the literature this result 
is frequently shown as a factoring of the inverse matrix 
into  the  product of a lower and  an upper triangular matrix, 
but it  is more suitable for this discussion to consider it as 
a table of factors. 

C. Computing  Direct  Solutions 
It is  convenient in symbolizing the operations for ob- 

taining direction solutions to define  some  special matrices 
in terms of the elements of the  table of factors (8). The fol- 
lowing  nonsingular matrices differ  from the unit matrix 
only in the row or column indicated. 

Di : Row i = (0, 0, . . . 0, dii, 0, . . . 0,O) 
L ~ :  Coli= (O,O, ... O,I,-Zi+l,~,-Zi+2,i,...-Z,-l,i ,-Zn,i)t 
L~:Rowi=(-li,l,-li,2,~~~-li,i~l,1,0,~~~0,0) 
Ui:R~wi=(0,0,~~~0,1,-ui,i+1,-ui,i+2,~~~-ui,,~1,-~i,,) 

U:: Coli=(-ul, i ,  - u ~ , ~ ,  * * .  - u ~ - ~ , ~ ,  1,0, * * . O , O ) f .  
(10) 

The inverses of these matrices are trivial. The inverse of 
the matrix Di involves only the reciprocal of the element 
dii .  The inverses of the matrices Li, L:, Vi, and U t  involve 
only a reversal of algebraic signs of the off-diagonal 
elements. 

The forward and back substitution  operations  on the 
column vector b that transform it to x can  be  expressed as 
premultiplications by matrices Di,  Li or L:, and U i  or U:. 
Thus the solution of Ax = b can  be  expressed as indicated 
in ( I laHlld) .  

U1U2... U,-2Un-1DnLn-1Dn-1Ln-2~.~ L2D2LlDlb 
= A-'b = x ( l la)  

U1U2"' U,-2Un-,D,L,*D,-,L:-,'..L3D2LtD,b 
= A-'b = X (l lb) 

UfU3.~.U~-1U,*D,L,-1D,-1L,-2...L2D2LlDlb 
= A-'b = X (1 IC) 

UtUf... U,*-,U,*D,L,*D,_,L,*_,... LSD2LZDlb 
= A-'b = X. ( l ld)  

Each of these four equations describes a sequence of 
operations  on the vector 6 that is equivalent to premulti- 
plication by A - ' .  For an nth-order system,  each equation 
indicates n multiplications, n2 - n multiplication-additions, 
and n additions, excluding, of course, multiplications by 
unity which are only symbolic. This corresponds  exactly 
with the n2 multiplication-additions required for pre- 
multiplication by the inverse. Starting with D l  and pro- 
ceeding to the left, ( l la)  describes the forward and back 
substitution  operations  that would be performed on 6 if it 
augmented A during  triangularization by columns. Equa- 
tion ( l lb)  describes the same result for triangularization by 
rows. Equations (l lc) and ( l ld)  describe other sequences of 
the same operations giving the same result. Depending on 
programming techniques, one of these four equivalent se- 
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quences usually will prove to be the most convenient. 
Direct solutions of other systems  based on A can be ob- 

tained from the table of factors by  use  of the following  two 
theorems : 

1) the inverse of a  product of nonsingular matrix factors 
is the product of the inverses of the factors in  reverse 
order 

2) the transpose of a matrix product is the product of 
the transposes of the factors in reverse order. 

Although the matrix A may  have  been lost in the tri- 
angularization, its effect  is  recoverable. Given x, the vector 
b can be obtained as indicated in  (12a) or (12b). Two other 
equations analogous to (llc) and (lld) using U ;  also could 
be written. 
D;lL;lD-lL-l.. . L-1 D-lU-1 u-1 . . . U;~U;'X 

2 2  n - 1  n n - 1  n-2 

= Ax = b (12a) 

DT1(L;)-'DY1(LT)-' ...(L,*)-'Dn-'Un--11U,--12 
. . . U;'U;'x = Ax = b. (12b) 

Again the number of essential operations is n2. 

A'y = c can be obtained as indicated in  (13) and (14). 

DlL~D2L~...L:,-lDnU:,-lU:,_2... U i U i c  

Direct solutions for the corresponding transpose system 

= (A')-'c = y (13) 

(uy (u ; ) - '  . - (U:,- , ) - ' (U:,- , j - '  
.Dn-'(L:-,)-'...(L',)-'D;'(L~)-'D;'y = A'y = C. (14) 

Again the number of operations is n2, and, as in the previous 
examples, equations could be written using L: and U;. 

Although (llH14) look somewhat complicated, they 
represent simple operations that can be guided by the table 
of factors (8). Each equation indicates the following: 

1) a sequence for using the elements of the array for per- 
forming operations on the independent vector 

2) a rule for  using the subscripts of the elements of the 
array  to indicate the elements of the vector to be 
operated upon 

3) an algebraic sign rule for elements I ,  and uij 
4) a rule indicating whether to multiply or divide by 

elements di i .  

The operations can be extended to include certain two- 
way hybrid solutions with the matrix partitioned at any 
point desired. Let the hybrid column vector g be defined as 

d = (bl, b2, . ' ' , bk, x k +  1, xk+2,. ' ' 9 xn)*~ (15) 
If g is  given, the unknown fist k elements of x and the k + 1 
to nth elements of b can be obtained directly. First it is 
necessary to compute an intermediate vector z. 

u-1 u-1 . . .u -  1 u-1 
n - 1  n - 2  k t 2  k + l D k L ? ' * ' L ~ D 2 L f D 1 g =  z* (16) 

Equation (16) indicates the solution of an upper triangular 
system to obtain  the first k elements of z and  the solution 
of an independent lower triangular system to obtain  the 
remaining elements of z.  

By using elements from z and g, the composite vector h 
is formed. 

h' = (zl, z2, ' ' '  9 zk, 1, x k + 2 ,  ' '  * 9 xn) .  (17) 
Using h, the first k unknown elements of x are obtained 
from (1 8). 

ulu2"'Uk-1Ukh = x. (18) 

Equation (18)  defines the back substitution of (1 la) from 
k to 1. 

The k + 1  to nth unknown elements of b are obtained from 

(y+ l)-'Di+ll . . . (L,*- l)-lD~-ll(L,*)-lD~l~ = b'. (19) 

Equation (19)  defines the back substitution of (12b)  from n 
to k +  1. The vector b' is composed of the fist k elements of 
z, which  were  unaffected  by the premultiplication on the 
left side of the equation, and  the k +  1  to nth elements of b. 
Since the first k elements of b were  given, the solution is 
complete. Again the  total number of operations is n2. 

If only the unknown elements of x are wanted, (20) 
should be  used. 

ul u2 ' ' ' uk- 1 UkDkL: ' ' ' LfDzLtDlg = X. (20) 

This requires only kn operations. Since no elements of the 
table of factors below the kth row are needed  in this case, 
it  is  unnecessary to compute and  store them. 

A hybrid solution for the  equation A'y =c, in which the 
first k elements of c and the k +  1 to nth elements of y are 
given, can be  developed analogous to (15H20). Other hy- 
brid solutions also can be developed, but they require more 
than n2 operations  and will not be considered. 

D. Symmetry 
If A is symmetric, only the dii and uij terms of the table 

of factors are needed. All  of the foregoing direct solutions 
can be obtained by noting that in the symmetric case Li 
can be  defined  in terms of Di and U i  : 

Li = DiUfD;'. (21) 

Substituting (21)  in  (1 la) and canceling adjacent factors of 
the form D; IDi gives 

U 1 U 2 * * '  U,-2Un-1DnDn-1U~-1  .**D2UiDlU\b 
= A-'b = X. (22) 

More convenient expressions  from the standpoint of opera- 
tion and  notation can be obtained by noting that products 
of the form UfD,, i > j ,  are commutative. Thus all of the Di 
factors can be grouped into one diagonal matrix 

D = D1D2 ' .  . D,. 
With this arrangement (22)  becomes 

UlU2...Un-2Un-1DU~-1 . . .  UiU\b = A-'b = X. (23) 

Similar substitutions for the symmetric case can be made 
in the other equations for direct solutions. 

Symmetry also permits a saving of almost one half  of the 
triangularization operations because  it  is  unnecessary to 
perform any operations  to the left of the diagonal in order 
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to obtain the derived elements a$-'), i >  j .  These elements 
can be  recovered  from  previously  derived elements by the 
relationship 

a$- ' )  = (a$-'))a$) i = 2, n ;  j = 1, i - 1. (24a) 

An alternative procedure avoids a number of multi- 
plications equal to those indicated in  (24a). In the non- 
symmetric case each row was normalized by multiplying 
each term to the right of the diagonal by the reciprocal of 
the diagonal term before proceeding to the next  row. If 
this step is deferred, leaving the terms of a row unnormal- 
ized until later, the normalizing multiplication and re- 
covery of the symmetric term, when  needed, can be com- 
bined. Thus after  processing  row i, each term is  left in the 
form a{:- '), i < j ,  instead of a$). When the term a$-'), j >  i ,  
is  needed in processing  row j to be  used as a multiplier of 
row i in the same way as if row i had been normalized, it  is 
computed from ujj- '). The operations using this alternative 
procedure are as follows : 

J k  = Jk [(l/U{! 1 - 1 )  bji- ( i  1) ]ai;- ( I  1) i < j ;  k = j ,  ?I. (24b) 

The term in brackets, which  is a$) in normalized form,  re- 
places ar:- ') as soon as it has been  used  in  (24b). The saving 
in operations is trivial for a full matrix, but s i d c a n t  for 
a sparse one. 

If the triangularized system  is  left unnormalized, n 
additional  operations  are required for each direct solution. 
This is  significant  for a sparse matrix; therefore, normal- 
ization as described is recommended. 

E.  Modifications 
If A is changed, it  is  necessary to modify the table of 

factors to reflect the change. If an element at,,, of A is 
changed, elements of the table of factors with  row and 
column subscripts i, j are affected as follows : 

1) i f k > m ,  elements aij with i = k ,   j 2 m  and i > k ,   j 2 k  

2) if k s m  elements aij with i z k ,   j = m  and i 2 m ,   j > m  

Since  most changes in a row  involve a change in the 
diagonal term, the first  case  is the more important. The 
number of operations required to effect a change in the kth 
row  is approximately 1/3(n - k + l ) 3 .  However, any number 
of additional changes in the lower  right submatrix bounded 
by row k and column k can  be included in the same pass 
without increasing the volume of computations. Changes 
below  row k in columns 1 to k -  1 can also be made in the 
same pass with  only a small increase in the volume of com- 
putations. If the rows  in  which frequent changes will  be  re- 
quired can be anticipated, they should be located at the 
bottom of the matrix. 

In using the inverse,  every change in A affects  all n2 
elements of A -  ' ; therefore, at least n2 operations on A -  ' 
are required to account for any change in A. Whether the 
inverse or  the table of factors is the easier to mod*  in a 
particular situation depends on  the  nature  and number of 
matrix changes required and  the scheme of inverse modi- 
fication being  used. 

are affected. 

are affected. 

F. Comparative  Advantages for a Full Matrix 

direct solution are : 
When A is full, the advantages of the factored form of 

1) the  array of factors can be obtained in one-third the 

2) the factored form gives the effect  of A and  the hybrid 
number of operations of the inverse 

matrix;  the inverse does not. 

The methods are comparable in that: 

1) complete solutions normally require the same number 

2) the storage requirement is the same. 

The advantages of the inverse are : 

1) complete solutions require only kn operations when 
the independent vector has only k nonzero elements 

2) under some circumstances the inverse can be  modified 
to reflect changes in the original matrix more easily 
than the table of factors. 

of operations 

111. SPARSITY AND OPTIMAL ORDERING 
When the matrix to be triangularized is sparse, the order 

in which  rows are processed  affects the number of nonzero 
terms in the resultant upper triangle.['] If a programming 
scheme  is  used  which  processes and stores only nonzero 
terms, a very great savings in operations and computer 
memory can be  achieved  by  keeping the table of factors as 
sparse as possible. The absolute optimal order of elimina- 
tion would result in the least possible terms in the table of 
factors. An  efficient algorithm for determining the absolute 
optimal order has not been developed, and it appears  to be a 
practical impossibility. However, several  effective  schemes 
have  been  developed for determining near-optimal orders. 

A .  Schemes for Near-Optimal  Ordering 
The inspection algorithms for near-optimal ordering to 

be described are applicable to sparse matrices that  are sym- 
metric in pattern of nonzero offdiagonal  terms; i.e.,  if 
aij is nonzero, then aji also is nonzero but  not necessarily 
equal to aij .  These are matrices that occur most frequently 
in network problems. From  the  standpoint of program- 
ming  efficiency, the algorithms should be applied before, 
rather  than during, the triangularization. It is  assumed in 
what follows that the matrix rows are originally numbered 
according to some external criterion and then renumbered 
according to the inspection algorithm. Eliminations are 
then performed in ascending sequence  of the renumbered 
system. 

Following are descriptions of three schemes for renum- 
bering in near-optimal order. They are listed  in increasing 
order of programming complexity, execution time, and 
optimality. 

1) Number the rows according to the number of non- 
zero off-diagonal terms before elimination. In this scheme 
the rows  with  only one  offdiagonal term are numbered 
first, those with two terms second, etc., and those with the 
most terms, last. This scheme does not take  into account 
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any of the subsequent effects  of the elimination process. 
The only information needed  is a list of the number of non- 
zero terms in each row of the original matrix. 

2) Number the rows so that  at each step of the process 
the next row to be operated upon is the one with the fewest 
nonzero terms. If more than one row meets this criterion, 
select any one. This scheme requires a simulation of the 
effects on  the accumulation of nonzero terms of the elimi- 
nation process. Input  information is a list by rows of the 
column numbers of the nonzero offdiagonal terms. 

3) Number the rows so that at each step of the process 
the next  row to be operated upon is the one that will intro- 
duce the fewest  new nonzero terms. If more than  one row 
meets this criterion, select any one. This involves a trial 
simulation of  every  feasible alternative of the elimination 
process at each step. Input information is the same as for 
scheme 2). 

The comparative advantages of  these  schemes are in- 
fluenced by network topology and size and  the number of 
direct solutions wanted. The only virtue of  scheme 1) is its 
simplicity and speed. For nodal equations of power net- 
works scheme 2) is enough better than scheme 1) to justify 
the  additional time required for its execution.  Scheme 3) 
does not  appear to be enough better than scheme 2) to justify 
its use for power networks, but it is believed that it may  be 
effective for other networks. Since the authors’ experience  is 
limited to power networks, these conclusions may not be 
valid for other networks. Other algorithms may  need to be 
developed. Schemes intermediate between 1) and 2) or be- 
tween 2) and 3), as well as entirely different  schemes, are 
possible. 

It can be demonstrated that there exist certain matrices 
for which none of the given  schemes will be  very  effective. 
However, they are unlikely to occur in most network equa- 
tions. 

B. Other  Factors Influencing Ordering 
Under some conditions it may  be advantageous or neces- 

sary to number certain rows last even though this adversely 
affects sparsity. Among these conditions are the following. 

1) It is known that changes in  the original matrix will 
occur only in a certain few  rows. If these  rows are numbered 
last, only these  rows in the table of factors need to be modi- 
fied to reflect the changes. 

2) It is known that changes in the independent vector will 
occur only in a certain few  elements. If rows are numbered 
so that no changes in the vector occur above row k, the 
forward operations preceding row k need  be performed 
only once, and  not repeated for each subsequent case. 

3) The matrix is only slightly nonsymmetric. If the rows 
are numbered so that  the nonsymmetric portion of the 
matrix is last, advantage of the symmetry can be taken 
down to this point. 

4) The hybrid operation is to be  used and  it is necessary 
to have the  appropriate rows last. 

When the network on which the matrix is based is com- 
posed  of subnetworks with  relatively  few interconnections, 
the matrix should be arranged as indicated schematically 
in (25). 
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This may be interpreted to be the  pattern of a nodal ad- 
mittance matrix of a very large network composed of three 
subnetworks. The pattern of the table of factors derived 
from this matrix would  be similar. Submatrices A ,  B, and 
C, which presumably are very sparse, represent nodes with- 
in subnetworks A ,  B, and C, respectively; and S represents 
nodes associated with their interconnections. All sub- 
matrices outside of A ,  B, C, and S are zero except those indi- 
cated by the X’s, which contain  the few offdiagonal terms 
interconnecting the system in S.  The renumbering algorithm 
should be applied to each submatrix independently. Within 
each of the submatrices A ,  B, and C,  the rows  with nonzero 
terms in  the columns of S should be located last. This ar- 
rangement will not ordinarily be  achieved by any of the 
given renumbering algorithms without additional logic or 
external coding. 

The arrangement offers the following advantages : 

If a change is made in  one of the submatrices, say B, 
it affects only B and S in the table of factors, but  not 
A and C.  
If, after obtaining a solution, a change is made in the 
independent vector in  the rows  of  only one partition, 
say B, only the operations  on the vector defined  by 
B and S need to be repeated to  obtain a new solution. 
If computer memory is limited, the procedure can be 
implemented by operating  on only one submatrix at 
a time. 
As more subnetworks are added to a system, the rela- 
tionship between  system  size and  the table of factors 
tends to be almost linear. 

C.  Effectiveness of Optimal  Ordering 
The effectiveness  of optimal ordering can be  expressed as 

the  ratio between the number of nonzero offdiagonal terms 
in  the  table of factors and  the number of similar terms in  the 
original matrix. The nearer this ratio is to unity, the more 
effective the ordering. At BPA it has been found to vary  be- 
tween 1.7 and 2.5 for nodal admittance matrices of power 
networks of up to loo0 nodes. The  ratio is  influenced more 
by network topology than by system  size. Obviously, it 
might be different for matrices based on  other kinds of net- 
works. 

When the matrix is sparse, the arithmetic operations 
required to compute  the table of factors for an nth-order 
system are  as follows : 
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divisions = n 

multiplications = s = 1 T i .  (26a) 

The number of multiplication-additions is dependent on 
whether the matrix is symmetric or not. For nonsymmetric 
matrices with symmetric pattern of nonzero off-diagonal 
elements : 

n- 1 

i= 1 

n- 1 

multiplication-additions = 1 r?. (26b) 
i =  1 

For symmetric matrices : 

multiplication-additions = 1 (r? + ri)/2 (2612) 

where ri is the number of nonzero terms to the right of the 
diagonal in  row i in the table of factors and s is the  total 
number of such terms. 

Determining the  operation  count for changing the  array 
of factors to reflect changes in the original matrix is quite 
complicated and dependent upon the actual programming 
scheme. In general, if the changes in A begin in row k, 
(26aH26-c)  may  be  used  with summations beginning at k 
instead of 1 to get an approximate count. 

The operations required for computing any of the possible 
complete direct solutions based on A are : 

n- 1 

i =  1 

multiplications or divisions = n 
additions = n (264 

multiplication-additions = 2s. 

Partial solutions can be obtained in  fewer operations. 

D. Programming 
A comprehensive presentation of the various program- 

ming techniques that have  been  developed  for the method is 
beyond the scope of this paper. Some have been  discussed 
in other paper~.[ 'I.[~~*['~] 

When working with a full matrix, the address in computer 
memory of each matrix element can be related to its row 
and column indices in such a way that programming is 
quite easy.  However,  in order to achieve the benefits of 
sparsity, the programming scheme  must store  and process 
only nonzero elements. This requires, in addition to the 
memory allocation for the matrix elements themselves, 
tables of indexing information to identify the elements and 
to facilitate their addressing. Programming is more difficult 
in this case and much of the method's potential advantage 
can be lost through poorly planned programming. The 
need for expert programming cannot be overemphasized. 

With the most  effective programming techniques, the 
operations  are performed as if they are being done by visual 
inspection and manual computation. At the completion of 
the optimal ordering algorithm [scheme 2) or 3)], the exact 
form of the table of factors is established and this informa- 
tion is recorded in various tables to guide the actual elimina- 
tion process. During the elimination no  operation is  per- 
formed that would lead to  a predictable zero result and no 
memory allocation is made for a predictable zero element. 

The original matrix, the table of factors, and all  indexing 
tables contain only nonzero elements. 

Rows are transferred from the original matrix to  a com- 
pact working row  in  which elements to  the left  of the 
diagonal are eliminated by appropriate linear combination 
with  previously  processed rows from the partially com- 
pleted table of factors. When work on the row has been 
completed, it  is added to the table of factors. The actual 
procedure varies depending on the nature of the applica- 
tion. If the matrix is nonsymmetric, the derived elements to 
the left of the diagonal must be stored. The arrangement of 
the tables depends to some extent on the subsequent needs 
for direct solutions. 

An example of one possibility  for arrangmg the table of 
factors is indicated in Table I. This represents the final 
result  for a seventh-order symmetric matrix. The columns 
labeled Loc refer to relative addresses in computer memory. 
The ith location in the D Table contains the element dii 
and the location in the U Table of the first uij element  of 
row  i. The column of the U Table labeled J contains the 
column subscript j of ui j .  Thus row 2 begins in location 3 
of the U Table and contains u23,  u26, and u2, in locations 
3,4 ,  and 5 ,  respectively.  Row 3 begins in location 6. 

TABLE I 
EWLE OF STORAGE AND INDEXING SCHEME FOR TABLE OF FACTORS 

I 

D Table U Table 
~ 

~ o c i n  ~ 

Loc D Factors UTable 1 Loc UFactors J 

dl 1 1 
4 2 3 
4 3 6 
d44 8 
d5 5 10 

dl 1 12 
d6 6 11 

- 12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

u12 

u2 3 
u17 

u26  

u2 7 

l l3 -5  

u 3 1  

u4 s 
u46 

uS6 

2 
7 
3 
6 
7 
6 
7 
5 
6 
6 
7 

E .  Comparative  Advantages for a Sparse Matrix 

addition to those previously listed are : 
When A is sparse the advantages of the factored form in 

1) the table of factors can be obtained in a small fraction 

2) the storage requirement is small, permitting much 

3) direct solutions can be obtained much faster unless the 

4) round-off error is reduced 
5) modifications due  to changes in the matrix can be 

of the time required for the inverse 

larger systems to be  solved 

independent vector is  extremely sparse 

made much faster. 

The only disadvantage of the method is that it requires 
much more sophisticated programming techniques. 

The effectiveness  of the method may  be judged by the 
results of a typical large problem described in  Appendix 11. 
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IV. CONCLUSIONS With c given, the equation A'y=c  can be solved  for y 
Optimally ordered triangular factorization appears to be by using (3l), which  is  based on (13): 

better than any other known method for the direct solution 
of the sparse linear equations  that arise in  many network 
problems. The method opens the way for improvements in 
existing applications and offers  possibilities for new appli- [: 1 J[' -; -:I['+ J[' 1 4 1  
cations  that would not be  feasible with any other approach. 

Dl L: D2 L: 

[ i l l  (31) 

It eliminates the need for resorting to slowly converging D3 u: u: 
iterative methods in order to solve many large network 
problems and  the need for compromising with desired 
problem size in  order to obtain the benefits  of direct solu- 
tions. Further improvements and extensions of the method 

C -;I = 
17 

are expected. 

APPENDIX I 
NUMERICAL  EWLES 

With y given, c can be obtained from (32), which  is  based 
on (14) : 

The following  examples  based on the full nonsymmetric 
matrix A are given only to indicate the operations. They do 
not show the effects  of sparsity or the methods of program- [; 0; j[': 1 J[' 5 I[' 

(L:)-l 
ming to  take advantage of it. 

The table of factors for A is 

T T T  

2 2  

1 1 3  

2 1 1. 

3 3 %  

V C 

= [1:] . (32) 
1 

Given the hybrid vector g such that 

(28) 
gf = (b1, x29 ~ 3 )  = (6, 1 9 1 )  . (33) 

the intermediate vector z is obtained by (34), which  is 
based on (16) : 

With b given, the equation A x  = b can be solved for x 
using  (29),  which  is  based on (1 la): U ;  Z 

The vector h is formed from zl, x2 ,   x3  as indicated in 
(17) and x 1  is computed by (35), which  is  based on (17): 

b 
6' 
9 

X h 

= [ 11. (29) 

With x given, b can be obtained from (30X which  is The elements b2 and b3 are computed by (36), which  is 
based on (1 2a) : based on (1 8) : 

0;' L;' 0; L; ' 

1 1 I[r l - d r  

1 
1 

- $ 1  
2 

1- 
U;' 

'I 'I 1 

X 

-1' 
1 
1 - .  

b 

= [l; 

Z b' 
3 :] = 9 . (36) 

1 14 
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APPENDIX 11 
EXAMPLE PROBLEM 

The purpose of this example problem is to demonstrate 
the effectiveness of the method. A program has been written 
using the method for solving the nodal admittance equation 
YE=I .  The given data  are the elements of the complex 
symmetric nodal admittance matrix Y and vectors of node 
currents I. Solutions consist of the vectors of complex node 
voltages E corresponding to each given vector I. The  pro- 
gram consists of three subroutines : 1) optimal ordering, 2) 
formation of the  table of the factors,  and 3) direct solutions. 

The program is dimensioned for 1000  nodes. It is written 
mostly in MAP assembly language for the IBM 7040, a com- 
paratively slow computer with an eight-microsecond access 
time and 36-bit  word  size. The results of a typical  power 
network problem using  scheme 2) for optimal ordering are 
as follows : 

number of nodes = 839 
number  of branches= 1122 
table of factors: 

dii terms = 839 
uij terms=2210. 

Complex arithmetic operations for direction solutions : 

additions = 839 
multiplications = 839 
multiplication-additions = 2 x 22 10 = 4420 
computing times: 

optimal  ordering by scheme 2 = 8.1 1 seconds 
forming  table  of  factors = 10.42 seconds 
each direct solution =2.80 seconds. 

The  total time required for optimal ordering and com- 
puting the table of factors is the time that should be com- 
pared with that of other methods for obtaining the inverse; 
the time required for direct solutions should be compared 
with that of multiplying by the inverse. The time for read-in 
and organization of data is not included. 

The dimensions of tables for  a 1000-node power network 
problem are as follows: 

dii  terms:  2 x 1000= 2000 floating point words 
uij terms : 2 x u)oo = 6OOO floating point  words 
solution  vector:  2 x 1000= 2000 floating point words 
index tables: 4OOO integer words 

total 14OOO words. 
- 

If the matrix were  real instead of complex, the time for 
optimal ordering would be unaffected, but  the time for 
computing the table of factors and  the direct solutions would 
be reduced to less than 25 percent of that for the complex 
matrix. The dimensions of tables with factor 2 could be re- 
duced by one half. 

If the matrix were complex and nonsymmetric, the opti- 
mal ordering and direct solution times  would  be  unaffected, 
but the  computation of the table of factors would take al- 
most  twice as long. An additional table of 2 x 3000 = 6000 
floating point words would also be required for the Z i j  terms. 

The time of 2.8 seconds is for a complete direct solution 
of 839 complex node voltages. Any  of the other possible 
complete direct solutions could be obtained in approxi- 
mately the same time. Partial solutions could be obtained 
faster. Any  row or column of the inverse, if needed, could 
be computed in 2.8 seconds. A complete nonsymmetric 
inverse could be computed in this manner in 839 x 2.8 
seconds, or about 40 minutes. A symmetric inverse for which 
only a triangular matrix is  needed  would require about 70 
percent as much time. Since each column of the inverse 
would  be computed independently, the round-off error in 
single precision would  be  negligible. 

The 4000 words of index tables are  for unpacked integers 
of no more than three-decimal digits; they could be con- 
siderably compressed. The time for optimal ordering could 
be improved. The programs for obtaining the table of 
factors and direct solutions are carefully planned and  prob- 
ably could not be improved very much. 
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