
 1

Sparsity

1. Introduction

We saw in previous notes that the very common

problem, to solve for the n×1 vector x in

bxA  (1)

when n is very large, is done without inverting the

n×n matrix A, using LU decomposition.

Even though LU decomposition is much faster than

matrix inversion, it is typical for many applications

that this computation requires a significant

percentage of the overall computation time. In

addition, very large systems can tax the memory of

some computers. Both of these issues are significant

for the Newton-Raphson (NR) solution to the power

flow problem.

The implication is that we would like to find ways to

increase efficiency of LU decomposition.

One way is through recognition of a very interesting

attribute of the Jacobian matrix. Let’s take a look at

the Jacobian expressions, copied from notes on

Power Flow, but with four of the equations modified

to replace Pj and Qj with their full expressions.

 2

 )cos()sin(
)(

kjjkkjjkkj

k

jP

jk BGVV
xP

J 








 (T7.47)

 








N

k

kjjkkjjkkjjjj
j

jP
jj BGVVVB

xP
J

1

2
)cos()sin(

)(





(T7.48)

  )sin()cos(
)(

kjjkkjjkkj

k

jQ

jk BGVV
xQ

J 








 (T7.49)

 








N

k

kjjkkjjkkjjjj
k

jQ
jj BGVVVG

xQ
J

1

2
)sin()cos(

)(





(T7.50)

 )sin()cos(
)(

kjjkkjjkj

k

jPV

jk BGV
V

xP
J  




 (T7.51)

 








N

k

kjjkkjjkkjjj

j

jPV
jj BGVVG

V

xP
J

1

)sin()cos(
)(

 (T7.52)

 )cos()sin(
)(

kjjkkjjkj

k

jQV

jk BGV
V

xQ
J  




 (T7.53)

 








N

k

kjjkkjjkkjjj

j

jQV
jj BGVVB

V

xQ
J

1

)cos()sin(
)(

 (T7.54)

Observe that the equations marked with a dark arrow

on the left are expressions for off-diagonal elements

in the corresponding submatrix. Let’s answer three

questions about these particular elements:

Question 1: What is the numerical value of these

elements for Gjk=Bjk=0?

Question 2: What causes Gjk=Bjk=0?

Question 3: What percentage of Jacobian off-

diagonal elements have Gjk=Bjk=0?

Answer 1: These elements are zero!

Answer 2: There is no branch connecting buses j & k.

Answer 3: Typically, over 99%. Let’s see why….









 3

Consider a power system having N buses and L

branches. Let’s just consider the Y-bus for now.

It is the case that for most power network models, L

is about 3 times N, i.e., L≈3N.

In the Y-bus, we know that every diagonal is filled

(contains a non-zero number). This gives N non-zero

elements.

We also know there are 2 off-diagonal elements per

branch that are filled. This gives 2L non-0 elements.

Therefore the total number of non-zero elements is

T=N+2L. But L≈3N, so T≈N+2(3N)=7N.

The total number of elements is N2. It is interesting to

look at the ratio of filled elements to total elements,

which is 7N/N2=7/N. Consider, for example:
N=500 7/500=1.4% filled.

N=2000 7/2000=0.35% filled.

N=10000 7/10000=0.075% filled.

N=50000 7/50000=0.0145% filled.

It can be expected that the P-θ submatrix of the

Jacobian will have approximately the same

percentage of fills (non-zero elements), since it will

have the exact same structure as the Y-bus (but loss

of one row/column) because of Answer 1 above.

 4

(Answer 1 indicates that Jjk
Pθ is zero when Gjk and Bjk

are zero which occurs only when the corresponding

element in the Y-bus is zero which occurs when there

is no connection between buses j and k).

The same analysis holds for the Q-V submatrix, since

it is square.

The P-V and Q-θ submatrices are not square and so

we may see a slightly different ratio than 7/N. Rather

than re-develop the ratio, we will just assume that the

percentage of fills in these two submatrices will be

about the same. It is clear that the percentage of fills

in the power flow Jacobian will be small.

We refer to matrices that have a very small number

of fills, or alternatively, matrices that have a very

large number of zeros, as being sparse.

2. Storage techniques

A very important rule in sparse matrix programming

is: DO NOT STORE THE ZEROS!!!!

There are at least two classes of sparsity

programming methods: the entry-row-column storage

method and the chained data structure method [1].

 5

2.1 Entry-row-column storage method

In this method, three arrays are used: STO[I] contains

the value of the Ith non-zero element, and IR[I] and

IC[I] contains the row and column, respectively, of

the Ith non-zero element. The following example

illustrates.



















0100

2000

0034

1001

I STO[I] IR[I] IC[I]

1 1 1 1

2 1 1 4

3 4 2 1

4 3 2 2

5 2 3 4

6 1 4 3

Observe the entries are in “row-order,” i.e., they are

ordered in the arrays I=1,… in the order they appear

in the matrix starting in row 1, then row 2, etc. (we

could also place the entries in “column order.”). It is

important to have some kind of order, in contrast to

random storage, because it gives a basis to search for

a particular matrix element.

 6

For example, if we wanted an element in position

(j,k), we could do a “golden search” (choose an

element I and identify whether it is below or above

element (j,k). If above, choose I/2. If below, choose

2I. Then repeat.

If the elements are stored randomly, as indicated

below, then every time we wanted an element (j,k),

we would have to scan the arrays until we found it.

This would take significant “search time.”



















0100

2000

0034

1001

I STO[I] IR[I] IC[I]

1 1 1 4

2 1 4 3

3 4 2 1

4 3 2 2

5 1 1 1

6 2 3 4

It is interesting to see what the storage requirement of

this scheme is like.

Recall that for power systems, we typically get about

7N non-zero elements. For every non-zero element,

we must store 3 numbers (STO, IC, and IR). This

 7

creates the need for making 3×7N=21N stores. So

total number of stores is 21N, which means our

storage requirement, as a percentage of the number of

matrix elements (giving us a sense of what we need

to store relative to what we would store if we just

kept the entire matrix in memory) is 21N/N2=21/N.

This is illustrated below.
Size Percent of matrix filled Percent of stores required

N=500 7/500=1.4% filled. 4.2%

N=2000 7/2000=0.35% filled. 1.05%

N=10000 7/10000=0.075% filled. 0.21%

N=50000 7/50000=0.0145% filled. 0.042%

What this says, for example (for the first case of 500

buses), is that whereas only 1.4% of the matrix size will

have non-zero elements, our storage scheme will require

a storage space requirement of only 4.2% of the matrix

size. This is much better than storing the entire matrix!

There is one problem with the entry-row-column

storage method. What if we need to insert a non-zero

element into a position that was previously zero? For

example, consider changing the data structures for

the original matrix, shown below on the left, so that

the data structures reflect the one shown on the right.



















0100

2000

0034

1001




















0100

2500

0034

1001

 8

In the modified data structures on the right, all values

“below” the inserted non-zero element at I=5 had to

be “pushed down” the array structures, i.e.,

 what was STO[5], IR[5], and IC[5] has now

become STO[6], IR[6], and IC[6], and

 what was STO[6], IR[6], and IC[6] has now

become STO[7], IR[7], and IC[7].

This “pushing down” the array structures for an

insertion takes time, and when the matrices are very

large, this can take significant time (even for sparse

matrices), especially when an element needs to be

inserted “high” up the array structures.

We avoid this insertion time by allowing for random

storage. However, in this case, we increase our search

time, as described on page 6. So with this method, we

either incur insertion time or search time. We avoid

both problems using a chained data structure, with

slightly increased memory requirements.

I STO[I] IR[I] IC[I]

1 1 1 1

2 1 1 4

3 4 2 1

4 3 2 2

5 5 3 3

6 2 3 4

7 1 4 3

I STO[I] IR[I] IC[I]

1 1 1 1

2 1 1 4

3 4 2 1

4 3 2 2

5 2 3 4

6 1 4 3

 9

2.2 Chained data structure method

The so-called chained-data structure method uses

four arrays.

 STO[I]: Contains value of Ith non-zero element.

 IC[I]: Contains col number of Ith non-zero element.

 NEXT[I]: Points to the location in STO and IC

where the next non-zero element is located for the

row. It will be I+1 unless STO[I] is the last non-

zero element in the row, in which case it is zero.

 LOC[K]: Points to location in STO and IC where

the first non-zero element is stored for row K.

Let’s illustrate in what follows. Consider the matrix:



















0100

2000

0034

1001

I STO[I] IC[I] NEXT[I]

1 1 1 2

2 1 4 0

3 4 1 4

4 3 2 0

5 2 4 0

6 1 3 0

 10

K LOC[K]

1 1

2 3

3 5

4 6
A common need is to obtain the element in position (j,k).

For example, lets obtain the element in position (2,3).

One does that using the above in the following way:
 LOC[2]=3 indicates the first non-zero element in row 2

is stored as element I=3 in STO[I], IC[I], & NEXT[I].

 IC[3]=1 indicates the column number of the third

element in STO, IC, and NEXT is 1.

 1<3? tests to see if this column (column 1) is before the

column of interest (column 3).

 Since answer to 1<3? is “yes,” then get NEXT[3]=4.

This indicates that this row has another non-zero

element, and it is stored in location I=4 of STO[I], IC[I],

and NEXT[I].

 IC[4]=2 indicates that the column number of the fourth

element in STO, IC, and NEXT is 2.

 2<3? tests to see if this column (column 2) is before the

column of interest (column 3).

 Since answer to 2<3? is “yes,” then get NEXT[4]=0.

This indicates that there are no more non-zero elements

in this row. Therefore, we know that the element in

position (2, 3) must be zero.

One can add information to decrease computation,

but it will be at the expense of additional memory,

NEXT[I] signals you

(with a zero) where the

current row ends.

LOC[K] tells you

where in STO and IC

row K begins.

 11

showing a typical tradeoff between computation and

memory. However, if the matrix is sparse, the above

search on a row is very fast, since typically there will

only be a very few non-zero elements in each row.

It is interesting to see what the storage requirement of

this scheme is like.

Recall that for power systems, we typically get about

7N non-zero elements.

For every non-zero element, we must store 3 numbers

(STO, IC, and NEXT). This creates the need for

making 3×7N=21N stores.

Then LOC creates one store for every row so that we

will have from here the need for making N stores.

So total number of stores is 21N+N=22N, which

means our storage requirement, as a percentage of the

number of matrix elements (giving us a sense of what

we need to store relative to what we would store if

we just kept the entire matrix in memory) is

22N/N2=22/N. This is illustrated below.
Size Percent of matrix filled Percent of stores required

N=500 7/500=1.4% filled. 4.4%

N=2000 7/2000=0.35% filled. 1.1%

N=10000 7/10000=0.075% filled. 0.22%

N=50000 7/50000=0.0145% filled. 0.044%

 12

What this says, for example (for the first case of 500

buses) is that whereas only 1.4% of the matrix will have

non-zero elements, our storage scheme will require a

storage space requirement of only 4.4% of the matrix

size. This is much better than storing the entire matrix!

3. Optimal ordering

Recall the algorithm for LU decomposition.

The algorithm is as follows:

1. Perform Gaussian elimination on A. Let i=1. In

each repetition below, row i is the pivot row and

aii is the pivot.

a. Lji=aji for j=i,…,n.

b. Divide row i by aii.

c. If [i=n, go to 2] else [go to d].

d. Eliminate all aji, j=i+1,…,n. This means to

make all elements directly beneath the pivot

equal to 0 by adding an appropriate multiple of

the pivot row to each row beneath the pivot.

e. i=i+1, go to a.

2. The matrix U is what remains.

Observe that Step 1d consists of multiplying row i,

the pivot row, by an appropriate constant and then

adding it to row j. The constant is always –aji, so that

element (j,i) is annihilated (changed to zero). We call

this operation of row multiplication and addition a

“row operation.”

 13

General speed-up strategy: Minimize the number of

row operations.

Fact: Given pivot row i, row operations are only

necessary if aji≠0.

Speed-up approach #1:

Test each aji. If 0, go to next row without performing

row operation.

This is effective, but very obvious. Can we do better?

Let’s make two definitions:

Lower Triangle (LT): The portion of the matrix

below the diagonal, illustrated in Fig. 1.





























LT

Fig. 1

 14

Remaining Lower Triangular Element (RLTE): This

is an element in the LT but to the right of the ith

column when row i is the pivot row, as illustrated in

Fig. 2. An RLTE can be denoted akl, where k,l > i.





























_____1_

RLTE’s

i
th

 pivot

row

aji's

Fig. 2

Observe that

 The RLTE’s are the future aji’s. To take

advantage of Speedup approach #1, we want as

many of these elements as possible to be zero.

 If RLTE akl is initially zero (before the Gaussian

elimination process is started), it could become

non-zero during a row operation. We call such

elements “fill-ups”. This will add a future row

operation. An illustration of such a case is below.

 15

14

2652

343

19633

431

4321

4321

4321









xxx

xxxx

xxxx

xxxx



















 4101

6521

1431

9633

Divide first row by 3 and then add multiples of it to

remaining rows so that first element in remaining

rows gets zeroed.























1310

3310

2220

3211

Observe that the element in row 4, col 2 (circled) was

a zero in the original matrix but became a “fill” (and

therefore a “fill-up”). We just created an extra row

operation for ourselves!

How could we have avoided this situation?

 16

What if we could have started so that that original

zero was in the first column, as shown below?

14

2652

343

19633

431

4312

4312

4312









xxx

xxxx

xxxx

xxxx



















 4110

6512

1413

9633

Observe that we just exchanged the first two

columns, which is equivalent to interchanging the

order of variables x1 and x2.

Now divide first row by 3 and then add multiples of it

to remaining rows so that first element in remaining

rows gets zeroed.

Notice that we only have to perform two row

operations in this case because the last element (row

4) is already zero! So we preserved our elimination of

a row operation caused by a zero element!

 17

























4110

0110

8220

3211

So what is the general approach to take here?

Speed-up approach #2:

Minimize row operations.

Minimize row operations by minimizing fill-ups.

Minimize fill-ups by pushing zero elements in LT

to left-hand side of matrix. This will effectively move

them away from positions where a row operation can

affect them.

We will attempt to accomplish this by ordering the

buses in certain intelligent ways. There are several

ways of doing so. Here is the first way.

Optimal Ordering Scheme #1 (OOS1):

The nodes of a network are ordered in such a way

that a lower numbered node has less or equal number

of actual adjacent branches than any higher

numbered node. (An “adjacent branch” is an

interconnection with another bus).

 18

We will illustrate the power of this method. But to do

so, we will need another concept.

Symbolic factorization: In symbolic factorization, we

identify only the extent to which the Gaussian

Elimination procedure produces fill-ups, but we do

not actually compute the numbers (and therefore no

floating point operations!).

Given pivot row i, we assume that “we never get

lucky,” in that non-zero-elements always result in

position (j,k), j,k>i, from row operations having

 non-zero element in position (i,k) of pivot row i

and/or

 non-zero element in position (j,k) before the pivot

operation.

It is possible that if position (i,k) of pivot row i and

position (j,k) are both non-zero, that they could sum

to zero and therefore produce a zero element in

position (j,k) after the row operation, but we will

assume in our symbolic factorization procedure that

“being lucky” in this sense cannot happen.

Example: Consider the following power system.

1. Identify fills and total number of row operations if

the power system is numbered as shown.

2. Identify fills and total number of row operations if

the power system is numbered using OOS1.

 19

1

2

4

3

5

6

7

8

Fig. 3

Table 1: Fills

 1 2 3 4 5 6 7 8

1 X X X X X

2 X X X X

3 X X X X

4 X X X

5 X X X

6 X X X

7 X X

8 X X

Now perform the symbolic factorization and count the number

of row operations and fills for each pivot. We place an “Fk” for

each fill-up produced by a row operation based on pivot row k.

Starting with pivot row 1, we see it requires 4 row operations

since there are 4 non-0 elements beneath position (1,1).

Performing symbolic factorization, we see that pivot row 1

produces 12 fill-ups.

 20

Table 2: Fills & Fill-ups produced by pivot row 1

 1 2 3 4 5 6 7 8

1 X X X X X

2 X X F1 X F1 X F1

3 X F1 X X X F1 F1

4 X X X

5 X X X

6 X F1 F1 X X F1

7 X X

8 X F1 F1 F1 X

Moving to pivot row 2, we see that it requires 5 row

operations since there are 5 non-0 elements beneath

position (2,2). Performing the symbolic factorization,

we see that pivot row 2 will produce 12 fill-ups.

Table 3: Fills and Fill-ups produced by pivot row 2

 1 2 3 4 5 6 7 8

1 X X X X X

2 X X F1 X F1 X F1

3 X F1 X X X F1 F2 F1

4 X X X F2 F2 F2

5 X X X

6 X F1 F1 F2 X X F2 F1

7 X F2 F2 F2 X F2

8 X F1 F1 F2 F1 F2 X

 21

Continuing in this manner, we show the complete

symbolic factorization in the table below.

Table 4: Fills and Fill-ups produced by all pivot rows

 1 2 3 4 5 6 7 8

1 X X X X X

2 X X F1 X F1 X F1

3 X F1 X X X F1 F2 F1

4 X X X F3 F2 F2 F2

5 X F3 X X F3 F3

6 X F1 F1 F2 X X F2 F1

7 X F2 F2 F3 F2 X F2

8 X F1 F1 F2 F3 F1 F2 X

The total number of row operations is summarized in

Table 5.

Table 5: Summary for Random Numbering

Pivot Row ops Fill-ups

1 4 12

2 5 12

3 5 6

4 4 0

5 3 0

6 2 0

7 1 0

TOTAL 24

 22

Now renumber according to OOS1, shown in Fig. 4,

and re-perform the symbolic factorization.

8

7

5

6

4

3

2

1

Fig. 4

Table 6: Fills and Fill-ups for OOS1

 1 2 3 4 5 6 7 8

1 X X

2 X X

3 X X X

4 X X X F3

5 X X X

6 X X X F5 X

7 X X F5 X X

8 X X F3 X X X

The total number of row operations is summarized in

Table 7.

 23

Table 7: Summary for OOS1

Pivot Row ops Fill-ups

1 1 0

2 1 0

3 2 2

4 2 0

5 2 1

6 2 0

7 1 0

TOTAL 11

In comparing Table 5 to Table 7, one notes that the

OOS1 requires only 11 row operations whereas

random numbering requires 24 row operations.

OOS1 provides us with a significant computational

benefit!

======================================

There is an improvement that can be performed

which is based on the following observation:

If the original matrix is symmetric, then fill-ups

are produced symmetrically, that is, if a fill-up is

produced in location (j,k), then a fill-up will be

produced in location (k,j). Therefore, we may

view fill-ups to represent new branches (keeping

in mind that these new branches are fictitious).
One can observe the above from Table 6 (repeated

below), where we see that, if (3,8) fills-up (4,8), then we

know:

 24

 (3,8) is a fill (by symmetry) (8,3) is a fill

 (4,3) is a fill (by symmetry) (3,4) is a fill

 (8,4) is 0 (because (4,8) just got filled so it must have

been 0 previously, then by symmetry (8,4) is 0)

If (8,3) is a fill, then we will have to eliminate it using

pivot row 3. When we do this, (3,4) will fill-up (8,4).
 1 2 3 4 5 6 7 8

1 X X

2 X X

3 X X X

4 X X X F3

5 X X X

6 X X X F5 X

7 X X F5 X X

8 X X F3 X X X

This leads us to optimal ordering scheme #2.

Optimal Ordering Scheme #2 (OOS2):

The nodes of a network are ordered in such a way

that a lower numbered node has less or equal number

of actual or fictitious adjacent branches than any

higher numbered node.

Compare to OOS1:

Optimal Ordering Scheme #1 (OOS1):

The nodes of a network are ordered in such a way

that a lower numbered node has less or equal number

of actual adjacent branches than any higher

numbered node.

We know (4,3)

must be a fill,

otherwise the

row operation

that filled (4,8)

would not have

been necessary

 25

The main difference between these schemes is that

OOS1 does one ordering at the beginning based only

on number of actual branches for each node, whereas

OOS2 also does a check for re-ordering at the

beginning of each elimination.

Let’s see how it works for our previous example.

Repeating Table 6 below, which shows fill-ups for

OOS1, we see that row 4 has a total of 4 non-zero

elements whereas row 5 has only 3 non-zero

elements. Thus, we conclude that node 4 is connected

to three other buses whereas node 5 is connected to

only two other buses. So let’s exchange these two

rows, giving the matrix of Table 8.

Table 7: Fills and Fill-ups for OOS1

 1 2 3 4 5 6 7 8

1 X X

2 X X

3 X X X

4 X X X F3

5 X X X

6 X X X F5 X

7 X X F5 X X

8 X X F3 X X X

Table 8 shows the re-ordering and subsequent

symbolic factorization.

 26

Table 8: Fills and Fill-ups for OOS2

 1 2 3 5 4 6 7 8

1 X X

2 X X

3 X X X

5 X X X

4 X X X F3

6 X X X F5 X

7 X X F5 X X

8 X X F3 X X X

8

7

5

6

4

3

2

1

Table 7: Summary for OOS2
Pivot Row ops Fill-ups

1 1 0

2 1 0

3 2 2

5 2 2

4 2 0

6 2 0

7 1 0

TOTAL 11

 27

In this case, the row operations were the same, but

for larger systems, OOS2 outperforms OOS1.

There is a third approach, OOS3, but it has been

shown to be more complex without much speed

improvement.

This work comes from W. Tinney’s famous paper [2]

on sparsity. The work has been heavily adopted in

many disciplines, e.g., see the VLSI text [3]. The

work has also been significantly expanded since then,

for example, see [4].

Also, you should be aware of the multi-frontal

method, as explained in the paper by Khaitan and

McCalley (posted on webpage).

[1] G. Heydt, “Computer analysis methods for power systems,” McMillian,

1986,

[2] W. Tinney and J. Walker, “Direct Solutions of sparse Network equations

by Optimally Ordered triangular Factorization,” Proceedings of the IEEE,

Vol, 55, No. 11, Nov., 1967.

[3] Vlach and Singhal, “Computer Methods for Circuit Analysis and

Design,” 2nd edition, 1994.

[4] S. Khaitan, “On-line cascading event tracking and avoidance decision

support tool,” PhD dissertation, Iowa State University, 2008.

