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Sparsity 

 

1. Introduction 

We saw in previous notes that the very common 

problem, to solve for the n×1 vector x in  

bxA       (1) 

when n is very large, is done without inverting the 

n×n matrix A, using LU decomposition. 

 

Even though LU decomposition is much faster than 

matrix inversion, it is typical for many applications 

that this computation requires a significant 

percentage of the overall computation time. In 

addition, very large systems can tax the memory of 

some computers. Both of these issues are significant 

for the Newton-Raphson (NR) solution to the power 

flow problem.  

 

The implication is that we would like to find ways to 

increase efficiency of LU decomposition.  

 

One way is through recognition of a very interesting 

attribute of the Jacobian matrix. Let’s take a look at 

the Jacobian expressions, copied from notes on 

Power Flow, but with four of the equations modified 

to replace Pj and Qj with their full expressions. 
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Observe that the equations marked with a dark arrow 

on the left are expressions for off-diagonal elements 

in the corresponding submatrix. Let’s answer three 

questions about these particular elements: 

Question 1: What is the numerical value of these 

elements for Gjk=Bjk=0? 

Question 2: What causes Gjk=Bjk=0? 

Question 3: What percentage of Jacobian off-

diagonal elements have Gjk=Bjk=0? 

 

Answer 1: These elements are zero! 

Answer 2: There is no branch connecting buses j & k. 

Answer 3: Typically, over 99%. Let’s see why…. 

 

 

 

 
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Consider a power system having N buses and L 

branches. Let’s just consider the Y-bus for now.  

 

It is the case that for most power network models, L 

is about 3 times N, i.e., L≈3N.  

 

In the Y-bus, we know that every diagonal is filled 

(contains a non-zero number). This gives N non-zero 

elements. 

 

We also know there are 2 off-diagonal elements per 

branch that are filled. This gives 2L non-0 elements.  

 

Therefore the total number of non-zero elements is 

T=N+2L. But L≈3N, so T≈N+2(3N)=7N. 

 

The total number of elements is N2. It is interesting to 

look at the ratio of filled elements to total elements, 

which is 7N/N2=7/N. Consider, for example: 
N=500  7/500=1.4% filled. 

N=2000  7/2000=0.35% filled. 

N=10000  7/10000=0.075% filled. 

N=50000  7/50000=0.0145% filled. 

It can be expected that the P-θ submatrix of the 

Jacobian will have approximately the same 

percentage of fills (non-zero elements), since it will 

have the exact same structure as the Y-bus (but loss 

of one row/column) because of Answer 1 above. 
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(Answer 1 indicates that Jjk
Pθ is zero when Gjk and Bjk 

are zero which occurs only when the corresponding 

element in the Y-bus is zero which occurs when there 

is no connection between buses j and k).  

 

The same analysis holds for the Q-V submatrix, since 

it is square. 

 

The P-V and Q-θ submatrices are not square and so 

we may see a slightly different ratio than 7/N. Rather 

than re-develop the ratio, we will just assume that the 

percentage of fills in these two submatrices will be 

about the same. It is clear that the percentage of fills 

in the power flow Jacobian will be small. 

 

We refer to matrices that have a very small number 

of fills, or alternatively, matrices that have a very 

large number of zeros, as being sparse.  

  

2. Storage techniques 

 

A very important rule in sparse matrix programming 

is: DO NOT STORE THE ZEROS!!!! 

 

There are at least two classes of sparsity 

programming methods: the entry-row-column storage 

method and the chained data structure method [1].  
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2.1 Entry-row-column storage method 

 

In this method, three arrays are used: STO[I] contains 

the value of the Ith non-zero element, and IR[I] and 

IC[I] contains the row and column, respectively, of 

the Ith non-zero element. The following example 

illustrates. 



















0100

2000

0034

1001

 

I STO[I] IR[I] IC[I] 

1 1 1 1 

2 1 1 4 

3 4 2 1 

4 3 2 2 

5 2 3 4 

6 1 4 3 

Observe the entries are in “row-order,” i.e., they are 

ordered in the arrays I=1,… in the order they appear 

in the matrix starting in row 1, then row 2, etc. (we 

could also place the entries in “column order.”). It is 

important to have some kind of order, in contrast to 

random storage, because it gives a basis to search for 

a particular matrix element.  
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For example, if we wanted an element in position 

(j,k), we could do a “golden search” (choose an 

element I and identify whether it is below or above 

element (j,k). If above, choose I/2. If below, choose 

2I. Then repeat. 

 

If the elements are stored randomly, as indicated 

below, then every time we wanted an element (j,k), 

we would have to scan the arrays until we found it. 

This would take significant “search time.” 



















0100

2000

0034

1001

 

I STO[I] IR[I] IC[I] 

1 1 1 4 

2 1 4 3 

3 4 2 1 

4 3 2 2 

5 1 1 1 

6 2 3 4 

 

It is interesting to see what the storage requirement of 

this scheme is like.  

Recall that for power systems, we typically get about 

7N non-zero elements. For every non-zero element, 

we must store 3 numbers (STO, IC, and IR). This 
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creates the need for making 3×7N=21N stores. So 

total number of stores is 21N, which means our 

storage requirement, as a percentage of the number of 

matrix elements (giving us a sense of what we need 

to store relative to what we would store if we just 

kept the entire matrix in memory) is 21N/N2=21/N. 

This is illustrated below. 
Size         Percent of matrix filled     Percent of stores required 

N=500  7/500=1.4% filled.    4.2% 

N=2000  7/2000=0.35% filled.   1.05% 

N=10000  7/10000=0.075% filled.   0.21% 

N=50000  7/50000=0.0145% filled.   0.042% 

What this says, for example (for the first case of 500 

buses), is that whereas only 1.4% of the matrix size will 

have non-zero elements, our storage scheme will require 

a storage space requirement of only 4.2% of the matrix 

size. This is much better than storing the entire matrix! 

 

There is one problem with the entry-row-column 

storage method. What if we need to insert a non-zero 

element into a position that was previously zero? For 

example, consider changing the data structures for 

the original matrix, shown below on the left, so that 

the data structures reflect the one shown on the right. 



















0100

2000

0034

1001




















0100

2500

0034

1001
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In the modified data structures on the right, all values 

“below” the inserted non-zero element at I=5 had to 

be “pushed down” the array structures, i.e.,  

 what was STO[5], IR[5], and IC[5] has now 

become STO[6], IR[6], and IC[6], and 

 what was STO[6], IR[6], and IC[6] has now 

become STO[7], IR[7], and IC[7]. 

This “pushing down” the array structures for an 

insertion takes time, and when the matrices are very 

large, this can take significant time (even for sparse 

matrices), especially when an element needs to be 

inserted “high” up the array structures. 

 

We avoid this insertion time by allowing for random 

storage. However, in this case, we increase our search 

time, as described on page 6. So with this method, we 

either incur insertion time or search time. We avoid 

both problems using a chained data structure, with 

slightly increased memory requirements. 

I STO[I] IR[I] IC[I] 

1 1 1 1 

2 1 1 4 

3 4 2 1 

4 3 2 2 

5 5 3 3 

6 2 3 4 

7 1 4 3 
 

I STO[I] IR[I] IC[I] 

1 1 1 1 

2 1 1 4 

3 4 2 1 

4 3 2 2 

5 2 3 4 

6 1 4 3 
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2.2 Chained data structure method 

 

The so-called chained-data structure method uses 

four arrays. 

 

 STO[I]: Contains value of Ith non-zero element. 

 IC[I]: Contains col number of Ith non-zero element. 

 NEXT[I]: Points to the location in STO and IC 

where the next non-zero element is located for the 

row. It will be I+1 unless STO[I] is the last non-

zero element in the row, in which case it is zero. 

 LOC[K]: Points to location in STO and IC where 

the first non-zero element is stored for row K. 

Let’s illustrate in what follows. Consider the matrix: 



















0100

2000

0034

1001

 

I STO[I] IC[I] NEXT[I] 

1 1 1 2 

2 1 4 0 

3 4 1 4 

4 3 2 0 

5 2 4 0 

6 1 3 0 
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K LOC[K] 

1 1 

2 3 

3 5 

4 6 
A common need is to obtain the element in position (j,k). 

For example, lets obtain the element in position (2,3).  

 

One does that using the above in the following way: 
 LOC[2]=3 indicates the first non-zero element in row 2 

is stored as element I=3 in STO[I], IC[I], & NEXT[I]. 

 IC[3]=1 indicates the column number of the third 

element in STO, IC, and NEXT is 1.  

 1<3? tests to see if this column (column 1) is before the 

column of interest (column 3). 

 Since answer to 1<3? is “yes,” then get NEXT[3]=4. 

This indicates that this row has another non-zero 

element, and it is stored in location I=4 of STO[I], IC[I], 

and NEXT[I].  

 IC[4]=2 indicates that the column number of the fourth 

element in STO, IC, and NEXT is 2.  

 2<3? tests to see if this column (column 2) is before the 

column of interest (column 3).  

 Since answer to 2<3? is “yes,” then get NEXT[4]=0. 

This indicates that there are no more non-zero elements 

in this row. Therefore, we know that the element in 

position (2, 3) must be zero.  

One can add information to decrease computation, 

but it will be at the expense of additional memory, 

NEXT[I] signals you 

(with a zero) where the 

current row ends. 

LOC[K] tells you 

where in STO and IC 

row K begins. 
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showing a typical tradeoff between computation and 

memory. However, if the matrix is sparse, the above 

search on a row is very fast, since typically there will 

only be a very few non-zero elements in each row.  

It is interesting to see what the storage requirement of 

this scheme is like.  

 

Recall that for power systems, we typically get about 

7N non-zero elements.  

 

For every non-zero element, we must store 3 numbers 

(STO, IC, and NEXT). This creates the need for 

making 3×7N=21N stores. 

 

Then LOC creates one store for every row so that we 

will have from here the need for making N stores. 

 

So total number of stores is 21N+N=22N, which 

means our storage requirement, as a percentage of the 

number of matrix elements (giving us a sense of what 

we need to store relative to what we would store if 

we just kept the entire matrix in memory) is 

22N/N2=22/N. This is illustrated below. 
Size         Percent of matrix filled     Percent of stores required 

N=500  7/500=1.4% filled.    4.4% 

N=2000  7/2000=0.35% filled.   1.1% 

N=10000  7/10000=0.075% filled.   0.22% 

N=50000  7/50000=0.0145% filled.   0.044% 
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What this says, for example (for the first case of 500 

buses) is that whereas only 1.4% of the matrix will have 

non-zero elements, our storage scheme will require a 

storage space requirement of only 4.4% of the matrix 

size. This is much better than storing the entire matrix! 

3. Optimal ordering 

 

Recall the algorithm for LU decomposition. 

The algorithm is as follows: 

1. Perform Gaussian elimination on A. Let i=1. In 

each repetition below, row i is the pivot row and 

aii is the pivot. 

a. Lji=aji for j=i,…,n. 

b. Divide row i by aii. 

c. If [i=n, go to 2] else [go to d]. 

d. Eliminate all aji, j=i+1,…,n. This means to 

make all elements directly beneath the pivot 

equal to 0 by adding an appropriate multiple of 

the pivot row to each row beneath the pivot. 

e. i=i+1, go to a. 

2. The matrix U is what remains. 

 

Observe that Step 1d consists of multiplying row i, 

the pivot row, by an appropriate constant and then 

adding it to row j. The constant is always –aji, so that 

element (j,i) is annihilated (changed to zero). We call 

this operation of row multiplication and addition a 

“row operation.” 
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General speed-up strategy: Minimize the number of 

row operations. 

 

Fact: Given pivot row i, row operations are only 

necessary if aji≠0. 

 

Speed-up approach #1:  

Test each aji. If 0, go to next row without performing 

row operation. 

 

This is effective, but very obvious. Can we do better? 

Let’s make two definitions: 

 

Lower Triangle (LT): The portion of the matrix 

below the diagonal, illustrated in Fig. 1. 





























_______

_______

_______

_______

_______

_______

_______

 

LT 

 

Fig. 1 
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Remaining Lower Triangular Element (RLTE): This 

is an element in the LT but to the right of the ith 

column when row i is the pivot row, as illustrated in 

Fig. 2. An RLTE can be denoted akl, where k,l > i.  

 





























_______

_______

_______

_______

_______

_____1_

_______

 

RLTE’s 

i
th

 pivot 

row 

aji's 
 

Fig. 2 

Observe that  

 The RLTE’s are the future aji’s. To take 

advantage of Speedup approach #1, we want as 

many of these elements as possible to be zero.  

 If RLTE akl is initially zero (before the Gaussian 

elimination process is started), it could become 

non-zero during a row operation. We call such 

elements “fill-ups”. This will add a future row 

operation. An illustration of such a case is below. 
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14

2652

343

19633

431

4321

4321

4321









xxx

xxxx

xxxx

xxxx

 



















 4101

6521

1431

9633

 

 
Divide first row by 3 and then add multiples of it to 

remaining rows so that first element in remaining 

rows gets zeroed. 























1310

3310

2220

3211

 

 
Observe that the element in row 4, col 2 (circled) was 

a zero in the original matrix but became a “fill” (and 

therefore a “fill-up”). We just created an extra row 

operation for ourselves! 

 

How could we have avoided this situation?   
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What if we could have started so that that original 

zero was in the first column, as shown below? 

14

2652

343

19633

431

4312

4312

4312









xxx

xxxx

xxxx

xxxx

 



















 4110

6512

1413

9633

 

Observe that we just exchanged the first two 

columns, which is equivalent to interchanging the 

order of variables x1 and x2.  

 

Now divide first row by 3 and then add multiples of it 

to remaining rows so that first element in remaining 

rows gets zeroed. 

 

Notice that we only have to perform two row 

operations in this case because the last element (row 

4) is already zero! So we preserved our elimination of 

a row operation caused by a zero element! 
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























4110

0110

8220

3211

 

So what is the general approach to take here? 

Speed-up approach #2: 

Minimize row operations. 

Minimize row operations by minimizing fill-ups. 

Minimize fill-ups by pushing zero elements in LT 

to left-hand side of matrix. This will effectively move 

them away from positions where a row operation can 

affect them. 

 

We will attempt to accomplish this by ordering the 

buses in certain intelligent ways. There are several 

ways of doing so. Here is the first way. 

 

Optimal Ordering Scheme #1 (OOS1): 

The nodes of a network are ordered in such a way 

that a lower numbered node has less or equal number 

of actual adjacent branches than any higher 

numbered node. (An “adjacent branch” is an 

interconnection with another bus). 

 



 18 

We will illustrate the power of this method. But to do 

so, we will need another concept. 

 

Symbolic factorization: In symbolic factorization, we 

identify only the extent to which the Gaussian 

Elimination procedure produces fill-ups, but we do 

not actually compute the numbers (and therefore no 

floating point operations!).  

 

Given pivot row i, we assume that “we never get 

lucky,” in that non-zero-elements always result in 

position (j,k), j,k>i, from row operations having  

 non-zero element in position (i,k) of pivot row i 

and/or  

 non-zero element in position (j,k) before the pivot 

operation. 

It is possible that if position (i,k) of pivot row i and 

position (j,k) are both non-zero, that they could sum 

to zero and therefore produce a zero element in 

position (j,k) after the row operation, but we will 

assume in our symbolic factorization procedure that 

“being lucky” in this sense cannot happen. 

 

Example: Consider the following power system.  

1. Identify fills and total number of row operations if 

the power system is numbered as shown. 

2. Identify fills and total number of row operations if 

the power system is numbered using OOS1. 
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1 

2 

4 

3 

5 

6 

7 

8 

 

Fig. 3 

Table 1: Fills 

 1 2 3 4 5 6 7 8 

1 X X X   X  X 

2 X X  X   X  

3 X  X X X    

4  X X X     

5   X  X X   

6 X    X X   

7  X     X  

8 X       X 

Now perform the symbolic factorization and count the number 

of row operations and fills for each pivot. We place an “Fk” for 

each fill-up produced by a row operation based on pivot row k.  

 

Starting with pivot row 1, we see it requires 4 row operations 

since there are 4 non-0 elements beneath position (1,1). 

Performing symbolic factorization, we see that pivot row 1 

produces 12 fill-ups. 
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Table 2: Fills & Fill-ups produced by pivot row 1 

 1 2 3 4 5 6 7 8 

1 X X X   X  X 

2 X X F1 X  F1 X F1 

3 X F1 X X X F1  F1 

4  X X X     

5   X  X X   

6 X F1 F1  X X  F1 

7  X     X  

8 X F1 F1   F1  X 

 

Moving to pivot row 2, we see that it requires 5 row 

operations since there are 5 non-0 elements beneath 

position (2,2). Performing the symbolic factorization, 

we see that pivot row 2 will produce 12 fill-ups. 

 

Table 3: Fills and Fill-ups produced by pivot row 2 

 1 2 3 4 5 6 7 8 

1 X X X   X  X 

2 X X F1 X  F1 X F1 

3 X F1 X X X F1 F2 F1 

4  X X X  F2 F2 F2 

5   X  X X   

6 X F1 F1 F2 X X F2 F1 

7  X F2 F2  F2 X F2 

8 X F1 F1 F2  F1 F2 X 
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Continuing in this manner, we show the complete 

symbolic factorization in the table below. 

 

Table 4: Fills and Fill-ups produced by all pivot rows 

 1 2 3 4 5 6 7 8 

1 X X X   X  X 

2 X X F1 X  F1 X F1 

3 X F1 X X X F1 F2 F1 

4  X X X F3 F2 F2 F2 

5   X F3 X X F3 F3 

6 X F1 F1 F2 X X F2 F1 

7  X F2 F2 F3 F2 X F2 

8 X F1 F1 F2 F3 F1 F2 X 

 

The total number of row operations is summarized in 

Table 5. 

Table 5: Summary for Random Numbering 

Pivot Row ops Fill-ups 

1 4 12 

2 5 12 

3 5 6 

4 4 0 

5 3 0 

6 2 0 

7 1 0 

TOTAL 24  
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Now renumber according to OOS1, shown in Fig. 4, 

and re-perform the symbolic factorization. 
 

8 

7 

5 

6 

4 

3 

2 

1 

 

Fig. 4 

 

Table 6: Fills and Fill-ups for OOS1 

 1 2 3 4 5 6 7 8 

1 X       X 

2  X     X  

3   X X    X 

4   X X  X  F3 

5     X X X  

6    X X X F5 X 

7  X   X F5 X X 

8 X  X F3  X X X 

 

The total number of row operations is summarized in 

Table 7. 
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Table 7: Summary for OOS1 

Pivot Row ops Fill-ups 

1 1 0 

2 1 0 

3 2 2 

4 2 0 

5 2 1 

6 2 0 

7 1 0 

TOTAL 11  

 

In comparing Table 5 to Table 7, one notes that the 

OOS1 requires only 11 row operations whereas 

random numbering requires 24 row operations.  

OOS1 provides us with a significant computational 

benefit! 

====================================== 

There is an improvement that can be performed 

which is based on the following observation: 

If the original matrix is symmetric, then fill-ups 

are produced symmetrically, that is, if a fill-up is 

produced in location (j,k), then a fill-up will be 

produced in location (k,j). Therefore, we may 

view fill-ups to represent new branches (keeping 

in mind that these new branches are fictitious).  
One can observe the above from Table 6 (repeated 

below), where we see that, if (3,8) fills-up (4,8), then we 

know: 
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 (3,8) is a fill (by symmetry) (8,3) is a fill 

 (4,3) is a fill (by symmetry) (3,4) is a fill 

 (8,4) is 0 (because (4,8) just got filled so it must have 

been 0 previously, then by symmetry (8,4) is 0) 

If (8,3) is a fill, then we will have to eliminate it using 

pivot row 3. When we do this, (3,4) will fill-up (8,4). 
 1 2 3 4 5 6 7 8 

1 X       X 

2  X     X  

3   X X    X 

4   X X  X  F3 

5     X X X  

6    X X X F5 X 

7  X   X F5 X X 

8 X  X F3  X X X 

This leads us to optimal ordering scheme #2. 

Optimal Ordering Scheme #2 (OOS2): 

The nodes of a network are ordered in such a way 

that a lower numbered node has less or equal number 

of actual or fictitious adjacent branches than any 

higher numbered node.  

 

Compare to OOS1: 

Optimal Ordering Scheme #1 (OOS1): 

The nodes of a network are ordered in such a way 

that a lower numbered node has less or equal number 

of actual adjacent branches than any higher 

numbered node.  

 

We know (4,3) 

must be a fill, 

otherwise the 

row operation 

that filled (4,8) 

would not have 

been necessary 
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The main difference between these schemes is that 

OOS1 does one ordering at the beginning based only 

on number of actual branches for each node, whereas 

OOS2 also does a check for re-ordering at the 

beginning of each elimination. 

Let’s see how it works for our previous example. 

 

Repeating Table 6 below, which shows fill-ups for 

OOS1, we see that row 4 has a total of 4 non-zero 

elements whereas row 5 has only 3 non-zero 

elements. Thus, we conclude that node 4 is connected 

to three other buses whereas node 5 is connected to 

only two other buses. So let’s exchange these two 

rows, giving the matrix of Table 8. 

Table 7: Fills and Fill-ups for OOS1 

 1 2 3 4 5 6 7 8 

1 X       X 

2  X     X  

3   X X    X 

4   X X  X  F3 

5     X X X  

6    X X X F5 X 

7  X   X F5 X X 

8 X  X F3  X X X 

 

Table 8 shows the re-ordering and subsequent 

symbolic factorization. 
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Table 8: Fills and Fill-ups for OOS2 

 1 2 3 5 4 6 7 8 

1 X       X 

2  X     X  

3   X  X   X 

5    X  X X  

4   X  X X  F3 

6    X X X F5 X 

7  X  X  F5 X X 

8 X  X  F3 X X X 
 

8 

7 

5 

6 

4 

3 

2 

1 

 

Table 7: Summary for OOS2 
Pivot Row ops Fill-ups 

1 1 0 

2 1 0 

3 2 2 

5 2 2 

4 2 0 

6 2 0 

7 1 0 

TOTAL 11  
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In this case, the row operations were the same, but 

for larger systems, OOS2 outperforms OOS1.  

 

There is a third approach, OOS3, but it has been 

shown to be more complex without much speed 

improvement. 

 

This work comes from W. Tinney’s famous paper [2] 

on sparsity. The work has been heavily adopted in 

many disciplines, e.g., see the VLSI text [3]. The 

work has also been significantly expanded since then, 

for example, see [4]. 

 

Also, you should be aware of the multi-frontal 

method, as explained in the paper by Khaitan and 

McCalley (posted on webpage). 
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