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T7.0  Introduction 
 

The power flow problem is a very well known problem in the field of power systems engineering, where 

voltage magnitudes and angles for one set of buses are desired, given that voltage magnitudes and power 

levels for another set of buses are known and that a model of the network configuration (unit commitment 

and circuit topology) is available. A power flow solution procedure is a numerical method that is employed 

to solve the power flow problem. A power flow program is a computer code that implements a power flow 

solution procedure. The power flow solution contains the voltages and angles at all buses, and from this 

information, we may compute the real and reactive generation and load levels at all buses and the real and 

reactive flows across all circuits. The above terminology is often used with the word “load” substituted for 

“power,” i.e., load flow problem, load flow solution procedure, load flow program, and load flow solution. 

However, the former terminology is preferred as one normally does not think of  “load” as something that 

“flows.” 

 

The power flow problem was originally motivated within planning environments where engineers 

considered different network configurations necessary to serve an expected future load. Later, it became an 

operational problem as operators and operating engineers were required to monitor the real-time status of 

the network in terms of voltage magnitudes and circuit flows. Today, the power flow problem is widely 

recognized as a fundamental problem for power system analysis, and there are many advanced, commercial 

power flow programs to address it. Most of these programs are capable of solving the power flow program 

for tens of thousands of interconnected buses. Engineers that understand the power flow problem, its 

formulation, and corresponding solution procedures are in high demand, particularly if they also have 

experience with commercial grade power flow programs.  

 

The power flow problem is fundamentally a network analysis problem, and as such, the study of it provides 

insight into solutions for similar problems that occur in other areas of electrical engineering. For example, 

integrated circuit designers also encounter network analysis problems, although of significantly smaller 

physical size, are quite similar otherwise to the power flow problem. For example, references [1,2] are 

well-known network analysis texts in VLSI design that also provide good insight into the numerical 

analysis needed by the power flow program designer. Similarly, there are numerous classical power system 

engineering texts, [3-11] are a representative sample, that provide advanced network analysis methods 

applicable to VLSI design and analysis problems. 

 

Section T7.1 identifies a feature of power generators important to the power flow problem – real and 

reactive power limits. Section T7.2 defines some additional terminology necessary to understand the power 

flow problem and its solution procedure. Section T7.3 introduces the so-called network “Y-bus,” otherwise 

known more generally as the network admittance matrix. Section T7.4 develops the power flow equations, 

building from module T1 where equations for real and reactive power flow across a transmission line were 

introduced. Section T7.5 provides an analytical statement of the power flow problem. Section T7.6 uses a 

simple example to introduce the Newton-Raphson algorithm for solving systems of non-linear algebraic 

equations. Section T7.7 illustrates application of the Newton-Raphson algorithm to the power flow 

problem. Section T7.8 provides an overview of several interesting and advanced attributes of the problem. 

Section T7.9 summarizes basic power flow input and output quantities and provides an example associated 

with a commercial power flow program. 

  

T7.1  Generator Reactive Limits 
 

It is well known that generators have maximum and minimum real power capabilities. In addition, they also 

have maximum and minimum reactive power capabilities. The maximum reactive power capability 
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corresponds to the maximum reactive power that the generator may produce when operating with a lagging 

power factor. The minimum reactive power capability corresponds to the maximum reactive power the 

generator may absorb when operating with a leading power factor. These limitations are a function of the 

real power output of the generator, that is, as the real power increases, the reactive power limitations move 

closer to zero. The solid curve in Figure T7.1 is a typical generator capability curve, which shows the 

lagging and leading reactive limitations (the ordinate) as real power is varied (the abscissa). Most power 

flow programs model the generator reactive capabilities by assuming a somewhat conservative value for 

Pmax (perhaps 95% of the actual value), and then fixing the reactive limits Qmax (for the lagging limit) and 

Qming (for the leading limit) according to the dotted lines shown in Fig. T2.1. 

 

Pmax 
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Q 

leading 

operation 
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operation 

 
Fig T7.1: Generator Capability Curve and Approximate Reactive Limits 

 

T7.2  Terminology 
 

Bulk high voltage transmission systems are always comprised of three phase circuits. However, under 

balanced conditions (the currents in all three phases are equal in magnitude and phase separated by 120), 

we may analyze the three phase system using a per-phase equivalent circuit consisting of the a-phase and 

the neutral conductor. Per-unitization of a per-phase equivalent of a three phase, balanced system results in 

the per-unit circuit. It is the per-unitized, per-phase equivalent circuit of the power system that we use to 

formulate and solve the power flow problem. For the remainder of this module, we will assume that all 

quantities are in per-unit. The reader unfamiliar with per-phase equivalent circuits or the per-unit system 

should refer to modules B3 and B4, respectively. 

 

It is convenient to represent power system networks using the so-called one-line diagram, which can be 

thought of as the circuit diagram of the per-phase equivalent, but without the neutral conductor (module B3 

also provides additional background on the one-line diagram). Figure T7.2 illustrates the one-line diagram 

of a small transmission system.  

 

Fig. T7.2 illustrates several important elements of the power flow problem. First, one notices we may 

categorize each bus depending on whether generation and/or load is connected to it. Specifically, a bus may 

have generation only (buses B1, B2, and B3), load only (buses B5, B7, and B9), or neither generation or 

load (buses B4, B6, and B8). In addition, a bus may have both generation and load, although none of the 

buses in Fig. 1 fall into this category. This categorization, which focuses on the load and generation, leads 

us to define the term “bus injection” or more simply, “injection.” We will use this term frequently, and the 

student is advised to carefully note its meaning, given and discussed in the following paragraph. 

 

An injection is the power, either real or reactive, that is being injected into or withdrawn from a bus by an 

element having its other terminal (in the per-phase equivalent circuit) connected to ground. Such an 

element would be either a generator or a load. We define a positive injection as one where power is flowing 

from the element into the bus (i.e., into the network); a negative injection is then when power is flowing 

from the bus (i.e., from the network) into the element. Generators normally have positive real power 

injections, although they may also be assigned negative real power injections, in which case they are 

Approximate 
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One-line 

diagram: per-

phase circuit 

diagram without 

neutral. 



The Power Flow Problem 

 

3 

operating as a motor. Generators may have either positive or negative reactive power injections: positive if 

the generator is operating lagging and delivering reactive power to the bus, negative if the generator is 

operating leading and absorbing reactive power from the bus, and zero if the generator is operating at unity 

power factor. Loads normally have negative real and reactive power injections, although they may also be 

assigned positive real power injections in the case of very special modeling needs. Figure T7.3 (a) and (b) 

illustrate the two most common possibilities. Figure T.7.3 (c) illustrates that we must compute a net 

injection as the algebraic sum when a bus has both load and generation; in this case, the net injection for 

both real and reactive power is positive (into the bus). Thus, the net real power injection is Pk=Pgk-Pdk, and 

the net reactive power injection is Qk=Qgk-Qdk. We may also refer to the net complex power injection as 

Sk=Sgk-Sdk, where Sk=Pk+jQk. 

 

 
Figure T7.2: Single Line Diagram for Simple Power System 

 

Pk=100 
Qk=30 

(a) 

Pk= - 40 
Qk= -20 

(b) 

Pk=100+(-40)=60 
Qk=30+(-20)=10 

(c) 

 
Fig T7.3: Illustration of (a) positive injection, (b) negative injection, and (c) net injection 
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Although it is physically appealing to categorize buses based on the generation/load mix connected to it, we 

need to be more precise in order to analytically formulate the power flow problem. For proper analytical 

formulation, it is appropriate to categorize the buses according to what information is known about them 

before we solve the power flow problem. For each bus, there are four possible variables that characterize 

the buses electrical condition. Let us consider an arbitrary bus numbered k. The four variables are real and 

reactive power injection, Pk and Qk, respectively, and voltage magnitude and angle, |Vk | and k, 

respectively. From this perspective, there are three basic types of buses. We refer to the first two types 

using terminology that remind us of the known variables. 

 PV Buses: For type PV buses, we know Pk and |Vk | but not Qk or k.  These buses fall under the 

category of voltage-controlled buses because of the ability to specify (and therefore to know) the 

voltage magnitude of this bus. Most generator buses fall into this category, independent of whether it 

also has load; exceptions are buses that have reactive power injection at either the generator’s upper 

limit (Qmax) or its lower limit (Qmin), and (2) the system swing bus (we describe the swing bus below). 

There are also special cases where a non-generator bus (i.e., either a bus with load or a bus with neither 

generation or load) may be classified as type PV, and some examples of these special cases are buses 

having switched shunt capacitors or static var systems (SVCs). We will not address these special cases 

in this module. In Fig. T7.2, buses B2 and B3 are type PV. The real power injections of the type PV 

buses are chosen according to the system dispatch corresponding to the modeled loading conditions. 

The voltage magnitudes of the type PV buses are chosen according to the expected terminal voltage 

settings, sometimes called the generator “set points,” of the units. 

 PQ Buses: For type PQ buses, we know Pk and Qk but not |Vk | or k.  All load buses fall into this 

category, including buses that have not either load or generation. In Fig. T7.2, buses B4-B9 are all type 

PQ. The real power injections of the type PQ buses are chosen according to the loading conditions 

being modeled. The reactive power injections of the type PQ buses are chosen according to the 

expected power factor of the load. 

The third type of bus is referred to as the swing bus. Two other common terms for this bus are slack bus 

and reference bus. There is only one swing bus, and it can be designated by the engineer to be any 

generator bus in the system. For the swing bus, we know |V| and . The fact that we know  is the reason 

why it is sometimes called the reference bus. Physically, there is nothing special about the swing bus; in 

fact, it is a mathematical artifact of the solution procedure. At this point in our treatment of the power flow 

problem, it is most appropriate to understand this last statement in the following way. The generation must 

supply both the load and the losses on the circuits. Before solving the power flow problem, we will know 

all injections at PQ buses, but we will not know what the losses will be as losses are a function of the flows 

on the circuits which are yet to be computed. So we may set the real power injections for, at most, all but 

one of the generators. The one generator for which we do not set the real power injection is the one 

modeled at the swing bus. Thus, this generator “swings” to compensate for the network losses, or, one may 

say that it “takes up the slack.” Therefore, rather than call this generator a |V| bus (as the above naming 

convention would have it), we choose the terminology “swing” or “slack” as it helps us to better remember 

its function. The voltage magnitude of the swing bus is chosen to correspond to the typical voltage setting 

of this generator. The voltage angle may be designated to be any angle, but normally it is designated as 0
o
. 

 

A word of caution about the swing bus is in order. Because the real power injection of the swing bus is not 

set by the engineer but rather is an output of the power flow solution, it can take on mathematically 

tractable but physically impossible values. Therefore, the engineer must always check the swing bus 

generation level following a solution to ensure that it is within the physical limitations of the generator. 

  

T7.3  The Admittance Matrix 
Current injections at a bus are analogous to power injections. The student may have already been 

introduced to them in the form of current sources at a node. Current injections may be either positive (into 

the bus) or negative (out of the bus). Unlike current flowing through a branch (and thus is a branch 

quantity), a current injection is a nodal quantity. The admittance matrix, a fundamental network analysis 

tool that we shall use heavily, relates current injections at a bus to the bus voltages. Thus, the admittance 

matrix relates nodal quantities. We motivate these ideas by introducing a simple example.  
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Figure T7.4 shows a network represented in a hybrid fashion using one-line diagram representation for the 

nodes (buses 1-4) and circuit representation for the branches connecting the nodes and the branches to 

ground. The branches connecting the nodes represent lines. The branches to ground represent any shunt 

elements at the buses, including the charging capacitance at either end of the line. All branches are denoted 

with their admittance values yij for a branch connecting bus i to bus j and yi for a shunt element at bus i. 

The current injections at each bus i are denoted by Ii. 

 

y4 
y3 

y1 

y2 

I4 

I3 I2 

I1 

4 3 

2 

1 

y34 

y23 

y13 

y12 

 
Fig. T7.4: Network for Motivating Admittance Matrix 

 

Kirchoff’s Current Law (KCL) requires that each of the current injections be equal to the sum of the 

currents flowing out of the bus and into the lines connecting the bus to other buses, or to the ground. 

Therefore, recalling Ohm’s Law, I=V/Z=VY, the current injected into bus 1 may be written as: 

 

I1=(V1-V2)y12 + (V1-V3)y13 + V1y1      (T7.1) 

 

To be complete, we may also consider that bus 1 is “connected” to bus 4 through an infinite impedance, 

which implies that the corresponding admittance y14 is zero. The advantage to doing this is that it allows us 

to consider that bus 1 could be connected to any bus in the network. Then, we have: 

 

I1=(V1-V2)y12 + (V1-V3)y13 + (V1-V4)y14 + V1y1    (T7.2) 

 

Note that the current contribution of the term containing y14 is zero since y14 is zero. Rearranging eq. T7.2, 

we have: 

 

I1= V1( y1 + y12 + y13 + y14) + V2(-y12)+ V3(-y13) + V4(-y14)   (T7.3) 

 

Similarly, we may develop the current injections at buses 2, 3, and 4 as: 

 

I2= V1(-y21) + V2( y2 + y21 + y23 + y24) + V3(-y23) + V4(-y24)                 (T7.4) 

I3= V1(-y31)+ V2(-y32) + V3( y3 + y31 + y32 + y34) + V4(-y34)  

I4= V1(-y41)+ V2(-y42) + V3(-y34)+ V4( y4 + y41 + y42 + y43)  

 

where we recognize that the admittance of the circuit from bus k to bus i is the same as the admittance from 

bus i to bus k, i.e., yki=yik From eqs. (T7.3) and (T7.4), we see that the current injections are linear 

functions of the nodal voltages. Therefore, we may write these equations in a more compact form using 

matrices according to: 
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 (T7.5) 
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The matrix containing the network admittances in eq. (T7.5) is the admittance matrix, also known as the Y-

bus, and denoted as: 
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Denoting the element in row i, column j, as Yij, we rewrite eq. (T7.6) as:  
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where the terms Yij are not admittances but rather elements of the admittance matrix. Therefore, eq. (T7.6) 

becomes: 
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By using eq. (T7.7) and (T7.8), and defining the vectors V and I, we may write eq. (T7.8) in compact form 

according to: 
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We make several observations about the admittance matrix given in eqs. (T7.6) and (T7.7). These 

observations hold true for any linear network of any size. 

1. The matrix is symmetric, i.e., Yij=Yji. 

2. A diagonal element Yii is obtained as the sum of admittances for all branches connected to bus i, 

including the shunt branch, i.e., 



N

ikk

ikiii yyY
,1

, where we emphasize once again that yik is non-

zero only when there exists a physical connection between buses i and k. 

3. The off-diagonal elements are the negative of the admittances connecting buses i and j, i.e., Yij=-yji. 

These observations enable us to formulate the admittance matrix very quickly from the network based on 

visual inspection. The following example will clarify. 

 

 

Example T7.1 
 

Consider the network given in Fig. T7.5, where the numbers indicate admittances.  
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rules. 
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Fig. T7.5: Circuit for Example T7.1 

 

The admittance matrix is given by inspection as: 
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T7.4  The power flow equations 
 

We have defined the net complex power injection into a bus, in Section T7.2, as Sk=Sgk-Sdk. In this section, 

we desire to derive an expression for this quantity in terms of network voltages and admittances. We begin 

by reminding the reader that all quantities are assumed to be in per unit, so we may utilize single-phase 

power relations. Drawing on the familiar relation for complex power, we may express Sk as: 

 

Sk=VkIk
*
      (T.7.10)  

 

From eq. (T7.8), we see that the current injection into any bus k may be expressed as 
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     (T7.11)  

  

where, again, we emphasize that the Ykj terms are admittance matrix elements and not admittances. 

Substitution of eq. (T7.11) into eq. (T7.10) yields: 
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    (T7.12)  

 

Recall that Vk is a phasor, having magnitude and angle, so that Vk=|Vk|k. Also, Ykj, being a function of 

admittances, is therefore generally complex, and we define Gkj and Bkj as the real and imaginary parts of 

the admittance matrix element Ykj, respectively, so that Ykj=Gkj+jBkj. Then we may rewrite eq. (T7.12) as 
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 (T7.13) 

   

The elements of Y-bus are 

designated as Ykj= Gkj+jBkj. 

Observe Bkj<0 for diagonal 

elements; Bkj>0 otherwise. 

The shunt elements all have 

positive susceptance, and 

must therefore be capacitive. 

The most important step in 

deriving pf eqts: substitute 

Y-bus relation into S=VI*. 
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Recall, from the Euler relation, that a phasor may be expressed as complex function of sinusoids, i.e., 

V=|V|=|V|{cos+jsin}, we may rewrite eq. (T7.13) as 
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  (T7.14)  

If we now perform the algebraic multiplication of the two terms inside the parentheses of eq. (T7.14), and 

then collect real and imaginary parts, and recall that Sk=Pk+jQk, we can express eq. (T7.14) as two 

equations, one for the real part, Pk, and one for the imaginary part, Qk, according to: 
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  (T7.15)  

 

The two equations of (T7.15) are called the power flow equations, and they form the fundamental building 

block from which we attack the power flow problem.  

 

It is interesting to consider the case of eqs. (T7.15) if bus k, relabeled as bus p, is only connected to one 

other bus, let’s say bus q. Then the bus p injection is the same as the flow into the line pq. The situation is 

illustrated in Fig. T7.6. 
 

 Bus q Bus p 
Series 

admittance 
G-jB 

Bus 
injection 
Pp and Qp Line flow  

Ppq and Qpq 

 
Fig. T7.6: Bus p Connected to Only Bus q 

 

For the situation illustrated in Fig. T7.6, eqs. (T7.15) become:  
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 (T7.16)  

 

If the line pq admittance is y=G-jB
1
, as shown in Fig. T7.6, then Gpq=-G and Bpq=B (see eq. T7.6). If there 

is no bus p shunt reactance or line charging, then Gpp=G and Bpp=B. Under these conditions, eqs. (T7.16) 

become: 
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  (T7.17)  

 

                                                 
1 We have defined the line pq admittance to be y=G-jB, instead of y=G+jB. The reason for defining in this way is because, since the 

line admittance y always represents inductive susceptance, the imaginary part of y must be negative; therefore the definition used here 
requires that B to be a positive number. 

The pf equations! We will be 

very wise to ensure that the 

left-hand-side is always 

known.  
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If we simply rearrange the order of the terms in the reactive equation, then we have: 
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  (T7.18)  

 

 

T7.5  Analytic statement of the power flow problem 
 

Consider a power system network having N buses, NG of which are voltage-regulating generators. One of 

these must be the swing bus. Thus there are NG-1 type PV buses, and N-NG type PQ buses. We assume that 

the swing bus is numbered bus 1, the type PV buses are numbered 2,…, NG, and the type PQ buses are 

numbered NG+1,…,N (this assumption on numbering is not necessary, but it makes the following 

development notationally convenient). It is typical that we know, in advance, the following information 

about the network (implying that it is input data to the problem):  

1. The admittances of all series and shunt elements (implying that we can obtain the Y-bus), 

2. The voltage magnitudes Vk, k=1,…,NG, at all NG generator buses, 

3. The real power injection of all buses except the swing bus, Pk, k=2,…,N 

4. The reactive power injection of all type PQ buses, Qk, k=NG+1, …, N 

Statements 3 and 4 indicate power flow equations for which we know the injections, i.e., the values of the 

left-hand side of eqs. (T7.15). These equations are very valuable because they have one less unknown than 

equations for which we do not know the left-hand-side. The number of these equations for which we know 

the left-hand-side can be determined by adding the number of buses for which we know the real power 

injection (statement 3 above) to the number of buses for which we know the reactive power injection 

(statement 4 above). This is (N-1)+(N-NG)=2N-NG-1. We repeat the power flow equations here, but this 

time, we denote the appropriate number to the right. 
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  (T7.19)  

 

We are trying to find the following information about the network: 

a. The angles for the voltage phasors at all buses except the swing bus (it is 0 at the swing bus), i.e., 

k, k=2,…,N 

b. The magnitudes for the voltage phasors at all type PQ buses, i.e., |Vk|, k=NG+1, …, N 

Statements a and b imply that we have N-1 angle unknowns and N-NG voltage magnitude unknowns, for a 

total number of unknowns of (N-1)+(N-NG)=2N-NG-1. Referring to the power flow equations, eq. (T7.19), 

we see that there are no other unknowns on the right-hand side besides voltage magnitudes and angles (the 

real and imaginary parts of the admittance values, Gkj and Bkj, are known, based on statement 1 above). 

 

Thus we see that the number of equations having known left-hand side (injections) is the same as the 

number of unknown voltage magnitudes and angles. Therefore it is possible to solve the system of 2N-NG-1 

equations for the 2N-NG-1 unknowns. However, we note from eq. (T7.19) that these equations are not 

linear, i.e., they are nonlinear equations. This nonlinearity comes from the fact that we have terms 

containing products of some of the unknowns and also terms containing trigonometric functions of some of 

the unknowns. Because of these nonlinearities, we are not able to put them directly into the familiar matrix 

form of “Ax=b” (where A is a matrix, x is the vector of unknowns, and b is a vector of constants) to obtain 

their solution. We must therefore resort to some other methods that are applicable for solving nonlinear 

equations. We describe such a method in Section T7.6. Before doing that, however, it may be helpful to 

more crisply formulate the exact problem that we want to solve. 
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N-NG reactive 

pf equations. 

 

Since these 

LHS quantities 

are known, 

inclusion of 

the 

corresponding 

pf equation 

does not add 

an unknown. 

Number of 

equations= 

number of 

unknowns! 
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Let’s first define the vector of unknown variables. This we do in two steps. First, define the vector of 

unknown angles  (an underline beneath the variable means it is a vector or a matrix) and the vector of 

unknown voltage magnitudes |V|.  
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     (T7.20)  

 

Second, define the vector x as the composite vector of unknown angles and voltage magnitudes. 
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    (T7.21)  

 

With this notation, we see that the right-hand sides of eqs. (T7.19) depend on the elements of the unknown 

vector x. Expressing this dependence more explicitly, we rewrite eqs. (T7.19) as 

 

,...,NNkxQQ

,...,NkxPP

Gkk

kk

1           , )(

2             , )(




    (T7.22)  

 

In eqs. (T7.22), Pk and Qk are the specified injections (known constants) while the right-hand sides are 

functions of the elements in the unknown vector x. Bringing the left-hand side over to the right-hand side, 

we have that 

 

,...,NNkQxQ

,...,NkPxP

Gkk

kk

1           , 0)(
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    (T7.23)  

 

We now define a vector-valued function f(x) as: 
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(T7.24)  

 

Equation (T7.24) is in the form of f(x)=0, where f(x) is a vector-valued function and 0 is a vector of zeros; 

both f(x) and 0 are of dimension (2N-NG-1)1, which is also the dimension of the vector of unknowns, x. 

Solution 

vector. 

Compact 

notation for PF 

eqts. LHS is a 

number; RHS is 

a function. 

Put in form 

f(x)=0. 

Write out all 

equations. 

The mismatch 

vector. 
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We have also introduced nomenclature representing the mismatch vector in eq. (T7.24), as the vector of 

Pk’s and Qk’s. This vector is used during the solution algorithm, which is iterative, to identify how good 

the solution is corresponding to any particular iteration. In the next section, we introduce this solution 

algorithm, which can be used to solve this kind of system of equations. The method is called the Newton-

Raphson method. 

 

T7.6  The Newton-Raphson Solution Procedure 
 

There are two basic methods for solving the power flow problem: Gauss-Siedel (GS) and Newton-Raphson 

(NR). Both of these methods are iterative root finding schemes. 

 

The GS and NR methods are often classified as root finding schemes because they are geared towards 

solving equations like f(x)=0 (or f(x)=0). The solution to such an equation, call it x* (or x*), is clearly a 

root of the function f(x) (or f(x)). 

 

The methods are called iterative because they require a series of successive approximations to the solutions. 

The procedure is generally as follows. First, guess a solution. Unless we are very fortunate, the guess will 

be, of course, wrong. So we determine an update to the “old” solution that moves to a “new” solution with 

the intention that the “new” solution is closer to the correct solution than was the “old” solution. A key 

aspect to this type of procedure is the way we obtain the update. If we can guarantee that the update is 

always improving the solution, such that the “new” solution is in fact always closer to the correct solution 

than the “old” solution, then such a procedure can be guaranteed to work if only we are willing to compute 

enough updates, i.e., if only we are willing to iterate enough times. 

 

Commercial grade power flow programs may make several different solutions procedures available, but 

almost all such programs will have available, minimally, the NR method. It is fair to say that the NR 

method has become the de-facto industry standard. The main reason for this is that the convergence 

properties of the NR scheme are very desirable when the initial, guessed solution is quite good, i.e., when it 

is chosen close to the correct solution. In the power flow problem, it is usually possible to make a good 

initial guess regarding the solution. One reason for this is that often, we may actually know the solution of a 

particular set of conditions because we have already gone through the solution procedure, and we want to 

resolve for a set of conditions that are almost the same as the previous ones, e.g., maybe remove one circuit 

or change the load level a little. In this case, we may utilize the previous solution as the initial guessed 

solution for the new conditions. This is sometimes referred to as a “hot” start. But even if we do not have a 

previous solution, we still may do very well with our guess. The reason for this is that the power flow 

problem is always solved with all quantities in per-unit. Because of the way we choose per-unit voltage 

bases, the per-unit voltages for all buses, under any reasonably normal condition, will be close to 1.0 per-

unit. Of course, this tells us nothing about the angles, but it is something, and often it is enough to simply 

guess that all voltages are 1.0 per-unit and all angles are 0 degrees. This is sometimes called a “flat” start.  

 

But what are “convergence properties” of a root finding method? There are basically two of them. One is 

whether the method will converge. The second one is how fast the method will converge. For NR, whether 

the method will converge depends on two things: how close the guessed solution is to the correct solution 

and the nature of the function close to the correct solution. If the guessed solution is close, and if the 

function is reasonably “smooth” close to the correct solution, then the NR will converge. Not only that, but 

it will converge quadratically. Quadratic convergence means that each iteration increases the accuracy of 

the solution by two decimal places. For example, if the correct solution for a particular problem is 

0.123456789, and we guess 0.100000000, then the first iteration will yield 0.123xxxxxx, the second 

iteration will yield 0.12345xxxx, the third iteration will yield 0.1234567xx, and the correct solution will be 

obtained exactly on the fourth iteration.  

 

In this module, we will not discuss the GS method, but the interested reader may find information about it 

in many texts on power systems analysis or in books on numerical methods. We will introduce the NR 

method with a simple illustration, obtained from [3].    

 

Iterative 

methods 

required to 

solve this 

nonlinear 

algebraic 

system of 

equations. 

Method is 

guess, 

check, 

update, 

check, 

update, 

check, … 

Initial guess 

is very 

important. 

If you guess 

poorly, you 

may get 

wrong 

solution or 

no solution. 

 

Divergence 

indicates 

bad initial 

guess or no 

solution. 

No solution 

may be due 

to stressed 

condition or 

bad data. 
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Example T7.2 
 

Consider the scalar function f(x)=x
2
-5x+4. This function may be easily factored to find the roots as x*=4,1.  

 

Let us now illustrate how the NR method finds one of these roots. We first need the derivative: f”(x)=2x-5. 

Assume we are bad guessers, and try an initial guess of x
(0)

=6. The following provides the first two 

iterations: 

1. f(x
(0)

)=f(6)=6
2
-5(6)+4=10 

2. f”(x
(0)

)=f’(6)=2(6)-5=7 

3. x
(0)

= -f(x
(0)

)/f’(x
(0)

)= -10/7=-1.429 

4. x
(1)

=x
(0)

+x
(0)

=6+(-1.429)=4.571 

 

1. f(x
(1)

)=f(4.571)=2.03904 

2. f”(x
(1)

)=f’(4.571)=4.142 

3. x
(1)

= -f(x
(1)

)/f’(x
(1)

)= -2.03904/4.142=-0.492284 

4. x
(2)

=x
(1)

+x
(1)

=4.571+(-0.492284)=4.0787 

One more iteration yields x
(3)

=4.002. Note that by the third iteration, as it is getting very close to the correct 

solution, the algorithm has almost obtained quadratic convergence. Fig. T7.7 illustrates how the first 

solution x
(1)

 is found from the initial guessed solution x
(0)

 during the first iteration of this algorithm. 

 

The NR algorithm is not smart enough to know which root you want, rather, it generally finds the closest 

root. This is another reason for making a good initial guess in regards to the solution. Fortunately, in the 

case of the power flow problem, alternative solutions are typically “far away” from initial guesses that have 

near-unity bus voltage magnitudes. On the other hand, it is possible for the solution to diverge, i.e., not to 

converge at all. This may occur if there is simply no solution, which is a case that engineers encounter 

frequently when studying highly stressed loading conditions served by weak transmission systems. It also 

might occur if the initial guessed solution is too far away from the correct solution. For this reason, “flat” 

starts encounter solution divergence more frequently than “hot” starts.  

 

x(1) x(0) 

 
Fig. T7.7: Illustration of the first iteration of the Newton-Raphson algorithm 

 

Next, we develop the NR update formula. We begin with the scalar case, where the update formula may be 

easily inferred from Example T7.2.  

 

Numerical 

illustration 

of N-R 

procedure 

for a single 

variable 

root finding 

problem. 

 

Graphical 

illustration 

of NR 

iteration 1 

for a single 

variable 

root finding 

problem. 

 

If your initial guess is 2.5, 

the derivative is 0, and the 

algorithm fails (corresponds 

to matrix singularity in the 

multi-dimensional case). If 

your initial guess is >2.5, 

you get the solution 4. If 

your initial guess is <2.5, 

you get the solution 1. 
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Newton Raphson for the Scalar Case: 

 

Assume that we have guessed a solution x
(0)

 to the problem f(x)=0. Then f(x
(0)

)0 because x
(0)

 is just a 

guess. But there must be some x
(0)

 which will make f(x
(0)

 + x
(0)

)=0. One way to study this problem is to 

expand the function f(x) in a Taylor series, as follows: 

 

0...))((''
2

1
)(')()( 2)0()0()0()0()0()0()0(  xxfxxfxfxxf   (T7.25)  

 

If the guess is a good one, then x
(0)

 will be small, and if this is true, then (x
(0)

)
2
 will be very small, and 

any higher order terms (h.o.t.) in eq. (T7.25), which will contain x
(0)

 raised to even higher powers, will be 

infinitesimal. As a result, it is reasonable to approximate eq. (T7.25) as 

 

0)(')()( )0()0()0()0()0(  xxfxfxxf    (T7.26)  

 

Taking f(x
(0)

) to the right hand side, we have 

 

)()(' )0()0()0( xfxxf      (T7.27)  

 

We may easily solve eq. (T7.27) for x
(0)

 according to: 

 

  )()(' )0(1)0()0( xfxfx


     (T7.28)  

 

Because f ’(x
(0)

) in eq. (T7.28) is scalar, it’s inverse is very easily evaluated using simple division so that: 

 

)('

)(
)0(

)0(
)0(

xf

xf
x


      (T.29)  

 

 

Equation (T7.28) provides the basis for the update formula to be used in the first iteration of the scalar NR 

method. This update formula is: 

 

)('

)(
)0(

)0(
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xf

xf
xxxx


     (T7.30)  

 

and from eq. (T7.28), we may infer the update formula for any particular iteration as: 

 

)('

)(
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)(
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j
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    (T7.31)  

 

Next we develop the update formula for the case where we have n equations and n unknowns. We call this 

the multidimensional case. 

 

Newton Raphson for the Multidimensional Case: 

 

Assume we have n nonlinear algebraic equations and n unknowns characterized by f(x)=0, and that we 

have guessed a solution x
(0)

. Then f(x
(0)

)0 because x
(0)

 is just a guess. But there must be some x
(0)

 which 

will make f(x
(0)

 + x
(0)

)=0. Again, we expand the function f(x) in a Taylor series, as follows: 

 

TSE for 

scalar case. 

 

Approximation 

depends on a 

good guess. 

 

Correction formula. 

 

Update formula. 

 



The Power Flow Problem 

 

14 

0...))((''
2

1
)(')()( 2)0()0(

1

)0()0(

1

)0(

1

)0()0(

1  xxfxxfxfxxf  

0...))((''
2

1
)(')()( 2)0()0(

2

)0()0(

2

)0(

2

)0()0(

2  xxfxxfxfxxf   (T7.32)  

  

0...))((''
2

1
)(')()( 2)0()0()0()0()0()0()0(

 xxfxxfxfxxf nnnn
 

 

Equations (T7.32) may be written more compactly as 

 

0...))((''
2

1
)(')()( 2)0()0()0()0()0()0()0(

 xxfxxfxfxxf    (T7.33) 

 

Assuming the guess is a good one such that x
(0)

 is small, then the higher order terms are also small and we 

can write 

 

0)(')()(
)0()0()0()0()0(
 xxfxfxxf     (T7.34)  

 

One reasonable question to ask at this point is: “Just what is f’(x
(0)

) ?” That is, what is the derivative of a 

vector-valued function of a vector? Since we have n functions and n variables, we could compute a 

derivative for each individual function with respect to each individual unknown, like fk(x)/xj, which 

gives the derivative of the k
th

 function with respect to the j
th
 unknown. Thus, there will be a number of such 

derivatives equal to the product of the number of functions by the number of unknowns, in this case, nn. 

Thus, it is convenient to store all of these derivatives in a matrix. This matrix has become quite well-known 

as the Jacobian matrix, and it is often denoted using the letter J. But how should the nn derivatives be 

stored in this matrix J? 

 

The rows of J should be ordered in the same order as the functions, that is, the k
th

 row should contain the 

derivatives of the k
th

 functions. In eq. (T7.34), since the product f’(x
(0)

) x
(0)

 must provide a correction to 

the function f(x
(0)

+x
(0)

), i.e., since f(x
(0)

) = f’(x
(0)

) x
(0)

, it must be the case that any row of the matrix J 

must be ordered so that the term in the j
th

 column contains a derivative with respect to the j
th

 unknown of 

the vector x.  

 

The reasoning in the last paragraph suggests that we write the Jacobian matrix as: 
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    (T7.35)  

 

In eq. (T7.34), taking f(x
(0)

) to the right hand side, we have  

 

)()('
)0()0()0(

xfxxf      (T7.36)  

 

or, in terms of the Jacobian matrix J, we have: 

What is f’(x)? 

 

The Jacobian matrix… 
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)(
)0()0(

xfxJ       (T7.37)  

 

Solving eq. (T7.37) for x
(0)

, we have: 

 

  )()()('
)0(1)0(1)0()0(

xfJxfxfx


     (T7.38)  

 

Equation (T7.38) provides the basis for the update formula to be used in the first iteration of the multi-

dimensional case. This update formula is: 

 

)(
)0(1)0()0()0()1(

xfJxxxx


     (T7.39)  

 

and from eq. (T7.39), we may infer the update formula for any particular iteration as: 

 

)(
)(1)()()()1( iiiii

xfJxxxx


     (T7.40)  

 

For problems of relatively small dimension, where the inverse of the Jacobian is easily obtainable, eq. 

(T7.40) is an appropriate update formula. In general, however, it is a good rule, in programming, to always 

avoid matrix inversion if at all possible, because for high-dimension problems, as is usually the case for 

large scale power networks, matrix inversion is very time consuming. We always want to avoid matrix 

inversion if possible, and it usually is.  

 

To see how to avoid matrix inversion, we will state the update formula a little differently. To do this, we 

write eq. (T7.40) as  

 
)()()1( iii

xxx 


    (T7.41)  

 

where x
(i)

 is found from  

 

)(
)()( ii

xfxJ      (T7.42a) 

 

Equation (T7.42a) is a very simple relation. Observing that J is just a constant n×n matrix, x
(i)

 is an n×1 

vector of unknowns, and f(x
(i)

) is an n×1 vector of knowns, we see that eq. (T7.42) is just the linear matrix 

equation 

A z=b     (T7.42b) 

 

There are a very many methods of solving (T7.42b). We will cover this topic later in these notes. First, 

however, let’s illustrate the Newton-Raphson procedure for a multi-dimensional case. We will use the 

simplest multi-dimensional case we can, a two-variable problem. 

 

 

Example T7.3 
 

Solve the following two equations algebraically and using NR: 

2x1
2
+x1x2-x1-2=0,  

x1
2
 -x2=0 

The steps for the algebraic solution are to first solve both equations for x2, resulting in x2=(-2x1
2
+x1+2)/x1 

and x2=x1
2
. Equating these two expressions for x2, and manipulating, results in a cubic x1

3
+2x1

2
-x1-2=0. 

This expression may be factored as: (x1-1) (x1+1)(x1+2)=0, and we see that the solutions to the cubic in x1 

are 1, -1 and –2.  Plugging these values for x1 back into either expression for x2 yields, respectively, 1, 1, 

and 4, and therefore there are three solutions to the original problem; they are: (x1, x2)=(1,1), (-1,1), (-2,4). 

The correction formula 

for first iteration. 

 

The update formula. 

 

But to avoid 

matrix 

inversion, we 

write the update 

formula like  

this 

where the 

correction is 

computed from  

this 

 

A system of 

linear 

equations! 
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Now let’s solve this same problem using NR? 

 

Define the functions f1(x1,x2)= 2x1
2
+x1x2-x1-2 and f2(x1,x2)= x1

2
 -x2. Then the Jacobian matrix is: 
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Let’s act like we do not know the solution and guess at (x1
(0)

, x2
(0)

)=(0.9,1.1). Then the Jacobian J, 

evaluated at this guessed solution, is  
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Inverting the Jacobian results in: 
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We also need to evaluate: 
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We can now update the solution using eq. (T7.40), as 
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We see that the first update results in a solution that is very close to the actual solution of (1,1). This good 

performance is due to the fact that we made a good initial guess. The student should repeat the above 

procedure, but try starting from other points, e.g., (-0.9,1.1), (-1.9,4.1), and (0,1.1), using two iterations 

each time. Writing a simple program will greatly reduce the effort. 

 

In general, of course, we usually need to iterate several times in order to obtain a satisfactory solution. How 

many times is enough? The NR algorithm must employ a stopping criterion in order to determine when the 

solution is satisfactory.  There are two ways to do this.  

 Type 1 stopping criterion: Test the maximum change in the solution elements from one iteration to the 

next, and if this maximum change is smaller than a certain predefined tolerance, then stop. This means 

to compare the maximum absolute value of elements in x against a small number, call it 1. In 

example  (T7.3), x = [-0.105397, 0.100284]
T
, so the maximum absolute value of elements in x is 

0.105397. If we had 1=0.15, we could stop. But if we had 1=0.05, we would need to continue to the 

next iteration.  

 Type 2 stopping criterion: Test the maximum value in the function elements of the most current 

iteration f(x), and if this maximum value of elements in f(x) is smaller than a certain predefined 

tolerance, then stop. This means to compare the maximum absolute value of elements in f(x) against a 

small number, call it 1. In example (T7.3), f(x)=[-0.11, -0.29]
T
, so the maximum absolute value of 

elements in f(x) is 0.29. If we had 1=0.3, we could stop. But if we had 1=0.2, we would need to 

continue to the next iteration. This is the most common stopping criterion for power flow solutions, 

and the value of each element in the function is referred to as the “power mismatch” for the bus 

One of these 

two stopping 

criterion may be 

applied. 

Type 1: x 

Type 2: f(x) 

 

Type 2 is “power 

mismatch” and 

gives indication 

of where 

convergence 

problems may lie. 
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corresponding to the function. For type PQ buses, we test both real and reactive power mismatches. 

For type PV buses, we test only real power mismatches. 

 

T7.7 Application of NR to Power Flow Solution  
 

Let’s revisit the power flow problem outlined in Section T7.5, in light of the NR solution procedure 

described in Section T7.6. We desire to solve eq. (T7.24), with the vector of unknowns are given by eq. 

(T7.21) and the functions are in the form of eq. (T7.19). These equations are repeated here for convenience:  

 

0

0

0

0

0

)(

)(

)(

)(

)(

)(

)(

)(

)(

1

2

11

22

12

1

1

































































































































































Q

P

Q

Q

P

P

QxQ

QxQ

PxP

PxP

xf

xf

xf

xf

xf

N

N

N

NN

NN

NN

NN

N

N

GGG

G
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  (T7.19)  

 

The solution update formula is given by eq. (T7.40), repeated here for convenience: 
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xfJxxxx


     (T7.40)  

 

Clearly, an essential step in applying NR to the power flow problem is to enable calculation of the Jacobian 

elements, given for the general case by eq. (T7.35) as 
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PF equations to 

solve. 
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Evaluation of these elements is facilitated by the recognition, from eq. (T7.24), that there are only two 

kinds of equations (real power equations and reactive power equations), and from eq. (T7.21), that there are 

only two kinds of unknowns (voltage angle unknowns and voltage magnitude unknowns). Therefore, there 

are only four basic types of derivatives in the Jacobian. We denote four sub-matrices 

corresponding to these four basic types of derivatives as J
P

, J
Q

, J
PV

, J
QV

, where the first 

superscript indicates the type of equation we differentiate, and the second superscript indicates 

the unknown with respect to which we differentiate. Therefore, 
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The numbers above each sub-matrix in eq. (T7.43) indicate its dimensions, which can be inferred by 

identifying the number of equations of that type (the number of rows of the sub-matrix) and the number of 

unknowns of that type (the number of columns of the sub-matrix). We may then identify an individual 

element of each sub-matrix as: 
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 (T7.44)  

 

Notationally, observe that the element Jjk
P

 is not the element in row j, column k of the submatrix J
P

, rather 

it is the derivative of the real power injection equation for bus j with respect to the angle of bus k. Since the 

swing bus is numbered 1, the Jacobian matrix will have J22
P

 as the element in row 1, column 1. The 

situation is similar for the other submatrices. 

 

 

The update equation (T7.42a) is repeated here for convenience: 

)(
)()( ii

xfxJ      (T7.42a) 

Multiplying both sides by -1, we obtain 

)(
)()( ii

xfxJ      (T7.42c) 

Using (T7.21), (T7.24), and (T7.43) we can write (T7.42c) as 
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    (T7.42d) 

From (T7.42d) we observe that 

Jacobian.  

n×n differentiations? 

 

Observation:  

Only 2 kinds of 

equations (P, Q) 

Only 2 kinds of 

unknowns (|V|, θ) 

Compact expression of 

Jacobian using above 

observation.  

 

Still n×n differentiations, 

but are differentiations of 

same form? 

Study dimensionality 

of each sub-matrix. 

Subscripts 

refer to bus 

numbers, not 

matrix 

location. 

Software needs 

to track 

relation 

between bus 

numbers & 

matrix location 

Subscripts j, k 

are not row & 

column 

number due to 

(a) removing pf 

eq & θ for bus 

1; (b) stacking 

Q eqs & V-

variables on 

top of P eqs & 

θ variables. 
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To get the needed derivatives, it is helpful to more explicitly write out the functions of eq. (T7.24). They 

are:  
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So each of the four sub-matrices of eq. (T7.43) has elements given by the expressions of eq. (T7.44), 

respectively. These expressions are evaluated by taking the appropriate derivatives of the functions in eq. 

(T7.45). One might think that this represents a formidable problem, since, based on eq. (T7.43), we have 

(2N-1-NG)(2N-1-NG) elements in the Jacobian and therefore the same number of derivatives to evaluate. 

A typical power flow model for a US control area might have 5000 nodes (N=5000) and 1000 generators 

(NG=1000), resulting in a 98989898 Jacobian matrix containing 97,970,404 elements, with each element 

requiring a differentiation of a function like those represented in eq. (T7.45). For a power flow model 

having 50000 nodes and 5000 generators, the dimension is 9499894998, giving 9,024,600,000 elements. 

 

Fortunately, all of the derivatives can be expressed by one of just a few differentiations.  At first glance, 

one might think that there would be four differentiations, one for each sub-matrix. However, for each sub-

matrix, the off-diagonal terms, with jk, are expressed differently than the diagonal terms, with j=k. 

Therefore, there are eight differentiations to perform. The student should attempt to obtain a few of these 

expressions. In doing so, the following tips are helpful. 

 Before differentiating, it is helpful to pull out from the summation the term that corresponds to the bus 

injection being computed. 

 When differentiating a sum of terms with respect to a particular unknown, the resulting derivative will 

be non-zero only for those terms in which the unknown appears. 

 When differentiating with respect to the angles, the chain rule must be properly applied to account for 

the derivatives of the trigonometric functions and the arguments of those trigonometric functions. 

 Each of the functions appear in the form of f(x)=g(x)-A. Because A is a constant (represented by  

P2,…, PN  and QNg+1,…, QN in eq. (T7.45)), it has no effect on the resulting derivatives.  

The resulting expressions are given below. 
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98 million 

differentiations 

for a 5000 bus 

model. 

9 billion 

differentiations 

for a 50000 bus 

model. 

8 basic 

derivative 

expressions: for 

each of 4 

submatrices, we 

need diagonal 

& off-diagonal 

expressions. 

Observe T7.47 & 

T7.53 are similar. 

These are off-diagonal 

elements in J
Pθ

 & J
QV

, 

bolded below. 
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Qθ 

PV 

J

J  

How many elements is 

this? Can we do 

something smart here? 

Mismatch 

vector. 
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We are now in a position to provide the algorithm for using NR to solve the power flow problem. Before 

doing so, it is helpful to more explicitly define the mismatch vector, from eq. (T7.24) or (T7.45) as: 
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The NR algorithm, for application to the power flow problem, is: 

1. Specify: 

 All admittance data 

 Pd and Qd for all buses 

 Pg and |V| for all PV buses 

 |V| for swing bus, with =0  

2. Let the iteration counter j=1. Use one of the following to guess the initial solution. 

 Flat Start: Vk=1.0 0 for all buses. 

 Hot Start: Use the solution to a previously solved case for this network. 

3. Compute the mismatch vector for x
(j)

, denoted as f(x) in eq. (T7.24) and eq. (T7.45). In what follows, 

we denote elements of the mismatch vector as Pk and Qk corresponding to the real and reactive 

power mismatch, respectively, for the k
th

 bus (which would not be the k
th

 element of the mismatch 

vector for two reasons: one reason pertains to the swing bus and the other reason to the fact that for 

type PQ buses, there are two equations per bus and not one – see boxed comments next to eq. T7.44). 

This computation will also result in all necessary calculated real and reactive power injections.  

4. Perform the following stopping criterion tests: 

If |Pk|< P for all type PQ and PV buses and 

If ||Qk|< Q for all type PQ buses,  

Then go to step 6 

Otherwise, go to step 5. 

5. Find an improved solution as follows: 

 Evaluate the Jacobian J at x
(j)

. Denote this Jacobian as J
(j)

 

 Solve for x
(j)

 from: 

Observe T7.49 & 

T7.51 are similar. 

These are off-diagonal 

elements in J
Qθ

 & J
PV

, 

bolded below. 
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J

PV 
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How many elements is 

this? Can we do 

something smart here? 

Flat start/hot 

start: common 

industry terms 

Compute 

mismatch 

vector. 

Check 

stopping 

criterion 



The Power Flow Problem 

 

21 

 

 
















































Q

P

Jx

Q

P

xJ
jjj

          or                        
1-(j))()()(

 

where we must use factorization with the left equation if the system is large, but if the system is 

not large, we may use the right hand equation. 

 Compute the updated solution vector as x
(j+1)

= x
(j)

+ x
(j)

. 

 Return to step 3 with j=j+1. 

6. Stop. 

 

The above algorithm is applicable as long as all PV buses remain within their reactive limits. To account 

for generator reactive limits, we must modify the algorithm so that, at each iteration, we check to ensure 

PV bus reactive generation is within its limits (see Section T7.1 regarding modeling of reactive limits). In 

this case, steps 1-4 remain exactly as given above, but we need a new step 5 and 6, as follows: 

 

5. Check reactive limits for all generator buses as follows: 

a. For all type PV buses, perform the following test: 

 If Qgk>Qgk,max, then 

 Qgk=Qgk,max and CHANGE bus k to a type PQ bus (see step 6a) 

 If Qgk< Qgk,min, then 

 Qgk=Qgk,min and CHANGE bus k to a type PQ bus (see step 6b) 

b. For all type PQ generator buses, perform the following test: 

 If Qgk=Qgk,max and |Vk|>|Vk,set| or if Qgk=Qgk,min and |Vk|<|Vk,set|, then 

 CHANGE this bus back to a type PV bus (see step 6b) 

6. If there were no CHANGES in Step 5, then stop. If there were one or more CHANGES in step 5, then 

modify the solution vector and the mismatch vector as follows: 

a. For each CHANGE made in step 5-a (changing a PV bus to a PQ bus): 

 NG=NG-1 

 Include the variable Vk to the vector x and the variable Vk to the vector x. 

 Include the reactive equation corresponding to bus k to the vector f(x). 

 Modify the Jacobian by including a column to J
PV

 and including a row to J
Q 

and J
QV

. 

b. For each CHANGE made in Step 5-b (changing a PQ gen bus back to a PV bus): 

 NG=NG+1 

 Remove the variable Vk to the vector x and the variable Vk from the vector x. 

 Remove the reactive equation corresponding to bus k from the vector f(x). 

 Modify the Jacobian by removing a column to J
PV

 and removing a row from J
Q 

and J
QV

. 

After modifications have been made for all CHANGES, go back to Step 4. 

 

When the algorithm stops, then all line flows may be computed using  
***

][ jkkjjjkjjk yVVVIVS   

Example T7.4 [5] (used with permission of V. Vittal) 

 

Find 2, V3
, 3, SG1, and QG2 for the system shown in Fig. T7.8. In the transmission system all the shunt 

elements are capacitors with an admittance yc = j0.01, while all the series elements are inductors with an 

impedance of zL = j0.1.  

Factorization: method to 

solve linear simultaneous 

equations. We will look a 

little more at this issue. 

Is there a PV bus 

that should be PQ? 

Is there a PQ gen-bus, which was 

a PV bus, that should be now be 

PV again? 

Another way is to let algorithm 

converge, check limits, make 

changes, & repeat. But checking 

every iteration provides increased 

convergence robustness. 

Does this equation account for 

shunt elements or line charging? 

Should it? 
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|V2|=1.05 

SG1 PG2=0.6661 

V1=10 

V3 

SD3=2.8653+j1.2244 

 
 

Fig. T7.8: Three Bus System for Example T7.4 

 

Solution:  The admittance matrix for the system shown in Fig. E10.6 is given by 

   

  

























98.191010

1098.1910

101098.19

Y

jjj

jjj
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Bus 1 is the swing bus. Bus 2 is a PV bus. Bus 3 is a PQ bus. We use the NR method in the solution. The 

unknown variables are 2, 3, and |V3|. Thus, we will need three equations, and the Jacobian is a 3 x 3 

matrix. 

 

We first write eq. (T7.45) for the case at hand, putting in the known values of |V1|, |V2|, 1, and the Bij’s. 

Note that since we have neglected line resistance in the problem statement, all Gij’s are zero. 

 

  
P2 (x)  V2 V1 B21sin(2 1 ) V2 V3 B23sin(2 3 )

        =  10.5sin2 10.5V3 sin(2 3)
          (T7.54a) 

 

  
P3(x)  V3 V1 B31sin(3 1)  V3 V2 B32sin(3  2 )

        = 10.0V3 sin3 10.5V3 sin(3 2 )
          (T7.54b) 

 

The equation for Q2(x) will not help since we do not know the reactive injection for bus 2, and its inclusion 

would bring in the reactive injection on the left-hand side as an additional unknown. But this loss of an 

equation is compensated by the fact that we know |V2| (and this will always be the case for a type PV bus). 

So we do not need to write the equation for Q2(x). Yet, because bus 3 is a type PQ bus, we do know its 

reactive injection, and so we will know the left hand side of the reactive power flow equation. This is 

fortunate, since we do not know |V3| (and this will always be the situation for a type PQ bus). 

 

Observe: (1) no real 

parts due to neglect of 

resistance; (2) diagonals 

are negative (inductive 

admittance), (3) off-

diagonals are positive 

(negated inductive 

admittance) 

What are equations to use? 

What are unknowns? 

What is Jacobian dimension? 

 

What would Jacobian 

dimension be if bus 2 

changed to PQ? 
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Q3(x)   V3 V1 B31cos(3 1 )  V3 V2 B32 cos(3 2 )  V3

2
B33 

         = - 10V3 cos3 10.5V3 cos(3  2 ) 19.98V3

2 
           (T7.54c) 

 

The update vector and Jacobian matrix is: 
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We obtain the various partial derivatives for the Jacobian from eqs. (T7.54a,b,c): 
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coscos
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We are ready to start iterating using (T7.40). We note that the injections, to be used on the left hand side of 

eqs. (T7.54a,b,c) are P2 = PG2 = 0.6661, P3 = -PD3 = -2.8653, and Q3 = -QD3 = -1.2244; these quantities 

remain constant through the entire iterative process. We use a flat start; therefore our initial guess is 

2=3=0 and |V3|=1.0.Using eqs. (T7.53) and (T7.54a,b,c) we get: 
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As expected for a flat start, the mismatch is large. Next we calculate the Jacobian matrix: 

 

 























46.1900

05.205.10

05.1021

J     (T7.55)  

 

Note that the Jacobian sub-matrices J
PV

 and J
Q

 are both filled with zeros. This is because when resistance 

is neglected, these derivatives depend on sin terms, and because this is the first iteration of a flat start, all 

angles are zero and therefore the sin terms are all zero.  

 

As mentioned, commercial power flow programs normally use LU factorization to obtain the update. In this 

case, however, because of the low dimensionality, we may invert the Jacobian. Taking advantage of the 

block diagonal structure, we have: 
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Now we compute: 
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 The elements of the update vector corresponding to angles are in radians. We can easily convert them to 

degrees: 

 

PU mismatch vector. 

Observe mismatch is 

very large. 

J
PV

 and J
Q

 are both 

filled with zeros, 

because with zero 

resistance, they have 

only sin terms. 

Injections come from 

one-line diagram. 

Here we inverted J but for larger systems, 

you should always use factorization. 
Angular measures 

are in radians. 
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We now find x
(1)

 as follows: 
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We note that the exact solution is 





















9499.0

01.10

00.3
o

o

, so this is pretty good progress for one iteration! 

 

We proceed to the next iteration using the new values 2
(1)

=-2.9396, 3
(1)

=-9.5139,  and |V3|
(1)

=0.9638.  

Substituting in eq. (T7.54a), we get P2(x
(1)

) = 0.6202, and thus P2
(1)

= 0.6202-0.6661=-0.0459. Similarly, 

using eqs. (T7.54b) and (T7.54c), we get the updated mismatch vector: 
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Note that, in just one iteration, the mismatch vector has been reduced by a factor of about 10.  Calculating J  

using the updated values of the variables, we find that  

 

  

























2199.187508.21582.1

8541.25589.190534.10

2017.10534.105396.20

J     

 

The matrix should be compared with J from the previous iteration. It has not changed much. The elements 

in the off-diagonal matrices J
PV

 and J
Q

 are no longer zero, but their elements are small compared to the 

elements in the diagonal matrices J
P

 and J
QV

. The diagonal matrices themselves have not changed much.  It 

is also important to note that the upper left-hand Jacobian submatrix (J
Pθ

) is symmetric. This fact allows for 

a significant savings in storage when dealing with large systems.  

 

The updated inverse is 

 

   

   



















0561.00084.00009.0

0087.00696.00336.0

0010.00336.00651.0
1

J      

 

Comparing this inverted Jacobian with that of the last iteration, we do not see much change. Using the 

same procedure as before to calculate the update vector, we obtain  

 

Now the J
PV

 and J
Q

 terms are non-zero since angles 

are no longer all zero. But it is interesting that this 

Jacobian differs very little from initial one, below.  
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This is very close to the correct answer.  The largest error is only about  0.08%. Of course in the usual 

problem we do not know the answer and we would continue into the next iteration. We would stop the 

iterations when the mismatch vector satisfies the required tolerance. We would find: 
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The mismatch has been reduced from that of the last iteration by a factor of 100 and is small enough.  On 

that basis we can stop here. So we stop with the values 2 = -3.0023
o
, 3 = -9.9924

o
, and |V3|=0.9502. It 

remains to calculate the real and reactive power generation at the swing bus (bus 1) and the reactive power 

generation at the PV bus (bus 2) using the calculated values of 2, 3, and |V3|.   
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coscos
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This completes the example. 

 

T7.8  Advanced issues associated with power flow 
 

Some more advanced issues in relation to the power flow problem are listed below.  

 Jacobian elements as sensitivities and what they tell you about relations between real or reactive power 

injection and voltage magnitude or angle. 

 Sparsity: 

o Sparse characteristic of Jacobian 

o Storage implications 

o Optimal ordering 

 Different types of power flow formulations/algorithms: 

o Divide voltage magnitude part of update vector to reduce the Jacobian storage 

requirements 

o Fast decoupled power flow 

o Governor power flow 

o DC power flow 

PG1 and QG1 are swing 

bus generation, a 

function of the solution. 

QG2 is reactive generation 

at PV bus #2, also a 

function of the solution. 
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o Gauss-Seidel 

 Some advanced modeling issues: 

o Transformers: regulating transformers 

o Area interchange 

o Switched shunt capacitors 

 

T7.9  Input/Output and Commercial Programs 

 

There are a number of very high quality commercial power flow programs on the market today, some of 

which include those developed by the Electric Power Research Institute (EPRI), Power Technologies 

Incorporated (PTI), Operation Technology, Inc., and EDSA. Most of today’s commercial software 

packages are menu-driven from a Windows environment. A predecessor of one of these was interactive 

from the command line, and we use it here because its scroll-down recording serves well to illustrate some 

basic features of most commercial programs. The following lists of just a few of these features. The item 

number in this list is denoted in the illustration that follows, using large 20 font numbers, to help identify 

the corresponding parts in the session. 

1. Solving the power flow 

2. Limit checks – overloads 

3. Limit checks – undervoltages 

4. Reporting the solution – flows (denoted below as “bus flows”) 

5. Reporting the solution – generator operation information (denoted below as plant data) 

A one-line diagram for the system on which this session was run is shown in Figure (T7.9). This system is 

a test system developed by a subcommittee of the IEEE Power Engineering Society (PES) [12]. It is 

referred to as the IEEE RTS’96, and it consists of 24 buses, 11 of which are voltage controlled buses; thus, 

13 are type PQ at the beginning of a solution procedure. 

 

 

 
Figure T7.9 – The IEEE Reliability Test System [12] 
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1.                              MAIN MENU 

                                   ========= 

      1 LOAD THE PSF                        8 DATA VERIFICATIO 

      2 IMPORTING UTILITIES                 9 LIMIT CHECKS 

      3 INPUT DATA PROCESSING              10 SENSITIVITY FACTORS 

      4 STUDY PREPARATION UTILITIES        11 EXPORTING UTILITIES 

      5 POWER FLOW SOLUTION                12 CLOSE THE PSF 

      6 NETWORK REDUCTION                  13 QUIT 

      7 POWER FLOW SOLUTION REPORTING 

ENTER MENU CHOICE: 5 

                         ***  POWER FLOW SOLUTION  *** 

                         ============================= 

                          1 AUTOMATIC SOLUTION 

                          2 FAST DECOUPLED (XB) 

                          3 NEWTON RAPHSON 

                          4 FAST DECOUPLED (BX) 

                          5 LOCALIZED SOLUTION (FD XB) 

                          6 DC POWER FLOW SOLUTION 

                          7 POWER FLOW SOLUTION OPTIONS 

ITEM #, EXIT 3 

  *** START OF NEWTON RAPHSON ITERATIONS *** 

 ITERATION :   1   NEWTON RAPHSON                  UNSOLVED  ABSOLUTE ERROR 

 -------------- BUS WITH LARGEST ERROR ------------  BUSES     SUMMATION 

 P(P.U. MW)       0.000375 (    30 BUS    3138.    )     0          0.0017 

 V(RADIANS)       0.000179 (    70 BUS    7138.    )     8          0.0016 

 Q(P.U. MVAR)     0.001873 (   120 BUS   12230.    )     0          0.0078 

 V(P.U. KV)       0.000210 (    30 BUS    3138.    )     3          0.0009 

 ITERATION :   2   NEWTON RAPHSON                  UNSOLVED  ABSOLUTE ERROR 

 -------------- BUS WITH LARGEST ERROR ------------  BUSES     SUMMATION 

 P(P.U. MW)       0.000006 (   160 BUS   16230.    )     0          0.0000 

 Q(P.U. MVAR)    -0.000008 (   170 BUS   17230.    )     0          0.0000 

 *** POWER FLOW SOLUTION IS REACHED IN     2  ITERATIONS *** 

2.                              MAIN MENU 

                                   ========= 

      1 LOAD THE PSF                        8 DATA VERIFICATION 

      2 IMPORTING UTILITIES                 9 LIMIT CHECKS 

      3 INPUT DATA PROCESSING              10 SENSITIVITY FACTORS 

      4 STUDY PREPARATION UTILITIES        11 EXPORTING UTILITIES 

      5 POWER FLOW SOLUTION                12 CLOSE THE PSF 

      6 NETWORK REDUCTION                  13 QUIT 

      7 POWER FLOW SOLUTION REPORTING 

ENTER MENU CHOICE: 9 

                      ** LOAD FLOW SOLUTION LIMIT CHECK ** 

                      ==================================== 

           1 OVERLOADED LINES OR TRANSFORMERS 

           2 CONTROL PARAMETERS VIOLATION 

           3 BUS VOLTAGE OUTSIDE SPECIFIED BAND 

           4 LINES ACROSS WHICH THE ANGLE EXCEEDS THE SPECIFIED VALUE 

           5 CHECK FOR ALL LIMITS AND VIOLATIONS 

           6 SORT OPTIONS 

ITEM #, SPECIFY SUBSYSTEM, EXIT 1 

ALL LINES TRANSFORMERS: A 

                     *** LOAD FLOW SOLUTION LIMIT CHECK *** 

         1 OVERLOADED BRANCHES        RATING GROUP =  1  % LOADING =  100.0 

<----- FROM  BUS -----> <------ TO  BUS ------>            MVA     MVA  PERCENT 

NUMBER       NAME       NUMBER       NAME         CKT    LOADING RATING LOADING 

====== ================ ====== ================ ======== ======= ====== ======= 

    60 BUS    6138.        100 BUS   10138.     1          175.4  175.0  100.22 

3.                 ** LOAD FLOW SOLUTION LIMIT CHECK ** 

                      ==================================== 

           1 OVERLOADED LINES OR TRANSFORMERS 

           2 CONTROL PARAMETERS VIOLATION 

           3 BUS VOLTAGE OUTSIDE SPECIFIED BAND 

           4 LINES ACROSS WHICH THE ANGLE EXCEEDS THE SPECIFIED VALUE 

           5 CHECK FOR ALL LIMITS AND VIOLATIONS 

           6 SORT OPTIONS 

ITEM #, SPECIFY SUBSYSTEM, EXIT 3 
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HI VOLTAGE LIMIT LO VOLTAGE LIMIT: L 

ENTER VALUE IN PU: .99 

                     *** LOAD FLOW SOLUTION LIMIT CHECK *** 

                               4 BUSES WITH V <  0.990 

<-------- BUS -------->              <-- VOLTAGE --> 

NUMBER       NAME       TYPE BASE KV   MAG    ANGLE  AREA ZONE     OWNER ID 

====== ================ ==== ======= ======= ======= ==== ==== ================ 

    30 BUS    3138.     1     138.00  0.9868  -26.02   10    1 BLANK 

    40 BUS    4138.     1     138.00  0.9888  -20.27   10    1 BLANK 

    90 BUS    9138.     1     138.00  0.9824  -15.83   10    1 BLANK 

   120 BUS   12230.     1     230.00  0.9876   -4.73   10    1 BLANK 

UP DOWN SCREEN DUMP LIST TO FILE CHANGE RATING EXIT : e 

4.                              MAIN MENU 

                                   ========= 

      1 LOAD THE PSF                        8 DATA VERIFICATION 

      2 IMPORTING UTILITIES                 9 LIMIT CHECKS 

      3 INPUT DATA PROCESSING              10 SENSITIVITY FACTORS 

      4 STUDY PREPARATION UTILITIES        11 EXPORTING UTILITIES 

      5 POWER FLOW SOLUTION                12 CLOSE THE PSF 

      6 NETWORK REDUCTION                  13 QUIT 

      7 POWER FLOW SOLUTION REPORTING 

ENTER MENU CHOICE: 7 

                     ** LOAD FLOW SOLUTION REPORTING ** 

                    ================================== 

 1 MISMATCH SUMMARY                     11 ULTC/PS SUMMARY 

 2 SUBSYSTEM SUMMARY                    12 SERIES COMPENSATORS 

 3 BUS SHUNT DATA                       13 POWER FLOW SUMMARY 

 4 PLANT DATA                           14 SECTIONALIZED BRANCHES 

 5 MACHINE DATA                         15 STATIC TAP CHANGERS / PHASE SHIFTERS 

 6 AREA INTERCHANGE DATA                16 THREE WINDING TRANSFORMERS 

 7 TIE LINE FLOWS                       17 INTERFACE FLOWS 

 8 BUS FLOWS                            18 VOLTAGE PROFILE 

 9 DC CONVERTERS                        19 SORT OPTIONS 

10 DC FLOWS 

ITEM #, SPECIFY SUBSYSTEM, EXIT 8 

SUBSYSTEM BUSES PICK BUSES EXIT: p 

ENTER BUS LIST FILE NAME OR BUSES TO INCLUDE OR EXCLUDE 

> 60 

                     *** SOLUTION REPORTING - BUS FLOWS *** 

                             BUS:    60 BUS    6138. 

                   VOLTAGE : 1.0017 PU  (   138.2 kV)   -20.67 

BUS NUM        NAME       AREA   CKT       MW      MVAR       MVA      TAP 

======== ================ ==== ======== ======== ======== = ======== ======== 

LOAD                                      136.00    28.00     138.85 

SW SHUNT                                    0.00   100.33     100.33 

TO   100 BUS   10138.       10 1         -128.63  -107.64     167.73 

TO    20 BUS    2138.       10 1           -7.37   -20.69      21.96 

UP DOWN NEXT BUS PREVIOUS BUS SCREEN DUMP LIST TO FILE EXIT : e 

SUBSYSTEM BUSES PICK BUSES EXIT: p 

ENTER BUS LIST FILE NAME OR BUSES TO INCLUDE OR EXCLUDE 

> 100 

                     *** SOLUTION REPORTING - BUS FLOWS *** 

                             BUS:   100 BUS   10138. 

                   VOLTAGE : 1.0132 PU  (   139.8 kV)   -16.15 

BUS NUM        NAME       AREA   CKT       MW      MVAR       MVA      TAP 

======== ================ ==== ======== ======== ======== = ======== ======== 

LOAD                                      195.00    40.00     199.06 

TO   120 BUS   12230.       10 1         -234.48    60.92     242.27 1.0000LK 

TO   110 BUS   11230.       10 1         -235.99    52.21     241.70 1.0000LK 

TO    80 BUS    8138.       10 1           69.77    -3.74      69.87 

TO    60 BUS    6138.       10 1          130.95  -131.80     185.80 

TO    50 BUS    5138.       10 1           74.76   -17.59      76.80 

UP DOWN NEXT BUS PREVIOUS BUS SCREEN DUMP LIST TO FILE EXIT : e 

5.                   ** LOAD FLOW SOLUTION REPORTING ** 

                       ================================== 

 1 MISMATCH SUMMARY                     11 ULTC/PS SUMMARY 

 2 SUBSYSTEM SUMMARY                    12 SERIES COMPENSATORS 

 3 BUS SHUNT DATA                       13 POWER FLOW SUMMARY 
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 4 PLANT DATA                           14 SECTIONALIZED BRANCHES 

 5 MACHINE DATA                         15 STATIC TAP CHANGERS / PHASE SHIFTERS 

 6 AREA INTERCHANGE DATA                16 THREE WINDING TRANSFORMERS 

 7 TIE LINE FLOWS                       17 INTERFACE FLOWS 

 8 BUS FLOWS                            18 VOLTAGE PROFILE 

 9 DC CONVERTERS                        19 SORT OPTIONS 

10 DC FLOWS 

ITEM #, SPECIFY SUBSYSTEM, EXIT 4 

                    *** SOLUTION REPORTING - PLANT DATA *** 

                    ======================================= 

                  1 ALL PLANTS 

                  2 ON LINE PLANTS 

                  3 PLANTS AT VAR LIMIT WITH UNEQUAL VAR LIMITS 

                  4 PLANTS WITH UNSCHEDULED REACTIVE POWER 

                  5 PLANTS CONTROLLING A REMOTE BUS 

                  6 PLANTS WITH RESERVE REACTIVE POWER 

ITEM #, EXIT 1 

                           *** SOLUTION REPORTING *** 

                                     10 PLANTS 

     PLANT BUS                 MACHINES 

   NUM         NAME       TYPE I/S  O/S    MW      MVAR     QMAX     QMIN        

======== ================ ==== ======== ======== ======== ======== ========      

R     10 BUS    1138.        2   4    0   134.70    41.53   280.00   -50.00      

R     20 BUS    2138.        2   4    0   187.00    30.50   140.00  -100.00      

R     70 BUS    7138.        2   3    0   165.00    91.63   280.00     0.00      

R    130 BUS   13230.        3   3    0   337.53   170.64   540.00  -300.00      

R    150 BUS   15230.        2   6    0   185.00    40.36   310.00   -55.00      

R    160 BUS   16230.        2   1    0   155.00   106.41   280.00   -55.00      

R    180 BUS   18230.        2   1    0   400.00   100.73   200.00   -90.00      

R    210 BUS   21230.        2   1    0   400.00    25.25   200.00   -90.00      

R    220 BUS   22230.        2   6    0   300.00   -80.55   696.00  -560.00      

R    230 BUS   23230.        2   3    0   660.00    33.34   310.00  -125.00      

UP DOWN OTHER SCREEN SCREEN DUMP LIST TO FILE EXIT : e 
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