
 1

Nonlinear optimal power flow

1.0 Some introductory comments

Although the LPOPF does bring in the transmission constraints, it

does not handle voltage or reactive power constraints. It is possible

to approximate losses via a linear loss function, which improves

the LPOPF, but the approximation is not very good.

The nonlinear OPF (NLOPF) addresses both of these issues, but at

a “cost” of significantly higher computation. We will also see that

the NLOPF admits additional control capabilities that can be very

useful.

We utilize [1] significantly in these notes. Please read Section

13.1-13.2 of W&W.

2.0 Formulation

Define:

 ng: number of generators

 N: number of buses

 x: state vector

 u: control vector

 Ei: the voltage magnitude at bus i

 θi: the angle at bus i

 Pgi: the generation level at bus i

We will describe state and control vectors, the objective function,

the equality constraints, and the inequality constraints.

W&W denote 









p

u
y where u is the same as our u, but

p includes “fixed parameters” such as load. I will not use

p, thus, y=u.

 2

State and control vectors:

The state and control vectors are expressed as






























N

n

N

E

E
x

g





1

2

































g

g

n

gn

g

E

E

P

P

u





1

2

 (1)

Note the numbering scheme: generator buses are numbered first

1,…,ng, then load buses ng+1,…,N. Also notice:

 The state vector contains the bus voltage magnitudes and angles

that we cannot control (it may also include Pg1, as seen later).

 The control vector contains the generation levels and bus

voltage magnitudes that we can control (this vector contains

what we previously called the decision variables). It is also

possible to include taps associated with tap-changing

transformers in this vector.

Objective function:

The objective function for the most common OPF problem is an

economic objective function. In our case, we will assume that it is

cost, to be consistent with our LPOPF formulation. It is given by:





gg n

i

giipg

n

i

gii PFuxfFPFuxf
2

11

1

)()),(()(),(
 (2)

Here, fpg1(x,u) represents Pg1, and is a dependent variable. So Pg1

(reference bus), is not a decision variable (and therefore not in the

control vector). Yet its dependence on the vectors x and u requires

that we include it in the objective function. Also observe that the

dependence of fpg1 on x comes only through F1(Pg1). This means

the Pgi are all chosen independently, except for Pg1 which is

 3

determined by the solution (x, u). As we said before, other

objective functions can be used.

Equality constraints:

The equality constraints are given by the power flow equations,

expressed below:

   NkPBGEEuxF k

N

j

jkkjjkkjjkpk ,...,1,)sin()cos(),(
1




 (3a)

  NnkQBGEEuxF gk

N

j

jkkjjkkjjkqk ,...,1,)cos()sin(),(
1




 (3b)

We see from the above equations that we have 2N-ng equality

constraints. We do not include the reactive power equations for the

generator buses because doing so brings in the extra (unknown)

variable Qk. We do not have to include the real power flow

equation for the reference bus, but we may, and it is advantageous

to do so because we need Pg1 to evaluate the objective. If we do

include the ref bus real power flow equation, then then x needs to

be changed to include Pg1 as shown below:

























































 



1

1

2

1

2

g

N

n

N

N

n

N

P

E

Ex

E

E
x

g

g 














 Assuming we do include the ref bus real power flow equation,

we denote the equality constraints as follows:

 4

0),(),(

0),(),(

0),(),(

0),(),(

2

111

11













NpNnN

qN

NpNN

kp

QuxFuxg

QuxFuxg

PuxFuxg

PuxFuxg

g





  0),(uxg (3c)

Inequality constraints:

There are four basic types of inequality constraints.

a. Generator real power limits:

ggigigi niPPP ,,1max,min,  (4a)

b. Generator reactive power limits:

ggigigi niQQQ ,,1max,min,  (4b)

c. Load bus voltage limits:
NniEEE giii ,1max,min,  (4c)

d. Line flow constraints:

Lineskkk NkTTT ,,1max,max,  (4d)

We denote all of (4a)-(4d) as:
0),(uxh (4)

This can be done for any constraint xmin<x<xmax as follows:

 Lower Bound: x>xmin-x<-xmin-x+xmin<0h1(x)=-x+xmin<0

 Upper Bound: x<xmaxx-xmax<0h2(x)=x-xmax<0

We are now in a position to clearly state our problem as:

0),(

0),(

:subject to

),(min





uxh

uxg

uxf

 (5)

Lagrangian:

The Lagrangian of our problem (5) is given by

 5

),(),(),(),,,(uxhuxguxfux
TT  L (6)

Notice that we have used a form where the equality and inequality

constraint terms are added. This is to be consistent with W&W, eq.

(13.15). This will result in the corresponding Lagrange multipliers

being the negative of what they would be if the equality and

inequality constraint terms were subtracted.

Optimality conditions:

By KKT, the optimality conditions are

0
),,,(




















)]u,x(hμ[

x
)]u,x(gλ[

xx

)u,xf(

x

ux TTL
(7a)

0
),,,(




















)]u,x(hμ[

u
)]u,x(gλ[

uu

)u,xf(

u

ux TTL
(7b)

0
),,,(










)]u,x(gλ[

ux T



L
 (7c)

0),(uxhii (7d)

The last condition, 7d, is the complementary condition.

We are now in a position to discuss solution techniques to solving

the above set of equations (7a)-(7d).

3.0 Solution by generalized reduced gradient (GRG)

This method is also called the method of steepest descent and was

first described for the OPF problem in [2].

It can solve the equality-constrained problem very well.

It solves the inequality-constrained problem only via an iterative

approach, as we have done before, where we begin by assuming no

inequality constraints are binding, solve the problem, include only

those violated inequality constraints in a new solution, then solve

W&W, eq. (13.18) and (13.19) , do not

include the last terms in (7a,7b) because

they (p. 519, top) “are only representing

equality constraints at this point.”

 6

again, and repeat until we get a solution with no violated inequality

constraints.

Therefore the problem that we need to solve here is the one in the

inner loop, where any violated inequality constraint is assumed to

be included in the equality constraint vector g(x,u)=0. This

conforms to what W&W do via “The Gradient Method” of 13.2.1.

So we are trying to solve the following equations:

0
),,,(















)]u,x(gλ[

xx

)u,xf(

x

ux TL
 (8a)

0
),,,(















)]u,x(gλ[

uu

)u,xf(

u

ux TL
 (8b)

0
),,,(










)]u,x(gλ[

ux T



L
 (8c)

where

),(),(),,(uxguxfux
T L (9)

The basic idea of the solution procedure is as follows:

1. We desire to minimize f(x,u).

2. We can only change u.

3. So we desire to move in the direction of steepest descent with

respect to the function f(x,u). This direction is given by

),(uxfu

4. But x is a function of u, that is, x=Z(u) where Z is some

unknown function that maps the vector u to the vector x.

5. Therefore we can write

)),((),(uuZfuxf 

And the question is, how to obtain fu ? Notationally, we have

ud

uxdf
uxfu

),(
),(

 7

where the total derivative represents the change in f per unit

change in u where x also changes (and the partial derivative

represents the change in f per unit change in u where x remains

fixed).

To get the desired gradient function, we begin by expressing

ud
u

uxf
xd

x

uxf
uxdf

TT




























),(),(
),(

 (10)

But dx must be a function of du since x is a function of u. Let’s

express this via the following observation:

If we change u by a small amount du, and x changes by a small

amount dx, then to satisfy g(x,u)=0, it must be true that

0
),(),(

),(








 ud

u

uxg
xd

x

uxg
uxgd (11)

Solving (11) for dx, we obtain

ud
u

uxg

x

uxg
xd 



























),(),(

1

 (12)

Substitution of (12) into (10) results in

ud
u

uxf
ud

u

uxg

x

uxg

x

uxf
uxdf

TT





















































),(),(),(),(

),(

1

 (13)

Factoring du to the right,

ud
u

uxf

u

uxg

x

uxg

x

uxf
uxdf

TT




































































),(),(),(),(

),(

1

 (14)

In the above, du is a column vector and the expression inside the

curly brackets is a row vector.

Now we want to bring the du over to the left-hand-side. To do so,

we must transpose the left-hand-side so that it will also be a row

g(x,u)=0 are

the pf eqtns.

Observe that

we have the

same number

of equations

as we have

state variables

x (2N-Ng with

the ref bus

real pf

equation and

Pg1 in x, and

2N-Ng-1

without). In

the latter case,

the matrix

being inverted

in (12) is

exactly the

Jacobain.

 8

vector. At the same time, we also rearrange the order of the term

on the right.






























































u

uxg

x

uxg

x

uxf

u

uxf

ud

uxdf
TTT

),(),(),(),(),(
1

 (15)

Recall the linear algebra rule that [ABC]
T
=C

T
B

T
A

T
. Use this to

take the transpose of both sides of (15) to obtain:





























































x

uxf

x

uxg

u

uxg

u

uxf

ud

uxdf
uxf

T
T

u

),(),(),(),(),(
),(

1

 (16)

Now I will make the following claim;

Claim: 










































x

uxf

x

uxg
T

),(),(
1

 (17)

Proof: Repeating (8a), we have

0
),,,(















)]u,x(gλ[

xx

)u,xf(

x

ux TL
 (8a)

Use the following fact: If λ is a constant vector, and b=b(x), and

both are the same dimension, then



T
T

x

xb
)]x(bλ[

x
















)(

Use the above in (8a) to obtain

0
),,,(























λ

x

)u,x(g

x

)u,xf(

x

ux
T

L
 (18)

Solving (18) for λ, we obtain:

x

)u,xf(

x

)u,x(g
λ

T

































1

 (17)

QED

 9

Note that the first term (inside the curly brackets) of (17) is [J
T
]
-1

,

where J is the power flow Jacobian with the addition of any

binding inequality constraints.

Repeating (16)





























































x

uxf

x

uxg

u

uxg

u

uxf

ud

uxdf
uxf

T
T

u

),(),(),(),(),(
),(

1

(16)

Substitute (17) into (16) results in

λ
u

uxg

u

uxf

ud

uxdf
uxf

T

u 


















),(),(),(
),((19)

Although both (16) and (19) are referred to as the reduced

gradient, when we use this term, we will be referring to (19).

Eq. (16) is the reason for the name, i.e., it is the partial derivative

of f wrspt u “reduced” by the term on the right of (16). The term on

the right accounts for the fact that a small change ∆u creates a

small induced change ∆x due to the power flow equations (and

corresponding changes to power flow equations must be negative,

as indicated by (11) and (12)).

4.0 Algorithm

Here is the GRG algorithm for solving the NLOPF problem.

1. Let k = 1. Guess an initial control vector u
(k)

. (Use economic

dispatch with losses or without losses to make the initial guess).

2. Given u
(k)

, solve for x
(k)

 from (8c), repeated here for

convenience:

0
),,,(










)]u,x(gλ[

ux T



L
 (8c)

This is just a power flow solution!

 10

3. Compute:

)()(
,

1

)(

kk
ux

T

k

x

)u,xf(

x

)u,x(g
λ



































 (20)

4. Compute the “steepest ascent” direction, i.e., the gradient of f,

according to (19)

)()(
,

),(),(),(
),(

kk
ux

T

u λ
u

uxg

u

uxf

ud

uxdf
uxf
































 (19)

(the reduced gradient).

5. Update the control vector by moving it in the direction of

steepest descent.

),()()()1(
uxfuu u

kkk


  (21)

where α
(k)

 is a step size which is reduced for every iteration.

6. If ),(uxfu , stop. Else, k=k+1, and go to (2).

5.0 Examples

Example 1, EDC without losses:

For the system shown below, solve economic dispatch problem

without losses. The cost functions are given by

2
2222

2
1111

5.05.05.0)(

31)(

GGG

GGG

PPPC

PPPC





 11

Fig. 1

The optimality conditions are:

21

2

1

4

5.0

61

GG

G

G

PP

P

P











Writing these in matrix form we obtain



























































4

5.0

1

011

110

106

2

1



G

G

P

P

Solving using Matlab, we obtain:



































0.4

5.3

5.0

2

1



G

G

P

P

Example 2, EDC with losses:

We will derive the loss function since this is such a simple system.

The real power flowing across a line is expressed as

y=1-j10

PG1

V1=1.0

PD1=3.0
PD2=1.0

V2=1.0

 12

)sin()cos(
2

qpqpqpqpppq BVVGVVGVP  

Applying this to our system, and assuming θ1=0, we have:

22

2212

sin10cos1

)sin()10)(1)(1()cos()1)(1)(1()1)(1(







P
 (E2-1)

22

2221

sin10cos1

)sin()10)(1)(1()cos()1)(1)(1()1)(1(







P
 (E2-2)

Losses may be expressed as the difference between the flow into

the line and the flow out of the line. Denoting 12P as the flow out

of the line and into bus 2, we have

21121212 PPPPPL  (E2-3)

Substituting (E2-1) and (E2-2) into (E2-3), we have

)cos1(2

sin10cos1sin10cos1

2

2222

21121212









 PPPPPL

 (E2-4)

Recall the Taylor series expansion for cosine:

2
1...

!6!4!2
1cos

2
2

6
2

4
2

2
2

2


 

 (E2-5)

Substituting the approximation of (E2-5) into (E2-4), we have

2
2

2
2)
2

11(2 
















LP

 (E2-6)

But we want to express the losses as a function of our decision

variables PG1 and PG2.

We expressed losses as the sum of the flows into either end of the

line per (E2-3). Now let’s express the difference of the flows into

either end of the line:

 13

2)1(3 21212112  GGGG PPPPPP (E2-7)

We may also use (E2-1) and (E2-2) to express the difference of the

flows into either end of the line:

2

22222112

sin20

)sin10cos1(sin10cos1







 PP
(E2-8)

If the angle is small, then (E2-8) becomes:

22112 20PP (E2-9)

Equating (E2-7) and (E2-8), we get

20

)2(

220

21
2

212






GG

GG

PP

PP





 (E2-10)

By (E2-6), the loss function is the square of (E2-10), i.e.,

400

)2(2
212

2


 GG

L

PP
P  (E2-11)

From (E2-11), we may compute the penalty factors according to:

200/1

1

1

1

200/1

1

1

1

2

2

2

1

1

1

G

G

L

G

G

L

P

P

P
L

P

P

P
L





















 (E2-12)

Setting up the optimality conditions, we have:

)5.0(
200/1

1

)16(
200/1

1

2
22

2
2

1
11

1
1











G
GG

G
GG

P
PdP

dC
L

P
PdP

dC
L





 (E2-13a)

Solving (E2-13a) for PG1 and PG2, we obtain:

 14

200/1

5.0

200/6

1

2

1



















G

G

P

P

 (E2-13b)

We also know that

400

)2(2
21

21

21






GG
GGD

LGGD

PP
PPP

PPPP

 (E2-14)

Let’s use Lambda iteration to solve (E2-13a) and (E2-13b). Here is

matlab code for making the evaluation given λ:
pg1=(lam-1)/(6+lam/200)

pg2=(lam-0.5)/(1-lam/200)

ploss=((pg1-pg2-2)^2)/400

pd=pg1+pg2-ploss

We initialize with the solution provided by Example 1 and arrive at

the solution below, on the left, which is compared to the solution

obtained in the previous example on the right:

Solution with losses Solution without losses

0007.4

0643.0

5673.3

4977.0

996.3

2

1











D

Loss

G

G

P

P

P

P



0.4

0

5.3

5.0

0.4

2

1











D

Loss

G

G

P

P

P

P



Example 3, Optimal power flow:

Solve the problem of Example 2 using the optimal power flow.

Ignore all constraints.

Variables:

 15

Since both buses have generators, they are voltage control buses.

Therefore the voltage magnitudes are considered to be known.

Since the bus 1 angle is the reference, there is only one unknown

angle that this will be a state variable, i.e., x1=θ2.

We will model both real power flow equality constraints and will

therefore need to identify that the bus 1 generation is a state

variable, and so x2=PG1. Thus, in the notation of (3), fpg1(x,u)=x2.

There is only one control variable and it is u=PG2. (We could

identify the voltages at each bus as control variables, but we will

not here in order to maintain as simple a model as possible here.)

Objective function:

The objective function is given by

2
22

2
11

2211212

5.05.05.031

)()(),,(

GGGG

GGGG

PPPP

PCPCPPf





Or, in terms of x and u, we have that

22
22

221

5.05.035.1

)()(),(

uuxx

uCxCuxf





Equality constraints:

The equality constraints are the power flow equations. But since

there are no PQ buses in this network, there are no reactive power

equations. Therefore we need only consider the real power flow

equations at the two buses. Recalling (3a) and (3c), we have:

0),(),(

0),(),(

222

111





PuxFuxg

PuxFuxg

p

p

where

  NkBGEEuxF
N

j

jkkjjkkjjkpk ,...,1,)sin()cos(),(
1






 16

and

dkGkk PPP 

This results in:

0),(),(

0),(),(

2222

1111





dGp

dGp

PPuxFuxg

PPuxFuxg

With y=1-j10, Y11=1-j10, Y12=-1+j10, so the above become:

01sin10cos1),(

03sin10cos1),(

2222

1221





G

G

Puxg

Puxg





Replacing the variables with x1=θ2, x2=PG1, and u=PG2, the equality

constraints become:

01sin10cos1),(

03sin10cos1),(

112

2111





uxxuxg

xxxuxg

Combining the constants, we get

0sin10cos2),(

0sin10cos4),(

112

2111





uxxuxg

xxxuxg

Problem statement:

The problem statement then becomes the following:

0sin10cos2),(

0sin10cos4),(

subject to

5.05.035.1),(min

112

2111

22
22







uxxuxg

xxxuxg

uuxxuxf

Lagrangian:

The Lagrangian function becomes:

 17

 

 

 01sin10cos1),(

3sin10cos1

5.05.035.1

),(),(),(

),(

),(
),(

),(

),(
),(

)(),(

1122

2111

22
22

2211

2

1
21

2

1

2

1







































uxxuxg

xxx

uuxx

uxguxguxf

uxg

uxg
uxf

uxg

uxg
uxf

,u,xguxf),u,x(

T

T













L

Optimality conditions:

The appropriate optimality conditions are given by

0
),(















)]u,x(gλ[

xx

uxf

x

),u,x(TL

0
),(















)]u,x(gλ[

uu

uxf

u

),u,x(TL

0








)]u,x(gλ[

),u,x(T



L

Homework #6 for next Monday:

Problem 1: Use the Generalized Reduced Gradient

procedure to solve the above problem.

 18

The answers you should obtain are:

λ1=4.2297, λ2=4.0174, x1=0.252, x2=0.5383, u=3.5174

Compare to EDC and EDC+losses

Solution w/ loss Solution w/o losses OPF

0007.4

0643.0

5673.3

4977.0

996.3

2

1











D

Loss

G

G

P

P

P

P



0.4

0

5.3

5.0

0.4

2

1











D

Loss

G

G

P

P

P

P



rad

P

P

P

P

D

Loss

G

G

252.0

0.4

1004.0

5174.3

583.0

0174.4,2297.4

2

2

1

21

















Observe that the signs of λ1 and λ2 are both positive. Let’s

think through what this means:

 Our original formulation (see OptimizationIntro.ppt)

formulated the Lagrangian by subtracting off the equality

constraint terms, according to:
   

 mmm c)x(h

c)x(hc)x(hxfx









...

)(),(222111L

 We interpreted the Lagrange multipliers as the increase

in the objective function when the right-hand-side (RHS)

of the corresponding constraint is increased by one unit.

 Now we have formulated the Lagrangian by adding the

equality constraint terms, according to:

)(),(,u,xguxf),u,x(
T

 L

 19

 So we interpret the Lagrange multipliers as the decrease

in the objective function when the RHS of the

corresponding constraint is increased by one unit.

 Observe our equality constraints:

01sin10cos1),(

03sin10cos1),(

112

2111





uxxuxg

xxxuxg

When we establish “right-hand-sides” these become:

1sin10cos1),(

3sin10cos1),(

112

2111





uxxuxg

xxxuxg

These RHS are just the negative of the demands.

Increasing them makes the demands smaller.

 So the definition of λ1, λ2 as “decrease in objective

function when RHS of corresponding constraints are

increased by one unit” means that positive λ’s indicate

the cost decreases as demand decreases – makes sense!

6.0 Matrix of second partials approach (Newton method)

The method described in section 5.0 updates the control variables

at every iteration step along the direction of steepest descent with

respect to the control variables. The problem with this method is

that the step size must be small, requiring multiple iterations to

identify the solution, and since each iteration requires a full power

flow solution, the method can be quite computationally intensive

for large systems.

Another way to solve the problem is to view the equations

established by the first order conditions as a set of simultaneous

nonlinear equations to solve. This means we can use our familiar

Newton-Raphson method to solve! Reference [3] provides a good

articulation of this method.

 20

A key concept in applying this method is that the nonlinear

equations that we must solve are actually the first derivative of the

objective and equality constraints. In order to apply the NR

approach, we can denote all variables in the equations of the

optimality conditions as z, i.e.,





















u

x

z

Then the Lagrangian function as expressed in (9)

),(),(),,(uxguxfux
T L (9)

becomes

)(),,(zux LL  (9)

To solve the nonlinear equations:

0)( zzL

we need the Jacobian matrix of these equations, which we denote

by H(z), where its elements are given by

ji
ij

zz

z
H






)(2L

The matrix H(z), which is the Jacobian with respect to the first-

order conditions, is the Hessian with respect to the Lagrangian

function.

Once the Hessian is obtained, the NR procedure is performed as

usual, based on the update relation:

 )()(
1)()()1(

zzHzz z
kkk

L


 21

Homework #6 for next Monday:

Problem 2: For the matrix of the system used in HW6,

Problem #1, assume the initial solution z(0) obtained by the

economic dispatch solution, obtain the Hessian matrix, and

take a single step to obtain a new point z(1).

7.0 Penalty function approach

We motivate this approach by looking at two simple cases. Our

general goal is to change a constrained optimization problem into

an unconstrained optimization problem. We require the objective

function be convex and the feasible space be a convex set. This

approach is discussed very briefly in W&W, pp. 530-531 as a

method of handling inequality constraints. But as we will see, it

can handle both equality and inequality constraints.

Prob. 1.0-a (constrained optimization with equality constraint):

0)(

subject to

)(min

xg

xf

Observe:

1. g(x) must be zero at any feasible solution.

2. [g(x)]
2
=0 implies g(x)=0, and therefore, by (1), that [g(x)]

2
=0

implies that x is a feasible solution.

3. [g(x)]
2
≥0 is always true and therefore [g(x)]

2
=0 identifies the

minimum value of [g(x)]
2
.

4. By (3), minimizing [g(x)]
2
 will result in finding the value of x

that imposes [g(x)]
2
=0. Therefore, by (2), minimizing [g(x)]

2

will result in a feasible value of x.

With the above in mind, consider the following new problem:

Prob. 1.1-a (unconstrained optimization):

 22

)(min x

where

    2
11)]([)(;)()()(xgxgpxgpxfx  

We cannot guarantee that this new problem will find the solution

to problem Prob 1.0-a. To see why, observe in Fig. 2 the functions:

22

2

2

3)3(

3)3(

xxy

xy

xy







We note that the first one has a minimum at x=3, the second one

has a minimum at x=0, and the third one, which is the sum of the

first two, has a minimum at about x=1.

Fig. 2

 23

What we can guarantee is that that Prob. 1.1-a will find a feasible

solution to Prob. 1.0-a if we make α large enough. In our example,

let’s choose α=4. The solution is displayed in Fig. 3 where we

observe that the minimum of the sum has moved to the left and

now occurs at about 0.3 or 0.4. Clearly, the larger we make α, the

more the second function, y=x
2
, will dominate, and the closer the

minimum of the sum will be to the minimum of y=x
2
.

Fig. 3

We can draw the conclusion that Prob. 1.1-a is guaranteed to find a

feasible solution (one that satisfies the equality constraint) if we

make α large enough.

We can generalize this conclusion to the case of multiple equality

constraints, as follows.

Prob. 1.0-b (constrained optimization with N equality constraints):

 24

0)(

subject to

)(min

xg

xf

Prob. 1.1-b (unconstrained optimization):

)(min x

where

    2
11

1

)]([)(;)()()(xgxgpxgpxfx iii

N

i

 




Now let’s consider inequality constraints.

Prob. 2.0-a (constrained optimization with inequality constraint):

0)(

subject to

)(min

xh

xf

Will the same approach work that we used for equality constraints?

That is, define

    2
22)]([)(;)()()(xhxhpxhpxfx  

and then solve min φ(x) using a large value of α – will this work?

That is, will it guarantee to find a feasible solution?

 This would only work if we know h(x)≤0 to be binding because

it would impose h(x)=0, thus, not providing for the possibility that

h(x)<0.

So we would like to have a penalty function p2 which will impose

h(x)=0 if h(x)≤0 is binding but allow h(x)<0 if not.

 25

We can write such a penalty function as

 











0)(if0

0)(if)]([
)(

2

2
xh

xhxh
xhp

The top function corresponds to the case when the constraint is

binding, in which case we use the same penalty function that we

used for equality constraints. The bottom function corresponds to

the case when the constraint is non-binding, in which case we

simply add 0 to the objective which has no effect on the solution.

Notationally, we may express the same thing as

    22)(,0max)(xhxhp 

where we see that

 if h(x)≤0 (and therefore non-binding), then p2=0
2
=0.

 if h(x)>0 (and therefore binding), then p2=[h(x)]
2
.

The function p2 is illustrated in Fig. 2.

Fig. 2

P2

h(x) 

[h(x)]
2

0

 26

We can define a continuous function that has a similar

characteristic:

  0;)()(
2  kexhp xkh

which may be appropriately shaped if desired. For example, Fig. 3

illustrates the function

 )(5
2)(xhexhp 

where it is clear that the function is almost 0 where h(x)=0, is 0 for

h(x)<0, and gets big for h(x)>0.

Fig. 3

Use of the continuous function provides that the function is

differentiable everywhere, which can be beneficial when solving

the equations imposed by the KKT conditions.

And so we see a way to handle inequality constraints with a

penalty function as an unconstrained optimization problem.

 27

Prob. 2.1-a (unconstrained optimization):

)(min x

where

   











0)(if0

0)(if)]([
)(;)()()(

2

22
xh

xhxh
xhpxhpxfx i

As in the case of equality constraints, we can draw the conclusion

that Prob. 2.1-a is guaranteed to find a feasible solution (one that

satisfies the inequality constraint) if we make α large enough.

We can generalize this conclusion to the case of multiple equality

constraints, as follows.

Prob. 2.0-b (constrained optimization with M inequality constraints)

0)(

subject to

)(min

xh

xf

Prob. 2.1-b (unconstrained optimization):

)(min x

where

   









 

 0)(if0

0)(if)]([
)(;)()()(

2

22

M

1i xh

xhxh
xhpxhpxfx

i

ii
ii

Finally, we may generalize our results to the case of multiple

equality constraints and multiple inequality constraints.

 28

Prob. 3.0-a (constrained optimization with 1 equality and 1

inequality constraint)

0)(

0)(

subject to

)(min





xh

xg

xf

Prob. 3.1-a (unconstrained optimization):

)(min x

where
    

 

 















0)(if0

0)(if)]([
)(

)]([)(

where

)()()()(

2

2

2
1

21

xh

xhxh
xhp

xgxgp

xhpxgpxfx 

Prob. 3.0-b (constrained optimization with N inequality constraints)

0)(

0)(

subject to

)(min





xh

xg

xf

Prob. 3.1-b (unconstrained optimization):
)(min x

where

 29

   

 

 
























 



0)(if0

0)(if)]([
)(

)]([)(

where

)()()()(

2

2

2
1

M

1i

2

N

1i

1

xh

xhxh
xhp

xgxgp

xhpxgpxfx

i

ii
i

ii

ii

Now, we ask the following question: If solution to the above

unconstrained optimization problems only finds us a feasible

solution, what good is it?

To answer this question, we modify our last, most general

formulation by replacing α with α
(k)

. Thus, Prob. 3.1-b becomes

Prob. 3.1-b (unconstrained optimization):
)(min x

where

   

 

 
























 



0)(if0

0)(if)]([
)(

)]([)(

where

)()()()(

2

2

2
1

M

1i

2

N

1i

1
)(

xh

xhxh
xhp

xgxgp

xhpxgpxfx

i

ii
i

ii

ii
k

This suggests that we will develop a sequence of solutions

corresponding to α
(1)

, α
(2)

, α
(3)

,…

To see how we want to modify α
(k)

, observe that

 If α
(k)

 is very small, then the objective function dominates, and

the problem is essentially

)(min xf

 If α
(k)

 is very large (we have already seen this), then the

constraints dominate, and the problem is essentially

 30

   

 

 
























 



0)(if0

0)(if)]([
)(

)]([)(

where

)()()(min

2

2

2
1

M

1i

2

N

1i

1
)(

xh

xhxh
xhp

xgxgp

xhpxgpx

i

ii
i

ii

ii
k

And so we see that we can use α
(k)

 to adjust the relative weight

between the objective function and the constraints.

Now consider a sequence of problems as follows:

1. Let k=1 and guess {x
(k)

, α
(k)

} (the starting solution).

2. Solve the unconstrained minimization problem:

   

 

 
























 



0)(if0

0)(if)]([
)(

)]([)(

where

)()()()(min

2

2

2
1

M

1i

2

N

1i

1
)(

xh

xhxh
xhp

xgxgp

xhpxgpxfx

i

ii
i

ii

ii
k

using α
(k)

 and x
(k)

 as the starting solution. Denote the new

solution as x
(k+1)

.

3. If |x
(k+1)

- x
(k)

|<ε, stop. Otherwise,

a. Let α
(k+1)

=β × α
(k)

b. k=k+1

c. Go to 2.

Question: Should β<1 or β>1?

In other words, as we progress through this sequence of

unconstrained optimization problems, do we want to increase

emphasis on constraints or decrease emphasis on constraints?

The answer to this question is based on the following information:

 31

 Large values of α create ill-conditioned nonlinear problems (i.e.,

problems for which nonlinear solvers do not converge quickly

or do not converge at all).

 Ill-conditioned problems are very sensitive to the accuracy of

the starting solution. If the starting solution is poor, then an ill-

conditioned problem may not converge at all.

Since our worst guess is at the beginning of the sequence, we want

to make α very small at the beginning of the sequence in order to

avoid ill-conditioning.

Then we will change α so that we creep towards the feasible region

with each successive solution until the stopping criterion is

satisfied.

The implication of the last statement is that β>1.

Note carefully: We have transformed a constrained optimization

problem into a sequence of unconstrained optimization problems

whose solutions gradually move from the infeasible region to the

feasible region.

This type of penalty function method is referred to as an Exterior

Point penalty function method.

Two Final Comments:

1. At each stage of the penalty function method, we solve an

unconstrained nonlinear optimization problem. There are many

methods to do this. Below are three classes of such methods:

a. Without derivatives: Cyclic coordinate, Hook & Jeeves,

Rosenbrock

b. With derivatives: Steepest descent, Newton’s method

 32

c. Conjugate directions (may or may not use derivatives):

Davidon-Fletcher-Powell (uses derivatives); Fletcher-

Reeves, and Zangwill.

2. Our focus has been on exterior penalty function methods.

However, there is another broad class of penalty function

solution methods applicable to solution of the Optimal Power

Flow. These are called Interior Point penalty function methods.

This class of solutions has also been referred to as Barrier

Function methods. The main difference between Exterior Point

methods and Interior Point methods is that whereas the former

depend on a sequence of infeasible solutions that gradually

move towards the feasible region, the latter depend on a

sequence of feasible solutions that gradually move towards the

boundary of the feasible region.

Example [4]:

 33

 34

[1] A. Debs, Modern Power Systems Control and Operation,” Kluwer, 1988.

[2] H. Dommel and W. Tinney, “Optimal Power Flow Solutions” IEEE

Transactions on Power Apparatus and Systems, Vol. PAS-87, Oct. 1968.

[3] D. Sun, B. Ashley, B. Brewer, A. Hughes, and W. Tinney, “ Optimal

Power Flow by New Approach,” IEEE Transactions on Power Systems,

1984.

[4] M. Bazaraa and C. Shetty, “Nonlinear Programming: Theory &

Algorithms,” John Wiley, 1979.

