Nonlinear optimal power flow
1.0 Some introductory comments

Although the LPOPF does bring in the transmission constraints, it
does not handle voltage or reactive power constraints. It is possible
to approximate losses via a linear loss function, which improves
the LPOPF, but the approximation is not very good.

The nonlinear OPF (NLOPF) addresses both of these issues, but at
a “cost” of significantly higher computation. We will also see that
the NLOPF admits additional control capabilities that can be very
useful.

We utilize [1] significantly in these notes. Please read Section
13.1-13.2 of W&W.

2.0 Formulation u
W&W denote y= L‘)} where u is the same as our u, but

Define: p includes “fixed parameters” such as load. I will not use
e ny: number of generators | p, thus, y=u.

N: number of buses
X: state vector

u: control vector
Ei: the voltage magnitude at bus i
0;: the angle at bus i

Pgi: the generation level at bus i

We will describe state and control vectors, the objective function,
the equality constraints, and the inequality constraints.

State and control vectors:
The state and control vectors are expressed as

0, Py2
2] P
x=|_" u=| 2"
Eng+l E, (1)
| En Ep,

Note the numbering scheme: generator buses are numbered first

1,...,ng, then load buses ng+1,...,N. Also notice:

e The state vector contains the bus voltage magnitudes and angles
that we cannot control (it may also include Py, as seen later).

e The control vector contains the generation levels and bus
voltage magnitudes that we can control (this vector contains
what we previously called the decision variables). It is also
possible to include taps associated with tap-changing
transformers in this vector.

Objective function:

The objective function for the most common OPF problem is an
economic objective function. In our case, we will assume that it is
cost, to be consistent with our LPOPF formulation. It is given by:

f0) =D F(P)=Ffu W)+ DR

Here, fog1(x,u) represents Py, and is a dependent variable. So Pgy;
(reference bus), is not a decision variable (and therefore not in the
control vector). Yet its dependence on the vectors x and u requires
that we include it in the objective function. Also observe that the
dependence of f,;; on x comes only through Fi(Pg). This means
the Py are all chosen independently, except for Py which is

determined by the solution (x, u). As we said before, other
objective functions can be used.

Equality constraints:

The equality constraints are given by the power flow equations,
expressed below:

Fqk(g,g):i|Ek”Ej‘(ij sin(g, —6,)—B, cos(6, —6,))-Q,, k=n, +L..,N (3b)

We see from the above equations that we have 2N-ny equality
constraints. We do not include the reactive power equations for the
generator buses because doing so brings in the extra (unknown)
variable Q. We do not have to include the real power flow
equation for the reference bus, but we may, and it is advantageous
to do so because we need Py, to evaluate the objective. If we do
include the ref bus real power flow equation, then then x needs to
be changed to include Pgy; as shown below:

- 9
0, :
' 0
0, "
X = = x=|E, .
Eng+1 'g
: E
E, §
L _] Pg]_ |

Assuming we do include the ref bus real power flow equation,
we denote the equality constraints as follows:

9 (X,u) = Fpy(x,u) =P, =0

gn (X,U)=Fpy(x,u) =Py =0
gN+1()_(’H)=Fq1()_(,Q)—Q1:O > 9()_(’9)20 (3¢)

9an-n, (X,U) =Fpy(x,u) - Qy =0

Inequality constraints:
There are four basic types of inequality constraints.
a. Generator real power limits:

Pyimin < Pgi < Py mex i=1...,ng (4a)
b. Generator reactive power limits:
Qgi,m'n SQgi SQgi,max i::I-""'ng (4b)
c. Load bus voltage limits:
Eimin <Ej <Ej i=ng +1LN (4c)
d. Line flow constraints:
— Tiomax = Tk = T e K=1..., Nines (4d)
We denote all of (4a)-(4d) as:
h(x,u)<0 (4)

This can be done for any constraint Xin<X<Xmax as follows:
Lower Bound: X>Xmin™ -X<-Xmin™@ -X*+Xmin<0=P 1 (X)=-X+X1in<0
Upper Bound: X<Xmax™=@ X-Xmax<0=No(X)=X-Xmax<0

We are now in a position to clearly state our problem as:
min f(x,u)
subject to:
g(x,u) =0 (5)

Lagrangian:
The Lagrangian of our problem (5) is given by

L(x,u, A, 1) = T(x,u)+ A" g(x,u)+ ' h(x,u) (6)

Notice that we have used a form where the equality and inequality
constraint terms are added. This is to be consistent with W&W, eq.
(13.15). This will result in the corresponding Lagrange multipliers
being the negative of what they would be if the equality and
inequality constraint terms were subtracted

W&W, eq. (13.18) and (13.19) , do not

. : ... _ include the last terms in (7a,7b) because
Optimality conditions: they (p. 519, top) “are only representing

By KKT, the optimality conditions are | equality constraints at this point.”

a'e()_(ig’éut_l) _ af()_(,g) " 0

[27 g(xu)] +% [h(xu)] =0 (7a)

OX OX OX
- eu Taglt Gl oL Lu Hxu)] =0 7h)
oL(x,u, 4, 1) 0
S =aé[fg(>_<,u)]=9 (7¢)
i (x,u) =0 (7d)

The last condition, 7d, is the complementary condition.

We are now in a position to discuss solution techniques to solving
the above set of equations (7a)-(7d).

3.0 Solution by generalized reduced gradient (GRG)

This method is also called the method of steepest descent and was
first described for the OPF problem in [2].

It can solve the equality-constrained problem very well.

It solves the inequality-constrained problem only via an iterative
approach, as we have done before, where we begin by assuming no
inequality constraints are binding, solve the problem, include only
those violated inequality constraints in a new solution, then solve

again, and repeat until we get a solution with no violated inequality
constraints.

Therefore the problem that we need to solve here is the one in the
inner loop, where any violated inequality constraint is assumed to
be included in the equality constraint vector g(x,u)=0. This
conforms to what W&W do via “The Gradient Method” of 13.2.1.

So we are trying to solve the following equations:
OL(xU A p) _of(xu) 0

[4' g(xu)l=0 (8a)

OX ox OX
OL(x,U, A,
@:u 44 _ af(aﬁm PTG =0 (8
OL(X,U, A,
()_(8941 L) aa& [g(xu)]=0 (8¢)
where
£(x,u,2) = f(xu)+ A" g(x,u) (9)

The basic idea of the solution procedure is as follows:

1. We desire to minimize f(x,u).

2. We can only change u.

3. So we desire to move in the direction of steepest descent with
respect to the function f(x,u). This direction is given by

vg f ()(’ g)

4. But x is a function of u, that is, x=Z(u) where Z is some
unknown function that maps the vector u to the vector Xx.
5. Therefore we can write

F(x,u)=1(Z(u)u)
And the question is, how to obtain V, f ? Notationally, we have
df (x,u)

g(x,u)=0 are
the pf eqtns.
Observe that
we have the
same number
of equations
as we have
state variables
X (2N-Ng with
the ref bus
real pf
equation and
Pg1 in X, and
2N-Ng-1
without). In
the latter case,
the matrix
being inverted
in (12) is
exactly the
Jacobain.

where the total derivative represents the change in f per unit
change in u where x also changes (and the partial derivative
represents the change in f per unit change in u where x remains
fixed).

To get the desired gradient function, we begin by expressing

T T
of (x,u) of (x,u)
o= S e T g
But dx must be a function of du since x is a function of u. Let’s
express this via the following observation:

If we change u by a small amount du, and x changes by a small

amount dx, then to satisfy g(x,u)=0, it must be true that

og(x,u og(Xx,u
(X _)dx+ 9x _)d

dg(xu) = == dx == =du=0 gy
Solving (11) for dx, we oBtain -
og(x,u)] og(x.u)

d)—(:{ "X } {_ﬁg }dg (12)

Substitution of (12) into (10) results in
T -1 T
df()_(’g):{af(g,g)} {89(&9)} Fg(x,u)}dg{af%g)} du (13)

OX O0X ou
Factoring du to the right,

) [oreow [[ogew | Togxw)] o xu)]
df()_(,g)_{—{ o }{ o } { o }{ o } du (14)

In the above, du is a column vector and the expression inside the
curly brackets is a row vector.

Now we want to bring the du over to the left-hand-side. To do so,
we must transpose the left-hand-side so that it will also be a row

vector. At the same time, we also rearrange the order of the term
on the right.

] [atew] [ofew] [o9ew T Tagxw
du | | éu ox ox 2u (15)

Recall the linear algebra rule that [ABC]'=C'B'A". Use this to
take the transpose of both sides of (15) to obtain:

i
R 0 Bt K- GV R o 0 e {E
WUEETT du au du OX OX

(16)

Now I will make the following claim;

-1
o Jlegxw | Taf k)
Clalm:i——{{ ox }} { ox } (17)

Proof: Repeating (8a), we have
OL(X,U, 4, 1) _ () |
OX OX

Use the following fact: If A is a constant vector, and b=b(x), and
both are the same dimension, then

21401 - Fb(xx)} A

Use the above in (8a) to obtain
OL(X, U, 1) _ O xu) Fg(z,u)}u_o

[i 9(xu)] =0 (8a)

OX OX OX (18)
Solving (18) for A, we obtain:
-1
e | afxw)
a OX OX (17)

QED

Note that the first term (inside the curly brackets) of (17) is [J']™,
where J is the power flow Jacobian with the addition of any
binding inequality constraints.

Repeating (16)

i
10 I et - (LA o 0 e {E %
UAEETT du 0 au ou dX OX

(16)
Substitute (17) into (16) results in
_dixu)_af(xw) [ogw)]’
vy fxu)= v o { ou }i (19)

Although both (16) and (19) are referred to as the reduced
gradient, when we use this term, we will be referring to (19).

Eq. (16) is the reason for the name, i.e., it is the partial derivative
of f wrspt u “reduced” by the term on the right of (16). The term on
the right accounts for the fact that a small change Au creates a
small induced change Ax due to the power flow equations (and
corresponding changes to power flow equations must be negative,
as indicated by (11) and (12)).

4.0 Algorithm

Here is the GRG algorithm for solving the NLOPF problem.

1. Let k = 1. Guess an initial control vector u®. (Use economic
dispatch with losses or without losses to make the initial guess).

2. Given u®, solve for x® from (8c), repeated here for
convenience:

oL(X,U, 4, 1) &

oA oA

This is just a power flow solution!

[4' g(xu)l=0 (8¢)

. Compute:
-1
J0 __J[ogx)]| aixw)
- OX OX (20)

. Compute the “steepest ascent” direction, i.e., the gradient of f,

according to (19)
of (x,u) FQ(M)T]
+ A (19)

df (x,u

(the reduced gradient).

. Update the control vector by moving it in the direction of
steepest descent.

g(k+l) _ g(k) _ a(k)Vg f (x,u) (21)
where o™ is a step size which is reduced for every iteration.

CIf [V, f(x,u)|<e, stop. Else, k=k+1, and go to (2).

5.0 Examples

Example 1, EDC without losses:

For the system shown below, solve economic dispatch problem
without losses. The cost functions are given by

C1(Psp) =1+ Pgp +3P&;
CZ(PGZ) = O.5+O.5PG2 + OSPGZZ

10

Pa1

y=1-j10
Vi=1.0 Vo=1.0
Pp1=3.0 Ppz=1.0
Fig. 1
The optimality conditions are:
A=1+6P5
A=0.5+P,
4="P51+Pso
Writing these in matrix form we obtain
6 0 -1| Py -1
0 1 -1||Ps,|=|-05
_1 1 0 1 A 1| 4 |
Solving using Matlab, we obtain:
Ps; | [0.5
Ps, [=]35
A | |4.0]

Example 2, EDC with losses:

We will derive the loss function since this is such a simple system.

The real power flowing across a line is expressed as

11

Pog =V G =V VG cos(@, — 6;) +V,V,Bsin(@, — 6;)
Applying this to our system, and assuming 6,=0, we have:
P2 = (@) - @A) cos(=62) + (1)(D)A0)sin(-65)
=1-cosé, —10sin b, (E2-1)
P = (M) - @M)@)@) cos(6) + (1)(D)A0)sin(b>)
=1-cosé, +10sin b,
Losses may be expressed as the difference between the flow into

(E2-2)

the line and the flow out of the line. Denoting P1'2 as the flow out
of the line and into bus 2, we have

PL=R,-PRy=R,+Py (E2-3)
Substituting (E2-1) and (E2-2) into (E2-3), we have
PL=PR,-PR=PF,+Py

=1-co0sé, —10sin 6, +1—cos &, +10sin &,

(E2-4)
=2(1—-cos6,)
Recall the Taylor series expansion for cosine:
05 65 65 05
=1 — — + ~1——%~
cosé, =1 ! + TR 1 5 (E2-5)
Substituting the approximation of (E2-5) into (E2-4), we have
05)
= 2(1_(- 2} = (E2-6)

But we want to express the losses as a function of our decision
variables Pg; and Pgo.

We expressed losses as the sum of the flows into either end of the

line per (E2-3). Now let’s express the difference of the flows into
either end of the line:

12

Ro—Py=Pe-3-(Fe2-D)=Pa1-Fs2-2 (E2-7)
We may also use (E2-1) and (E2-2) to express the difference of the
flows into either end of the line:
P, —P,; =1-cosé, —10sin 8, — (1—cosé, +10sinb,)
= —20sin 6, (E2-8)
If the angle is small, then (E2-8) becomes:
P, — P,y =—206, (E2-9)
Equating (E2-7) and (E2-8), we get
—200, =Pgy —Pgy, —2

— (PGl — PGZ — 2) (E2-10)
20
By (E2-6), the loss function is the square of (E2-10), i.e.,

:>92:

2
P =02 = (Por—Ps2-2)

400 (E2-11)
From (E2-11), we may compute the penalty factors according to:
Lo 1 1
Lo, 0P 1-Pg /200

O0Pg1

1 1 (E2-12)
L2 = =

1_ 8P|_ l+ PGZ/ZOO

Setting up the optimality conditions, we have:

dc;, 1
dPg; 1-Pg; /200
E2-13a
A=1, ac; _ 1 (Pg, +0.5) ()
dPg, 1+ Pg,/200

Solving (E2-13a) for Pg; and Pg,, we obtain:

lle

(6Pg; +1)

13

A-1

Pe1=—77-=

6+ /200
2-05 (E2-13b)

G2 7 1_2/200

We also know that
Po=Fa1+Fs2 - R

(Per— Psz —2)° (E2-14)
400
Let’s use Lambda iteration to solve (E2-13a) and (E2-13b). Here is
matlab code for making the evaluation given A:
pgl=(lam-1)/ (6+1lam/200)
pg2=(lam-0.5)/(1-1am/200)
ploss=((pgl-pg2-2)"2) /400
pd=pgl+pg2-ploss
We initialize with the solution provided by Example 1 and arrive at
the solution below, on the left, which is compared to the solution
obtained in the previous example on the right:

:>PD:PG].+PG2_

Solution with losses Solution without losses
A =3.996 A=4.0

Pgp =0.4977 Py =0.5

Pgo =3.5673 Ps, =3.5

Pl oss = 0.0643 Ploss =0

Pp =4.0007 Ppb =4.0

Example 3, Optimal power flow:
Solve the problem of Example 2 using the optimal power flow.
Ignore all constraints.

Variables:

14

Since both buses have generators, they are voltage control buses.
Therefore the voltage magnitudes are considered to be known.
Since the bus 1 angle is the reference, there is only one unknown
angle that this will be a state variable, i.e., X;=0,.

We will model both real power flow equality constraints and will
therefore need to identify that the bus 1 generation is a state
variable, and so x,=Pg;. Thus, in the notation of (3), fog1(X,u)=x..

There is only one control variable and it is u=Pg,. (We could
identify the voltages at each bus as control variables, but we will
not here in order to maintain as simple a model as possible here.)

Objective function:
The objective function is given by

f(6,,Ps1, Ps2) =C1(Ps1) +Co(Ps2) =
1+ P5y +3P% +0.5+0.5P;, + 0.5P%,

Or, in terms of X and u, we have that

f(x,u)=Cy(X) +Cy(u) =

1.9+ Xy + 3x§ +0.5u +0.5u°

Equality constraints:

The equality constraints are the power flow equations. But since

there are no PQ buses in this network, there are no reactive power

equations. Therefore we need only consider the real power flow

equations at the two buses. Recalling (3a) and (3c), we have:
9,(x,u) = F(x,u)-P, =0

92(1(79) = sz()_(,g)— P2 == O

where

15

and
P« = Pok — Puk
This results in:
g,(x,u) = Fpl()_(’g) — Py + P, =0
9, (X u)=Fp,(x,u) = Fs, + Py, =0
With y=1-j10, Y1,=1-j10, Y1,=-1+j10, so the above become:
g;(x,u)=1-cosé, —10sin6, —P5; +3=0
g,(x,u)=1-cosb, +10sinf, — Pz, +1=0
Replacing the variables with x;=0,, X,=Pg1, and u=Pg,, the equality
constraints become:
g1(X,u)=1-cos x; —10sinX; —Xx, +3=0
g, (x,u)=1-cosx; +10sinx; —u+1=0
Combining the constants, we get
g1(X,u)=4—cos x; —10sinx; — X, =0
g, (Xx,u)=2-cos x; +10sinx; —u=0

Problem statement:
The problem statement then becomes the following:
min f (X,u) =1.5+ X, +3x3 +0.5u +0.5u°

subject to

gy(X,u) = 4—cos x —10sinx —X, =0
0, (X, U) =2 —cos X +10sinx —u=0

Lagrangian:
The Lagrangian function becomes:

16

L(xud)=f(xu)+4" g(xu)

-, T
_ fxu)+ /11} {gl(x,u)}

| A2] [92(x.U)
= fxw+ [@{igiﬂ

= T(X,u) + 49:(X,u) + 4,0,(X, 1)

=15+X, + 3x§ +0.5u +0.5u°

+ 21 (1—cos x —10sin x; — X, +3)

+ A,(g5(x,u) =1—cos x; +10sin X —u+1=0)

Optimality conditions:
The appropriate optimality conditions are given by

8£()_(,U,i) _ of ()_(! U) 4 0 [iT g(X,U)] =0

OX OX OX
oL(xuAd) of(xu) 0 .7
ou ou @u[_ 9(xu)]
OL(XUA) O .1
——*~ = A g(xu)]=0
v ail[_ g(xu)]

Homework #6 for next Monday:
Problem 1: Use the Generalized Reduced Gradient
procedure to solve the above problem.

17

The answers you should obtain are:
M=4.2297, X,=4.0174, x,=0.252, x,=0.5383, u=3.5174

Compare to EDC and EDC+losses

Solution w/ loss Solution w/o losses OPF
/11 = 4.2297, /?,2 =4.0174

A =3.996 2=40 b (583
Pey=04977 P =05 p _ 3517,
Psz =35673 Pg;=35 " _ 1004
Ploss =0.0643 Ploss =0 p '_ 4

P =4.0007 Pp=40 g _ 0 o5omag

Observe that the signs of A; and A, are both positive. Let’s

think through what this means:

e Our original formulation (see Optimizationintro.ppt)
formulated the Lagrangian by subtracting off the equality
constraint terms, according to:

£(x,2)= T ()~ A(h(x)~c)- 4, (h(x)~c,)
o= A (M%) =€)

e We interpreted the Lagrange multipliers as the increase
in the objective function when the right-hand-side (RHS)
of the corresponding constraint is increased by one unit.

e Now we have formulated the Lagrangian by adding the
equality constraint terms, according to:

L(xuA)=f(x,u)+2 g(xu)

18

e S0 we interpret the Lagrange multipliers as the decrease
in the objective function when the RHS of the
corresponding constraint is increased by one unit.

e Observe our equality constraints:

g,(x,u)=1-cos x; —10sinx; —X, +3=0
g,(x,u)=1-cosx; +10sinx; —u+1=0
When we establish “right-hand-sides” these become:
g,(x,u) =1-cos x, —10sin X, — X, = -3
g,(x,u) =1-cosx, +10sinx, —u=-1
These RHS are just the negative of the demands.
Increasing them makes the demands smaller.

e S0 the definition of A;, A, as “decrease in objective
function when RHS of corresponding constraints are
increased by one unit” means that positive A’s indicate
the cost decreases as demand decreases — makes sense!

6.0 Matrix of second partials approach (Newton method)

The method described in section 5.0 updates the control variables
at every iteration step along the direction of steepest descent with
respect to the control variables. The problem with this method is
that the step size must be small, requiring multiple iterations to
identify the solution, and since each iteration requires a full power
flow solution, the method can be quite computationally intensive
for large systems.

Another way to solve the problem is to view the equations
established by the first order conditions as a set of simultaneous
nonlinear equations to solve. This means we can use our familiar
Newton-Raphson method to solve! Reference [3] provides a good
articulation of this method.

19

A key concept in applying this method is that the nonlinear
equations that we must solve are actually the first derivative of the
objective and equality constraints. In order to apply the NR
approach, we can denote all variables in the equations of the
optimality conditions as z, i.e.,

Z
Z=|u
|4

Then the Lagrangian function as expressed in (9)

L£(x,u,2) = f(x,u)+2" g(x,u) 9)
becomes

L(x,u,4) = £(2) (9)
To solve the nonlinear equations:
VZB(Z) - Q

we need the Jacobian matrix of these equations, which we denote
by H(z), where its elements are given by

- _2%L()
' aziaZj
The matrix H(z), which is the Jacobian with respect to the first-

order conditions, is the Hessian with respect to the Lagrangian
function.

Once the Hessian is obtained, the NR procedure is performed as
usual, based on the update relation:

Z(k+l) _ 5K _ [ﬂ(l(k))ylvzﬁ(Z)

20

Homework #6 for next Monday:

Problem 2: For the matrix of the system used in HW6,
Problem #1, assume the initial solution z® obtained by the
economic dispatch solution, obtain the Hessian matrix, and
take a single step to obtain a new point z%.

7.0 Penalty function approach

We motivate this approach by looking at two simple cases. Our
general goal is to change a constrained optimization problem into
an unconstrained optimization problem. We require the objective
function be convex and the feasible space be a convex set. This
approach is discussed very briefly in W&W, pp. 530-531 as a
method of handling inequality constraints. But as we will see, it
can handle both equality and inequality constraints.

Prob. 1.0-a (constrained optimization with equality constraint):
min f (x)

subject to

g(x)=0
Observe:

1. g(x) must be zero at any feasible solution.

2. [9(x)]?=0 implies g(x)=0, and therefore, by (1), that [g(x)]*=0
implies that x is a feasible solution.

3. [9(x)]>>0 is always true and therefore [g(x)]°=0 identifies the
minimum value of [g(x)]°.

4. By (3), minimizing [g(x)]* will result in finding the value of x
that imposes [g(x)]?=0. Therefore, by (2), minimizing [g(x)]°
will result in a feasible value of x.

With the above in mind, consider the following new problem:

Prob. 1.1-a (unconstrained optimization):

21

min ¢(X)

where

pX)=T(X)+a p(9(®); pu(9(x)=[9(X)]

We cannot guarantee that this new problem will find the solution
to problem Prob 1.0-a. To see why, observe in Fig. 2 the functions:

y=(x-3)%+3
y = x?
y:(x—3)2 +3+ %2
We note that the first one has a minimum at x=3, the second one

has a minimum at x=0, and the third one, which is the sum of the
first two, has a minimum at about x=1.

* — —
35k A é % % g A é % ! % |
1 [| M— AR P ey N — -
S lssmrmnninsens Sbrsseni s T ——— Ly -) '/»'/;—

[0} E—— LS + T /’ i

L+
: : -
: : ++: . : :
|opan SR +++++++++++)' A B s =

22

What we can guarantee is that that Prob. 1.1-a will find a feasible
solution to Prob. 1.0-a if we make o large enough. In our example,
let’s choose a=4. The solution is displayed in Fig. 3 where we
observe that the minimum of the sum has moved to the left and
now occurs at about 0.3 or 0.4. Clearly, the larger we make a, the
more the second function, y=x°, will dominate, and the closer the
minimum of the sum will be to the minimum of y=x4.

120 ! ! ; ;

AO0 i Bt |

P99 R SR SN S N WO .. cc..¥ e S

0 0.5 } 1k 712 2I 25 1I3 3.i5 lll 4.i5 5
Fig. 3

We can draw the conclusion that Prob. 1.1-a is guaranteed to find a

feasible solution (one that satisfies the equality constraint) if we

make o large enough.

We can generalize this conclusion to the case of multiple equality
constraints, as follows.

Prob. 1.0-b (constrained optimization with N equality constraints):

23

min f (x)
subject to
g(x)=0

Prob. 1.1-b (unconstrained optimization):

min ¢(x)

where

N
p)=F(X)+a> p(0i®); puloi(x)=[g X1’
=1

Now let’s consider inequality constraints.

Prob. 2.0-a (constrained optimization with inequality constraint):
min f(Xx)
subject to
h(x) <0

Will the same approach work that we used for equality constraints?
That is, define

. 2
p(¥) = F () +ap(h(x); p2(h(x))=[n(X)]
and then solve min ¢(x) using a large value of o — will this work?
That is, will it guarantee to find a feasible solution?

=» This would only work if we know h(x)<0 to be binding because
it would impose h(x)=0, thus, not providing for the possibility that
h(x)<0.

So we would like to have a penalty function p, which will impose
h(x)=0 if h(x)<0 is binding but allow h(x)<0 if not.

24

We can write such a penalty function as

[h()]* if h(x) >0
h —
p,(h(x)) { 0 £ h(x) <0

The top function corresponds to the case when the constraint is
binding, in which case we use the same penalty function that we
used for equality constraints. The bottom function corresponds to
the case when the constraint is non-binding, in which case we
simply add O to the objective which has no effect on the solution.

Notationally, we may express the same thing as

p2(h(x))=[max(0, h(x))I
where we see that
e if h(X)<O (and therefore non-binding), then p,=0°=0.
e if h(x)>0 (and therefore binding), then p,=[h(x)]*.

The function p; is illustrated in Fig. 2.
P>

h(x)]*

h(x) >
Fig. 2

25

We can define a continuous function that has a similar
characteristic:

p2(h(x))=e"®; k>0
which may be appropriately shaped if desired. For example, Fig. 3
illustrates the function

p,(n(x)) ="

where it is clear that the function is almost 0 where h(x)=0, is 0 for
h(x)<0, and gets big for h(x)>0.

p2=exp(5*h(x)
T

150 ! ! ! ;

100

p2

50+

-1 -0‘.8 -Oi6 -Oi.4 -Oi2 0 0.2 0.i4 0.6 0;8 1
h(x)
Fig. 3
Use of the continuous function provides that the function is
differentiable everywhere, which can be beneficial when solving
the equations imposed by the KKT conditions.

And so we see a way to handle inequality constraints with a
penalty function as an unconstrained optimization problem.

26

Prob. 2.1-a (unconstrained optimization):

min ¢(x)

where
2 .

As in the case of equality constraints, we can draw the conclusion
that Prob. 2.1-a is guaranteed to find a feasible solution (one that
satisfies the inequality constraint) if we make o large enough.

We can generalize this conclusion to the case of multiple equality
constraints, as follows.

Prob. 2.0-b (constrained optimization with M inequality constraints)
min f (Xx)

subject to
h(x) <0

Prob. 2.1-b (unconstrained optimization):

min ¢(x)

where

M U
s =T+ pa(): palti ()= {[h. W1 if hy(x) >0
i=1

0 ifh(x)<0

Finally, we may generalize our results to the case of multiple
equality constraints and multiple inequality constraints.

27

Prob. 3.0-a (constrained optimization with 1 equality and 1
inequality constraint)

min f (x)
subject to

g(x)=0
h(x)<0

Prob. 3.1-a (unconstrained optimization):

min ¢(x)

where
#(x) = T (x)+a [py(9(x)+ pa(h(x))]

where
p1(9(x)=[9(X)]°

_JIh)1? if h(x) >0
mm@»—{ 0 ifh00<0

Prob. 3.0-b (constrained optimization with N inequality constraints)
min f (x)

subject to
g(x)=0
h(x) <0

Prob. 3.1-b (unconstrained optimization):
min ¢(x)

where

28

M

N
#(x) = f(x)+ 0{ > P (0)+] pa(hi (%)
i=1

=1
where
p:(g; () =[g; ()]°
[(017 if by (x) >0
h: = I I
p (N (%) { 0 ifh (<0
Now, we ask the following question: If solution to the above

unconstrained optimization problems only finds us a feasible
solution, what good is it?

To answer this question, we modify our last, most general
formulation by replacing o with o®. Thus, Prob. 3.1-b becomes
Prob. 3.1-b (unconstrained optimization):

min g(x)
where
N M
$(x) = f(x)+a® [> pu(9i () + Y pa(hi (%)
i=1 i=1

where
p1(9i (X)) =[9; ()]°
[h; (01° i h; (x)>0
h: (x))=
p2(|(Z)) { 0 if hi (X)SO
This suggests that we will develop a sequence of solutions

corresponding to a®, 0@ o .

To see how we want to modify o, observe that
e If o™ is very small, then the objective function dominates, and
the problem is essentially

min f (x)
o If a is very large (we have already seen this), then the
constraints dominate, and the problem is essentially

29

M

N
min ¢(x) = a® { > pu(gi () + D P2 (hi (%))
-1

i=1
where

pr(g; (0)=[9; (01°
[y 17 if by () >0
h. =
P2 (h; (x)) { 0 ifh(0<0
And so we see that we can use o to adjust the relative weight
between the objective function and the constraints.

Now consider a sequence of problems as follows:
1. Let k=1 and guess {x*, a®} (the starting solution).
2. Solve the unconstrained minimization problem:

N M
min g(x) = f(x)+a® {Z p.(g; (Z))+Z p2(h, (Z))}
i=1 i=1

where
p1(9; (¥)=1[g; (x)1?

o (9017 if hy(x)>0
pz(h.(z))—{ 0 ifh o<

using a® and x® as the starting solution. Denote the new
solution as x*V.
3. If |x(k+1)- l(k)|<8, stop. Otherwise,
a. Let a(k+1)=[3 x o
b. k=k+1
c. Goto 2.

Question: Should <1 or >1?
In other words, as we progress through this sequence of
unconstrained optimization problems, do we want to increase

emphasis on constraints or decrease emphasis on constraints?

The answer to this question is based on the following information:

30

e Large values of a create ill-conditioned nonlinear problems (i.e.,
problems for which nonlinear solvers do not converge quickly
or do not converge at all).

e lll-conditioned problems are very sensitive to the accuracy of
the starting solution. If the starting solution is poor, then an ill-
conditioned problem may not converge at all.

Since our worst guess is at the beginning of the sequence, we want
to make a very small at the beginning of the sequence in order to
avoid ill-conditioning.

Then we will change o so that we creep towards the feasible region
with each successive solution until the stopping criterion is
satisfied.

The implication of the last statement is that f>1.

Note carefully: We have transformed a constrained optimization
problem into a sequence of unconstrained optimization problems
whose solutions gradually move from the infeasible region to the
feasible region.

This type of penalty function method is referred to as an Exterior
Point penalty function method.

Two Final Comments:

1. At each stage of the penalty function method, we solve an
unconstrained nonlinear optimization problem. There are many
methods to do this. Below are three classes of such methods:

a. Without derivatives: Cyclic coordinate, Hook & Jeeves,
Rosenbrock
b. With derivatives: Steepest descent, Newton’s method

31

c. Conjugate directions (may or may not use derivatives):
Davidon-Fletcher-Powell (uses derivatives); Fletcher-
Reeves, and Zangwill.

2. Our focus has been on exterior penalty function methods.
However, there is another broad class of penalty function
solution methods applicable to solution of the Optimal Power
Flow. These are called Interior Point penalty function methods.
This class of solutions has also been referred to as Barrier
Function methods. The main difference between Exterior Point
methods and Interior Point methods is that whereas the former
depend on a sequence of infeasible solutions that gradually
move towards the feasible region, the latter depend on a
sequence of feasible solutions that gradually move towards the
boundary of the feasible region.

Example [4]:

32

Consider the following problem
Minimize (x,—2)*+(x;— 2%:)°
subject to x2—x,=0
X=E,
Note that at iteration k, for a given penalty parameter i, the problem to be
solved to give X, 1S
minimize (x; —2)* + (X, = 2X2)% + (x,2—x,)?

Table 9.1 summarizes the computations using the penalty function method.
The starting point is taken as X, = (2.0, 1.0), where the objective function value
is 0.0. The initial value of the penalty parameter is taken as a W, = 0.1, and the

TABLE 9.1 Summary of the Computations for the Penalty Function Method

Iteration

k M Xis1 =Xy, FXear) alxz)=h3(x,,) 0(m) mea(x,,)
1 0.1 (1.4539, 0.7608) 0.0935 1.8307 0.2766 0.1831
2 1.0 (1.1687, 0.7407) 0.5753 0.3908 0.9661 0.3908
3 10.0 (0.9906, 0.8425) 1.5203 0.01926 1.7129 0.1926
4 100.0 (0.9507, 0.8875) 18917 0.000267 1.9184 0.0267
5 1000.0 (0.9461094, 0.8934414) 1.9405 0.0000028 1.9433 0.0028

33

e 1 2

0

Figure 9.4 |llustration of the penalty function method.

scalar B is taken as 10.0. Note that f(x,) and 6(u,) are nondecreasing
functions, and a(x,,) is a nonincreasing function. The procedure could have
been stopped after the fourth iteration, where a(x,,)= 0.000267. However, to
show more clearly that w,a(x,) does converge to zero according to Theorem
92.2. one more iteration was carried out. At the point Xx'=
(0.9461094, 0.8934414), the reader can verify that the Kuhn-Tucker condi-
tions are satisfied for v =3.3631. Figure 9.4 shows the progress of the al-
gorithm.

[1] A. Debs, Modern Power Systems Control and Operation,” Kluwer, 1988.

[2] H. Dommel and W. Tinney, “Optimal Power Flow Solutions” IEEE
Transactions on Power Apparatus and Systems, VVol. PAS-87, Oct. 1968.
[3] D. Sun, B. Ashley, B. Brewer, A. Hughes, and W. Tinney, “ Optimal

Power Flow by New Approach,” IEEE Transactions on Power Systems,

1984.
[4] M. Bazaraa and C. Shetty, “Nonlinear Programming: Theory &
Algorithms,” John Wiley, 1979.

34

