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Linear Solvers 

 

1. Introduction [1] 

There are many problems in power system analysis 

that require the solution of the equation Ax=b and 

therefore simply requires a linear solver to obtain the 

answer. Some of these problems include power flow, 

state estimation, and time-domain simulation when 

performed using implicit integration.  

 

Researchers have put much effort into writing 

computational libraries for performing solution of 

linear equations. The people who write these libraries 

know much more about solving linear equations than 

you do. When developing code where you will need 

to solve linear equations, there are three rules: 

Never invert the matrix; 

Always use the libraries; 

Never write your own method. 

There are a number of standard, portable solver 

libraries available, including: 

 BLAS (Basic linear algebra subprograms): Many 

linear algebra packages including LAPACK, 

ScaLAPACK and PETSc, are built on top of 

BLAS. Most supercomputer vendors have versions 

of BLAS that are highly tuned for their platforms. 
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 ATLAS (Automatically Tuned Linear Algebra 

Software package) is a version of BLAS that, upon 

installation, tests and times a variety of approaches 

to each routine and selects the version that runs 

fastest. ATLAS is substantially faster than the 

generic version of BLAS. 

 LAPACK (Linear Algebra PACKage) solves dense 

or special case sparse systems of equations 

depending on matrix properties such as:  
o Precision: single, double 

o Data type: real, complex 

o Shape: diagonal, bidiagonal, tridiagonal, banded, 

triangular, trapezoidal, Hesenberg, general dense 

o Properties: orthogonal, positive definite, Hermetian 

(complex), symmetric, general.  

LAPACK is built on top of BLAS, which means it 

can benefit from ATLAS. LAPACK is a library 

that you can download for free from 

www.netlib.org.  

 ScaLAPACK is the distributed parallel (MPI) 

version of LAPACK. It contains only a subset of 

the LAPACK routines. ScaLAPACK is also 

available from www.netlib.org.  

 PETSc (Portable, Extensible Toolkit for Scientific 

Computation) is a solver library for sparse matrices 

that uses distributed parallelism (MPI). It is 

http://www.netlib.org/
http://www.netlib.org/
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designed for general sparse matrices with no 

special properties, but it also works well for sparse 

matrices with simple properties like banding & 

symmetry. It has a simpler Application 

Programming Interface than ScaLAPACK. 

When choosing a solver, pick a version that’s tuned 

for the platform you’re running on, and use the 

information that you have about your system to select 

the one that will be most efficient. You will have to 

do some research and discuss with people to gain a 

level of knowledge to enable you to most effectively 

make this selection. The following four can be 

interfaced with practically any language: 

1. UMFPACK 

2. KLU 

3. MUMPS (serial version) 

4. SuperLU 

In these notes, we will introduce some very basic 

ideas regarding sparse solvers. The problem of 

interest is to solve for the n×1 vector x in  

bxA       (1) 

when n is very large, but without inverting the n×n 

matrix A.  
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An effective method to do this is LU decomposition, 

or “factorization.” It is actually a very widely known 

and used method in many different disciplines.  

 

If you have taken a linear algebra course (from 

Math), this should be familiar to you. If you have not 

taken such a course, you should. 

 

2. Forward-backward substitution 

 

Consider that you are able to obtain A as the product 

of two special matrices, i.e.,  

ULA       (2) 

that satisfy the following: 

 Both L and U are square matrices of the same 

dimension as A. 

 U is an upper-triangular matrix, meaning that all 

elements below the diagonal are 0. 

 L is a lower-triangular matrix, meaning that all 

elements above the diagonal are 0. 

 All diagonal elements of U are 1. 

So, for a 3×3 case, we would have: 
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For the moment, let’s not worry about how to obtain 

L and U. Rather, let’s think about what we can do if 

we get them. 

What we know at this point is that ULA  , and 

bxA  . Therefore,  

bxUL        (4) 

Define: 

xUw        (5) 

Substitution of (5) into (4) results in 

bwL        (6) 

The situation is the following. We want to find x. It 

appears that (5) and (6) are not very helpful, because 

solving them for x and w, respectively, will require 
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an inverse. But let’s take a closer look at eqs. (5) and 

(6), in terms of the fully expressed matrix relations 

and see if we can get x and w without matrix 

inversion. If so, then our procedure will be to use (6) 

to find w and then (5) to find x. 
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Observe that  

 Equation (8) can be solved for w without inverting 

L and 

 Equation (7) could then be solved for x without 

inverting U.  

Let’s start with (8). We see that we can begin with 

the row 1 equation and proceed as follows: 

11111111 / lbwbwl     (9) 
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 (10) 



 7 

33

2321313

33333232131
l

wlwlb
wbwlwlwl




 (11) 

This procedure is called forward substitution. 

Consideration of the pattern of calculation introduced 

by eqs. (9)-(11) suggests a generalized formula for 

forward substitution, useful for computer 

programming, as follows: 
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Now that we have w, we can use (7) to find x. We see 

that we can begin with the row 3 equation and 

proceed as follows: 

33 wx       (13) 

3232223232 xuwxwxux   (14) 

3132121113132121 xuxuwxwxuxux 

 (15) 

This procedure is called backward substitution. 

Consideration of the pattern of calculation introduced 

by eqs. (13)-(15) suggests a generalized formula for 

forward substitution, useful for computer 

programming, as follows: 
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where n is the dimension of the matrix. 

 

3. Factorization using Crout algorithm 

So we see that if we have L and U, we can solve       

A x=b for x. So natural question at this point is: How 

to find L and U?  

The method of finding L and U from A is called the 

LU factorization of A, otherwise known as the LU-

decomposition of A.  

To motivate it, let’s first look back at eq. (3). 
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Based on eq. (3), we see that the following sequence 

of calculations may be performed. 

 Row 1 of A and L, across columns of U. 

1111 la   
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111212121112 / lauula   

111313131113 / lauula   

 Row 2 of A and L, across columns of U. 

2121 la   

1221222222122122 ulallula   
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l
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 Row 3 of A and L, across columns of U: 

3131 la   

1231323232123132 ulallula   

233213313333332332133133 ululallulula 

The above is convincing evidence that we will be 

able to perform the desired factorization. Although 

we have done so for only a 3×3 case, the procedure 

would also work for a matrix of any dimension. 

If you study closely the pattern of calculation, you 

can convince yourself that the following generalized 

formula can be used in computer programming [2]. 
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Use of eqs. (17,18) comprise what is known as the 

Crout algorithm. 

4. Method of Dolittle 
There are some variations on this, for example 

factorization where the L matrix diagonal elements 

are 1’s and the U matrix diagonal matrix elements are 

nonunity, as indicated in eq. (3a). 
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We can show how to obtain L and U in a fashion 

similar to that of Section 3.0. 

 Row 1 of A and L, across columns of U. 

1111 ua   

1212 ua   

1313 ua   
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 Row 2 of A and L, across columns of U. 
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 Row 3 of A and L, across columns of U: 
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5. Factorization with Gaussian elimination 

Trick: Augment A matrix before you begin the below 

algorithm by adding the vector b as the n+1 column. 

Then, when you finish the algorithm, you will have 

the vector w in the n+1 column. 

 

The algorithm is as follows: 

1. Perform Gaussian elimination on A. Let i=1. In 

each repetition below, row i is the pivot row and 

aii is the pivot. 

a. Lji=aji for j=i,…,n. 
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b. Divide row i by aii. 

c. If [i=n, go to 2] else [go to d]. 

d. Eliminate all aji, j=i+1,…,n. This means to 

make all elements directly beneath the pivot 

equal to 0 by adding an appropriate multiple of 

the pivot row to each row beneath the pivot. 

e. i=i+1, go to a. 

2. The matrix U is what remains. 

 

Example: Use LU decomposition to solve for x in the 

below system of equations. 
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Form the augmented matrix. 
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Now perform the algorithm.  
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Divide first row by 3 and then add multiples of it to 

remaining rows so that first element in remaining 

rows gets zeroed. 
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Divide second row by 2; then add multiples of it to 

remaining rows so that second element in remaining 

rows gets zeroed. 
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Divide third row by 2 and then add multiples of it to 

remaining rows so that third element in remaining 

rows gets zeroed. 
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Divide third row by 3. 
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Use backwards substitution to get x. This method 

eliminates forward substitution step. 
                                                 

[1]  2007 presentation slides from Paul Gray, University of Northern Iowa, 

Henry Neeman, University of Oklahoma, Charlie Peck, Earlham College. 

[2] Vlach and Singhal, “Computer Methods for Circuit Analysis and 

Design,” 2nd edition, 1994. 


