
 1

Linear Solvers

1. Introduction [1]

There are many problems in power system analysis

that require the solution of the equation Ax=b and

therefore simply requires a linear solver to obtain the

answer. Some of these problems include power flow,

state estimation, and time-domain simulation when

performed using implicit integration.

Researchers have put much effort into writing

computational libraries for performing solution of

linear equations. The people who write these libraries

know much more about solving linear equations than

you do. When developing code where you will need

to solve linear equations, there are three rules:

Never invert the matrix;

Always use the libraries;

Never write your own method.

There are a number of standard, portable solver

libraries available, including:

 BLAS (Basic linear algebra subprograms): Many

linear algebra packages including LAPACK,

ScaLAPACK and PETSc, are built on top of

BLAS. Most supercomputer vendors have versions

of BLAS that are highly tuned for their platforms.

 2

 ATLAS (Automatically Tuned Linear Algebra

Software package) is a version of BLAS that, upon

installation, tests and times a variety of approaches

to each routine and selects the version that runs

fastest. ATLAS is substantially faster than the

generic version of BLAS.

 LAPACK (Linear Algebra PACKage) solves dense

or special case sparse systems of equations

depending on matrix properties such as:
o Precision: single, double

o Data type: real, complex

o Shape: diagonal, bidiagonal, tridiagonal, banded,

triangular, trapezoidal, Hesenberg, general dense

o Properties: orthogonal, positive definite, Hermetian

(complex), symmetric, general.

LAPACK is built on top of BLAS, which means it

can benefit from ATLAS. LAPACK is a library

that you can download for free from

www.netlib.org.

 ScaLAPACK is the distributed parallel (MPI)

version of LAPACK. It contains only a subset of

the LAPACK routines. ScaLAPACK is also

available from www.netlib.org.

 PETSc (Portable, Extensible Toolkit for Scientific

Computation) is a solver library for sparse matrices

that uses distributed parallelism (MPI). It is

http://www.netlib.org/
http://www.netlib.org/

 3

designed for general sparse matrices with no

special properties, but it also works well for sparse

matrices with simple properties like banding &

symmetry. It has a simpler Application

Programming Interface than ScaLAPACK.

When choosing a solver, pick a version that’s tuned

for the platform you’re running on, and use the

information that you have about your system to select

the one that will be most efficient. You will have to

do some research and discuss with people to gain a

level of knowledge to enable you to most effectively

make this selection. The following four can be

interfaced with practically any language:

1. UMFPACK

2. KLU

3. MUMPS (serial version)

4. SuperLU

In these notes, we will introduce some very basic

ideas regarding sparse solvers. The problem of

interest is to solve for the n×1 vector x in

bxA  (1)

when n is very large, but without inverting the n×n

matrix A.

 4

An effective method to do this is LU decomposition,

or “factorization.” It is actually a very widely known

and used method in many different disciplines.

If you have taken a linear algebra course (from

Math), this should be familiar to you. If you have not

taken such a course, you should.

2. Forward-backward substitution

Consider that you are able to obtain A as the product

of two special matrices, i.e.,

ULA  (2)

that satisfy the following:

 Both L and U are square matrices of the same

dimension as A.

 U is an upper-triangular matrix, meaning that all

elements below the diagonal are 0.

 L is a lower-triangular matrix, meaning that all

elements above the diagonal are 0.

 All diagonal elements of U are 1.

So, for a 3×3 case, we would have:

 5

ULu

uu

lll

ll

l

aaa

aaa

aaa

A























































100

10

1

0

00

23

1312

333231

2221

11

333231

232221

131211

 (3)

For the moment, let’s not worry about how to obtain

L and U. Rather, let’s think about what we can do if

we get them.

What we know at this point is that ULA  , and

bxA  . Therefore,

bxUL  (4)

Define:

xUw  (5)

Substitution of (5) into (4) results in

bwL  (6)

The situation is the following. We want to find x. It

appears that (5) and (6) are not very helpful, because

solving them for x and w, respectively, will require

 6

an inverse. But let’s take a closer look at eqs. (5) and

(6), in terms of the fully expressed matrix relations

and see if we can get x and w without matrix

inversion. If so, then our procedure will be to use (6)

to find w and then (5) to find x.

xU

x

x

x

u

uu

w

w

w

w 





















































3

2

1

23

1312

3

2

1

100

10

1

 (7)

b

b

b

b

w

w

w

lll

ll

l

wL 





















































3

2

1

3

2

1

333231

2221

11

0

00

 (8)

Observe that

 Equation (8) can be solved for w without inverting

L and

 Equation (7) could then be solved for x without

inverting U.

Let’s start with (8). We see that we can begin with

the row 1 equation and proceed as follows:

11111111 / lbwbwl  (9)

22

1212

22222121
l

wlb
wbwlwl




 (10)

 7

33

2321313

33333232131
l

wlwlb
wbwlwlwl




 (11)

This procedure is called forward substitution.

Consideration of the pattern of calculation introduced

by eqs. (9)-(11) suggests a generalized formula for

forward substitution, useful for computer

programming, as follows:

kk

k

j

jkjk

k
l

wlb

w










1

1

 (12)

Now that we have w, we can use (7) to find x. We see

that we can begin with the row 3 equation and

proceed as follows:

33 wx  (13)

3232223232 xuwxwxux  (14)

3132121113132121 xuxuwxwxuxux 

 (15)

This procedure is called backward substitution.

Consideration of the pattern of calculation introduced

by eqs. (13)-(15) suggests a generalized formula for

forward substitution, useful for computer

programming, as follows:

 8





n

kj

jkjkk xuwx
1

 (16)

where n is the dimension of the matrix.

3. Factorization using Crout algorithm

So we see that if we have L and U, we can solve

A x=b for x. So natural question at this point is: How

to find L and U?

The method of finding L and U from A is called the

LU factorization of A, otherwise known as the LU-

decomposition of A.

To motivate it, let’s first look back at eq. (3).

ULu

uu

lll

ll

l

aaa

aaa

aaa

A























































100

10

1

0

00

23

1312

333231

2221

11

333231

232221

131211

 (3)

Based on eq. (3), we see that the following sequence

of calculations may be performed.

 Row 1 of A and L, across columns of U.

1111 la 

 9

111212121112 / lauula 

111313131113 / lauula 

 Row 2 of A and L, across columns of U.

2121 la 

1221222222122122 ulallula 

22

132123
232322132123

l

ula
uulula




 Row 3 of A and L, across columns of U:

3131 la 

1231323232123132 ulallula 

233213313333332332133133 ululallulula 

The above is convincing evidence that we will be

able to perform the desired factorization. Although

we have done so for only a 3×3 case, the procedure

would also work for a matrix of any dimension.

If you study closely the pattern of calculation, you

can convince yourself that the following generalized

formula can be used in computer programming [2].







1

1

j

s

sjisijij ulal
 (17)

 10

ii

i

s

sjisij

ij
l

ula

u










1

1

 (18)

Use of eqs. (17,18) comprise what is known as the

Crout algorithm.

4. Method of Dolittle
There are some variations on this, for example

factorization where the L matrix diagonal elements

are 1’s and the U matrix diagonal matrix elements are

nonunity, as indicated in eq. (3a).

UL

u

uu

uuu

ll

l

aaa

aaa

aaa

A























































33

2322

131211

3231

21

333231

232221

131211

00

0

1

01

001

(3a)

We can show how to obtain L and U in a fashion

similar to that of Section 3.0.

 Row 1 of A and L, across columns of U.

1111 ua 

1212 ua 

1313 ua 

 11

 Row 2 of A and L, across columns of U.

11

21
21112121

u

a
lula 

1221222222122122 ulauuula 

1321232323132123 ulauuula 

 Row 3 of A and L, across columns of U:

11

31
31113131

u

a
lula 

22

123132
322232123132

u

ula
lulula




233213313333332332133133 ululauuulula 

5. Factorization with Gaussian elimination

Trick: Augment A matrix before you begin the below

algorithm by adding the vector b as the n+1 column.

Then, when you finish the algorithm, you will have

the vector w in the n+1 column.

The algorithm is as follows:

1. Perform Gaussian elimination on A. Let i=1. In

each repetition below, row i is the pivot row and

aii is the pivot.

a. Lji=aji for j=i,…,n.

 12

b. Divide row i by aii.

c. If [i=n, go to 2] else [go to d].

d. Eliminate all aji, j=i+1,…,n. This means to

make all elements directly beneath the pivot

equal to 0 by adding an appropriate multiple of

the pivot row to each row beneath the pivot.

e. i=i+1, go to a.

2. The matrix U is what remains.

Example: Use LU decomposition to solve for x in the

below system of equations.

13

2652

343

19633

431

4321

4321

4321









xxx

xxxx

xxxx

xxxx

In matrix form, the above is:

























































 1

2

3

1

3101

6521

1431

9633

4

3

2

1

x

x

x

x

Form the augmented matrix.

 13



















 13101

26521

31431

19633

Now perform the algorithm.



















 13101

26521

31431

19633

; L= 

















___1

0__1

00_1

0003

Divide first row by 3 and then add multiples of it to

remaining rows so that first element in remaining

rows gets zeroed.























3/20310

3/53310

3/82220

3/13211

; L=


















 __11

0_11

0021

0003

 14

Divide second row by 2; then add multiples of it to

remaining rows so that second element in remaining

rows gets zeroed.























3/61200

3/14200

3/41110

3/13211

; L=


















 _211

0211

0021

0003

Divide third row by 2 and then add multiples of it to

remaining rows so that third element in remaining

rows gets zeroed.





















3/73000

6/12100

3/41110

3/13211

; L=


















 3211

0211

0021

0003

Divide third row by 3.

 wU |

9/71000

6/12100

3/41110

3/13211























 xUw 

Use backwards substitution to get x. This method

eliminates forward substitution step.

[1] 2007 presentation slides from Paul Gray, University of Northern Iowa,

Henry Neeman, University of Oklahoma, Charlie Peck, Earlham College.

[2] Vlach and Singhal, “Computer Methods for Circuit Analysis and

Design,” 2nd edition, 1994.

