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Linearized optimal power flow 
 

1.0 Some introductory comments 

The advantage of the economic dispatch formulation to obtain 

minimum cost allocation of demand to the generation units is that 

it is computationally very fast and reasonably easy to solve. 

However, it suffers from two main drawbacks: 

1. It is somewhat inaccurate due to loss approximation and due 

to implicit assumption that transmission has infinite capacity; 

2. It provides no information about line flows. 

The optimal power flow (OPF) compensates for these drawbacks 

by replacing the one power balance equation with the nodal power 

flow equations. The generator limits are retained as inequality 

constraints, but we add to the inequality constraints the constraints 

on line flows. 

 

We desire to bring network constraints into the problem in order to 

study the influence of transportation (transmission) constraints on 

the most economic distribution of generation. There are a number 

of ways to solve the problem, including the following. 

 Linearized 

 Nonlinear, generalized reduced gradient 

 Nonlinear, penalty function approach. 

In these notes, we will focus on the linearized approach. It is very 

attractive to do so because linear optimization problems may be 

solved using linear programming (LP). LP has been under 

development now for over 50 years, and extremely efficient 

algorithms have been developed so that linear programs, even very 

large ones, may be solved quickly. In addition, there are available 

software packages which make LP solutions relatively easy to 

develop. We will not have time to present LP in this course, but 

there are courses that do (see IE 312 and IE 534). In addition, the 

appendix of Chapter 6 in W&W overviews a method. 
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The OPF has been a tool for many years in the power engineering 

community, and has been effective in solving the following kinds 

of problems (see Section 13.1 of W&W): 

 Minimizing dispatch cost while meeting transmission 

constraints (this is the “classical” OPF) 

 Security-constrained OPF (corrective and preventative) 

 Voltage-var optimization 

 Maximum power transfer 

 Loss minimization 

 

But it is the advent of electricity markets that has made OPF a 

central, essential part of running power systems. There are two 

comments to be made here: 

 Most electricity markets utilize the simultaneous co-optimized 

linear programmed security-constrained OPF (SC-LP-SCOPF). 

We will focus only on the LP-OPF in these notes. However, the 

main difference between LP-SCOPF and LP-OPF is that 

security constraints associated with branch overload are present 

in the former and not in the latter. The main difference between 

SC-LP-SCOPF and LP-SCOPF is that the ancillary services 

(reserves) are co-optimized in the former but not in the latter. 

 Electricity markets may allow both offers (to sell) and bids (to 

buy). We will allow only the former in these notes, but 

introduction of the latter provides nothing conceptually new. 

 

My treatment complements that of Section 13.4 in W&W. 

 

In linearizing the OPF, to maintain simplicity, we will assume that 

each generator makes only a single-price offer. Thus, each unit is 

represented in the objective function by a constant times the 

generation level for that unit. This approach (si), and an alternative 

(si1, si2, si3), are illustrated in Fig. 0 below (similar to Fig. 13.6 in 

W&W).  
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So here is the formal statement of our problem: 

 


 busesgeneratork

gkk Ps  
_

min   
1
 

Subject to: 

'BP     
2
 

 )( ADPB     
3
 

max,max, BBB PPP 
   

4
 

 busesgeneratorkPP gkgk _,0 max,   
5
 

where 

NkPPP dkgkk ,...1,    
6
 

                                                 
1
 k is index on the units. 

2
 These are DC power flow equations to represent the network. However, we must include all nodal  

injections P1,…PN and all angles θ1 …θN in this set of equations. 
3
 These are equation to get line flows. Again, we need to include all angles θ1 …θN in this set of equations. 

4
 These are the limits on the line flows. Notice that there is only one circuit rating, but it must be enforced 

as a limit if the flow is in one direction or in the other. 
5
 These are the limits on the linear cost curve variables. 

6
 This relates variables used in the cost curves (Pkj) to variables used in DC power flow equations (Pk). 
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Before we proceed with formulating this problem, we must make 

one very important observation. In the DC power flow problem, 

we found that if we included an equation for all buses in the 

network, using all angles in the network, that there was a 

dependency in our set of equations, and the matrix was not 

invertable.  

 

Now, however, we will include all N equations for our network 

because we want a Lagrange multiplier for each bus, in order to 

know the locational marginal price (LMP) of energy. This implies 

that we must also include all of the angles as our unknowns. This 

will not create the same problem of matrix singularity that we had 

before because our overall system of equations will include (2), 

(3), and (6). In fact, this system will be under-constrained (there 

will be more unknowns than equations). This is acceptable because  

 we are not trying to solve them (because they are 

underconstrained, there are many solutions);  

 rather, we are trying to minimize a function that is subject to 

them.(with appropriate convexity requirements, there is only one 

solution that will do this). 

 

Therefore we will include in P=B’θ all DC power flow equations, 

one for each node, as a function of all angles in the network.  

 

So be aware that in all of what follows, the vector P includes the 

reference bus injection, the vector θ includes the reference bus 

angle, the matrix B’ is N×N (i.e., it does not have a row and 

column eliminated corresponding to the reference bus), and 

adjacency (node-arc) matrix D is M×N (i.e, we do not eliminate 

the column corresponding to the reference bus).  

 

To solve this problem as a linear program, we need to be able to 

write it in a form that a standard LP solver will handle. This means 

equality and inequality constraints must be written as a function of 

a single vector of unknowns (the “solution vector”).  
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Special note on Lagrange multipliers and dual variables: 

We concluded in our notes on “Basics of Optimization” that: 

“It is important to understand the significance of μ and λ. The 

optimal values of the LaGrangian Multipliers are in fact the rates 

of change of the optimum attainable objective value f(x) with 

respect to changes in the right-hand-side elements of the 

constraints. Economists know these variables as shadow prices or 

marginal values. This information can be used not only to 

investigate changes to the original problem but also to accelerate 

repeat solutions.  The marginal values λj or μk indicate how much 

the objective f(x) would improve if a constraint bj or ck, 

respectively, were changed.” 

 

It is also true that, for LPs: 

The coefficients of the slack variables in the objective 

function expression of the final tableau (dual variables) give 

the improvement in the objective for a unit increase in the 

right-hand-sides of the corresponding constraints. 

Thus we see that the dual variables we were discussing for LPs are 

the same as the Lagrange multipliers. 

 

Special note on Lagrange multipliers for equality constraints:  

We saw in our notes called “LPSimplex1” that equality constraints 

may be converted into two inequality constraints via the following 

approach: 

c)x(h

c)x(h
c)x(h






     

and we may then reverse the sign of the second inequality, 

resulting in: 

c)x(h

c)x(h
c)x(h






     

This means we may include all of our equality constraints h(x)=c 

from our general form (1) in our inequality constraints g(x)< b. 
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However, we should also comment about Lagrange multipliers for 

equality constraints. As stated in [
i
, pg. 116-117],  

“Because an equality constraint is represented as two 

inequality constraints, we will get two dual variables, both 

nonnegative, having the same coefficients but opposite signs. 

Instead of treating these two variables separately, the 

difference can be treated as a variable unrestricted in sign. 

Hence the dual of an equality constraint is a variable 

unrestricted in sign.” 

Reference [i] gives a nice example illustrating this concept. Our 

main “take-away” is that equality constraints also contribute dual 

variables. 

 

Special note on LP solver: The below formulation was developed 

for use in Matlab. However, this formulation may also be 

implemented in CPLEX. To do so, you need to realize that CPLEX 

is quite flexible in handling input constraints. The below example 

illustrates this flexibility: 

 

 

Equality 

constraints 

Less-than 

inequality 

constraint 

Greater-than 

inequality 

constraint 
Less-than, 

greater-than 

inequality 

constraints 

You will find a great deal of additional information on how to use 
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CPLEX at: www.iro.umontreal.ca/~gendron/IFT6551/CPLEX/HTML 

and 
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/IBM_ILOG_CPLEX.  

 

2.0 Formulation of the linearized OPF 

We define the following solution vector for our problem as: 





















B

g

P

P

x

    (1) 

where  

 Pg is the vector of generation increments [Pgk  …]
T
 for all bus k 

that has generation. 

 PB is the vector of line flows [Pb1 Pb2…PbM]
T
, M is # of 

branches. 

 θ is the vector of bus angles, in radians [θ1   θ2…θN], N is # of 

buses. 

 

We want to capture all of our equality constraints in a single matrix 

relation. 

 

There are two kinds of equality constraints: one due to line flows 

 )( ADPB    (2) 

and the other due to injections: 

'BP        (3) 

We rewrite these slightly modified to make them more convenient 

to embed in a single matrix equation. 

0)(  ADPB   (4) 

http://www.iro.umontreal.ca/~gendron/IFT6551/CPLEX/HTML
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/IBM_ILOG_CPLEX
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0'  BP      (5) 

The inequality constraints are straightforward given our definition 

of the solution vector. The only issue here is what to use as 

constraints on the angles? Clearly, all angles must reside between –

π radians and +π radians. Therefore, inequality constraints will be: 



























































max,

max,

max,

min,

B

g

B

g

B

g

P

P

P

P

P

P

 (6) 

 

Example: 

 

We illustrate using an example that has 3 units connected to 3 

different buses in a 4 bus network supplying load at 2 different 

buses. This system is very similar to that of Fig. 13.1 in your text. 

 

The one-line diagram for the example system is given in Fig. 1. 

We will modify the load so that it has a total of 2.1787 per unit (or 

217.87 MW), with 1 per unit load at bus 2 (Pd2=1.0) and 1.1787 

per unit load at bus 3 (Pd3=1.1787). 
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Fig. 1: One line diagram for example system 

 

The offers and corresponding min and max generation limits are as 

follows: 

1111 )( gg PsPK  , 20050 1  gP  

2222 )( gg PsPK  , 1505.37 2  gP  

4444 )( gg PsPK  , 18045 4  gP  

with  

s1=13.07 $/MWhr 

s2=12.11 $/MWhr 

s4=12.54 $/MWhr 

 

A modification is necessary at this point in that we need to change 

the generation variables to per-unit. This is necessary in order to 

bring in the transmission equations, which are in per-unit. Thus, 

the decision variables Pg1, Pg2, and Pg3, are all divided by 100. We 

can compensate for this in terms of obtaining the correct evaluation 

for the cost by multiplying the offers by 100. Thus, we will use: 
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s1=1307 $/puMWhr 

s2=1211 $/puMWhr 

s4=1254 $/puMWhr 

Objective function: We explicitly write the solution vector; then we 

will be able to write the objective function immediately. 

              













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


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

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























4

3

2

1

5

4

3

2

1

4

2

1










B
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B

B

B

g

g

g
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g

P
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P

P

P

P

P

P

P

P
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Now we see that the objective function is given by: 
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 


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


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
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
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Equality constraints: The equality constraints are given in eqs. (4) 

and (5), repeated here for convenience: 

0)(  ADPB   (4) 

0'  BP      (5) 

We will build all of these equality constraints into a matrix form of 

Aeqx=beq. We begin by noting dimensions.  

 Columns: Since the solution vector x is 12×1, Aeq must have 12 

columns in order to pre-multiply x.  

 Rows: Since there are 5 branches, eq. (4) will contribute 5 rows 

to Aeq. Since there are 4 buses, eq. (5) will contribute 4 rows to 

Aeq. So Aeq will have total of 9 rows.  

 

Therefore, the dimensions of Aeq will be 9×12. 

 

We begin with the line flow equations, eq. (4). The D matrix is: 
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























100000

010000

001000

000100

000010

D

 

The node-arc incidence matrix, A, is: 





























0101

1100

0110

001-1

1-001

 A

 

The D×A product required by eq. (4) is then given by: 























































































010010

101000

010100

001010

100010

0101

1100

0110

001-1

1-001

100000

010000

001000

000100

000010

AD

So based on eq. (4) and the solution vector, we can see that these 

elements will occupy the upper right hand corner of Aeq. So that 

will take care of the last 4 columns in the first 5 rows.  

 

But what about the first 8 columns? These are the elements in the 

line flow equations that multiply the variables Pg1, Pg2, Pg4,         

PB1, PB2, PB3, PB4, PB5. Since we do not use the generation variables 

within the line flow equations, the first 3 columns of these top 5 

rows will be zeros. The next 5 columns in these top 5 rows 

(columns 4-8) will also be zeros, except the one element in each of 
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these rows that multiplies the corresponding line flow variable, and 

that element will be -1.  

 

Finally, with respect to these top 5 equations, eq. (4) indicates that 

the right-hand-side will be 0 for each of them. 

 

Thus, we can now write down all elements in the first 5 rows of 

our matrix, as follows: 






































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
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


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
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

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











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






























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
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

_
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P
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Now we need to write the last 4 equations. These are the DC power 

flow equations corresponding to eq. (5). 

 

Again, we must remember that the solution vector contains all 4 

angles, and therefore the DC power flow matrix needs to be a 4×4. 

 

This augmented DC power flow matrix is given below: 
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




















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



2010010

10301010

0102010
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'B

 

So based on eq. (5) and the solution vector, we can see that this 

matrix will occupy the lower right hand side of the Aeq matrix. So 

that will take care of the last 4 columns in the bottom 4 rows. The 

resulting matrix appears as: 















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

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



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
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
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
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




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
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

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



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


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
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
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P

xA

 

 

Once again, we need to consider the first eight columns. Columns 

4-8 correspond to the line flow variables, which do not appear in 

the DC power flow equations, so these will be zero. 
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





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
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
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
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
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

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

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
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
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The first three columns multiply the generation variables Pg1, Pg2, 

and Pg4. However, the DC power flow equations, eq. (5), require 

the negative of the injections for all buses, and the injections are 

the generation minus the load, i.e., Pgk-Pdk.  

 

We do not have load variables Pdk included in the solution vector. 

In addition, we do not have generation for bus 3 (it is just a load 

bus) included in the solution vector. So what do we do? 

 

The answer to this lies in recognizing that the “variables” we do 

not have in the solution vector, Pd1, Pd2, Pd3, Pd4, and Pg3, are not 

(when the electricity market does not allow demand bids) 

“variables” at all! In fact, they are known quantities, constants, 

given by: 

Pd1=0, Pd2=1.0, Pd3=1.1787, Pd4=0, Pg3=0 

Since these are constants, they can go to the right-hand side. 

But with what sign? Eq. (5)  

0'  BP      (5) 
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indicates that the injection, if modeled on the left-hand-side, 

should be negative, i.e., on the left-hand side, Pgk-Pdk should be 

negative. So we should see on the left-hand-side –Pgk+Pdk. But now 

we will take the load term onto the right-hand-side by subtracting 

it from both sides.  

 

Thus, we see that the load term should show up on the right-hand-

side as a negative number. This same logic also shows us that the 

elements multiplying the generation terms in the Aeq matrix should 

be -1. 

 

So we are now prepared to complete the matrix relation for the 

equality constraints. 
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Inequality constraints:  

 

The inequality constraints are simple, as given in what follows: 
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Solution by Matlab: The code for solving this linear program using 

Matlab is given below: 
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%Load is system load plus losses 

Load=2.1787; 

 

%Build objective function vector. 

c=[1307 1211 1254 0 0 0 0 0 0 0 0 0]'; 

 

%Build Aeq matrix for equality constraints.  

Aeq=[0  0  0  -1 0 0  0  0   10   0   0 -10; 

     0  0  0  0 -1 0  0  0   10 -10   0   0; 

     0  0  0  0 0 -1  0  0    0  10  -10  0; 

     0  0  0  0 0 0  -1  0    0   0  -10 10; 

     0  0  0  0 0 0   0 -1   10   0  -10  0; 

    -1  0  0  0 0 0   0  0   30 -10  -10 -10 

     0 -1  0  0 0 0   0  0  -10  20  -10  0; 

     0  0  0  0 0 0   0  0  -10 -10   30 -10; 

     0  0 -1  0 0 0   0  0  -10   0  -10 20;]; 

 

%Build right-hand side of equality constraint.  

beq=zeros(9,1); 

beq(7)=-1; 

beq(8)=-1.1787; 

 

%Build upper and lower bounds on decision variables. 

LB=[.50   .375  .45     -500 -500 -500 -500 -500  -pi -pi -pi -pi]'; 

UB=[2.00  1.50  1.80     500  500  500  500  500   pi  pi  pi  pi]'; 

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=LINPROG(c,A,b,Aeq,beq,LB,UB); 
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The solution vector x is given by:  
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,    Z=2705.8 

 

The solution is provided on the one-line diagram of Fig. 4. 

 

PB5=0.4197 
PB1 = 

-0.0152 

PB4 = 

0.4348 

PB3 

=0.3242 

PB2=0.0955 

Pg1=0.5pu 

Pd3=1.1787pu 

Pd2=1pu 

1 2 

3 4 

Pg2=1.2287pu 

Pg4=0.45pu 

 
Fig. 4: Result in terms of generation levels and flows 
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One can easily check to see that the power is conserved at the 

buses. 

 

The objective function that Matlab provides, is given above as 

Z=2705.8 $/hr.  

 

It is of interest to compare this solution with a solution obtained 

from an economic dispatch (implying no representation of 

transmission). This problem will be  

421 125412111307  min ggg PPP     

Subject to: 

1787.2421  ggg PPP  
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This is a LP that we can use Matlab or CPLEX to solve; however, 

it is actually a rather trivial solution. You can see that Pg1 and Pg4 

are the more expensive units, and so we will take as little of those 

units as possible. Therefore we will assume  

Pg1=0.5 

Pg4=0.45 

 This means that Pg2= 2.1787-0.95=1.2287. The fact that this value 

of Pg2 is feasible (between its limits) means that this must be the 

answer to the problem, since this is the maximum amount of the 

cheapest unit that we can have. 

 

Compare this to the solution we obtained in our LPOPF, and you 

see it is the same!!! 
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Should we expect the solutions to be the same, given the network 

representation in the LOPF approach? The answer is NO, if the 

flows are at the branch capacities. 

 

But if the flows are all within the branch capacities (and we are not 

representing losses), then the transmission system has no impact on 

the dispatch, and in this case, the solution will be identical to the 

solution that we obtained in the economic dispatch scenario. 

 

The LPOPF solution is for the case where all flows are within their 

branch capacities, since we have modeled all branch capacities to 

be 500 pu. In per-unit, this is effectively infinite branch capacity. 

 

BASE CASE: 

Now we will investigate the Lagrange multipliers for this loading 

level, assuming infinite capacity lines. These Lagrange multipliers, 

which are the same as the dual variables, are given in Table 2. 

 

Table 2: Lagrange multipliers for Pd2=1.0, Pd3=1.1787  

and infinite transmission capacity ($/per unit-hr) 

Equality constraints Lower bounds Upper bounds 

Equation Value*10
3
 Variable value variable value 

PB1    -0.0000 Pg1 96.0000 Pg1     0.0000    

PB2    -0.0000 Pg2 0 Pg2     0.0000 

PB3     0.0000 Pg4 43.0000 Pg4     0.0000        

PB4    -0.0000 PB1 0 PB1     0.0000 

PB5    -0.0000 PB2 0 PB2     0.0000 

P1     1.2110 PB3 0 PB3     0.0000 

P2     1.2110 PB4 0 PB4     0.0000 

P3     1.2110 PB5 0 PB5     0.0000 

P4     1.2110 θ1 0 θ1     0.0000 

  θ2 0 θ2     0.0000 

  θ3 0 θ3     0.0000 

  θ4 0 θ4     0.0000 
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Lagrange multipliers on the last four equality constraints are very 

interesting to us, since they give the improvement in the objective 

function if we increase the right-hand-side of the corresponding 

equation by 1 unit. These are the so-called nodal prices, i.e., the 

LMPs, given in $/per unit-hr. We see that the numbers are all 

$1211/per unit-hr, and if we divide this by the power base of 100 

MVA, we get $12.11/MW-hr. 

 

We also see that all Lagrange multipliers on the lower bounds are 

all zero, with the exception of the ones on Pg1 and Pg4, which are 

96 and 43, respectively, with units of $/per unit-hr. Converting to 

$/MW-hr, these values are 0.96 and 0.43, respectively, indicating 

the amount of improvement we can expect if we increase the 

corresponding right-hand-side of these inequalities by 1 unit. Since 

these equations look like, for example, -Pg1<-0.5, an increase in the 

right-hand-side corresponds to a decrease in the lower limit. Thus, 

for Pg1, if we move the lower limit from 50 MW to 49 MW, we can 

expect to improve the objective function by 96 cents per hour. 

 

Lagrange multipliers for all other lower bounds, and for all upper 

bounds, are zero, since none of the other inequality constraints are 

binding. 

 

CASE 1: Pd2=1.01, Pd3=1.1787, and infinite transmission capacity 

 

We now make a slight modification, by changing the loading of 

bus 2 from 1.0 to 1.01, an increase of .01 per unit or 1 MW. The 

changes necessary to the Matlab code are: 
%Build right-hand side of equality constraint. It will be vector of zeros 

%except for element in first row, which is load-sum of minimum 

generation 

beq=zeros(9,1); 

beq(7)=-1.01; 

beq(8)=-1.1787; 

The solution is almost the same as in the base case, except for the 

objective function now evaluates to Z=2717.9. The previous 
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objective function was Z=2705.8, an increase of 12.1 $/hr, 

confirming our understanding of the meaning of the nodal prices. 

 

We find that a 1 MW increase in the loading anywhere in this 

network has the same effect on the objective function, to increase it 

by 12.1$/hr. Thus, nodal prices have no locational variation in this 

network. Any network with infinite transmission capacity will 

have this attribute (assuming no losses), since the transmission 

system effectively makes the entire system look like a single bus.  

 

Case 2: Pd2=1.0, Pd3=1.1787, and 0.3 capacity constraint on PB3 

In this case, we maintain loading at the same levels as the base 

case, where we saw the flows as in Fig. 5: 

 

PB5=0.4197 
PB1 = 

-0.0152 

PB4 = 

0.4348 

PB3 

=0.3242 

PB2=0.0955 

Pg1=0.5pu 

Pd3=1.1787pu 

Pd2=1pu 

1 2 

3 4 

Pg2=1.2287pu 

Pg4=0.45pu 

 
Fig. 5: Base case flows 

We observe the flow on branch 3, PB3=0.342. So let’s consider that 

this branch has capacity of 0.3. This means that upper and lower 

bounds on PB3 should be changed from -500,500 to -0.3, 0.3. The 

resulting solution is given in Fig. 6: 
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PB5=0.4197 
PB1 = 

-0.0393 

PB4 = 

0.4590 

PB3 =0.3 
PB2=0.1197 

Pg1=0.5pu 

Pd3=1.1787pu 

Pd2=1pu 

1 2 

3 4 

Pg2=1.1803pu 

Pg4=0.4984pu 

 
Fig. 6: Cases 2 flows 

In comparing the previous two diagrams, we observe that  

 The flow on branch 3 is constrained to 0.3 as desired. 

 The flows all over the network have changed. 

 The generation levels at buses 2 and 4 have changed. 

Thus, the activation of a transmission constraint has changed the 

dispatch. This will affect the energy prices! This conclusion can be 

verified by looking at the Lagrange multipliers, given in the table 

below. 
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Table 3: Lagrange multipliers for Pd2=1.0, Pd3=1.1787  

and infinite transmission capacity except for and  

0.3 capacity constraint on PB3 ($/per unit-hr) 

Equality constraints Lower bounds Upper bounds 

Equation Value*10
3
 Variable value variable value 

PB1    -0.0000 Pg1   63.7500 Pg1     0.0000 

PB2    -0.0000 Pg2     0.0000 Pg2     0.0000 

PB3     0.0860 Pg4     0.0000 Pg4     0.0000 

PB4     0.0000 PB1     0.0000 PB1     0.0000 

PB5    -0.0000 PB2     0.0000 PB2     0.0000 

P1     1.2432 PB3     0.0000 PB3   86.0000 

P2     1.2110 PB4     0.0000 PB4     0.0000 

P3     1.2647 PB5     0.0000 PB5     0.0000 

P4     1.2540 θ1     0.0000 θ1     0.0000 

  θ2     0.0000 θ2     0.0000 

  θ3     0.0000 θ3     0.0000 

  θ4     0.0000 θ4     0.0000 

 

Some comments about the Lagrange multipliers in Table 3: 

1. Generation limits: We still see a non-zero Lagrange multiplier 

on the Pg1 lower limit, as before, but the Lagrange multiplier on 

the Pg4 lower limit has become zero, reflecting that Pg4 had to 

increase and come off of its lower limit to compensate for the 

decrease in Pg2 necessary to redispatch around the PB3 

constraint. 

2. Branch limits: The Lagrange multiplier on the PB3 upper bound 

is 86, and after dividing by 100 to change from per-unit to MW, 

it is 0.86 $/MW-hr, reflecting the improvement in objective 

function that can be obtained from increasing the PB3 branch 

limit by 1 MW (from 0.30 per-unit to 0.31 per-unit). 

3. Branch flows: The Lagrange multiplier on the PB3 flow (the PB3 

equality constraint) is 0.086*10
3
=86, and after dividing by 100 

to change from per-unit to MW, it is 0.86 $/MW-hr, reflecting 

the improvement in objective function that can be obtained from 
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increasing the flow in this branch by 1 MW (from 0.30 per-unit 

to 0.31 per-unit). Observe that the Lagrange multiplier on the 

flow is the same as the Lagrange multiplier on the branch limit. 

4. Nodal prices: The Lagrange multipliers on the equality 

constraints corresponding to the 4 nodes are the nodal prices. 

Without transmission constraints, these prices were all the same, 

at 12.11 $/MW-hr, a price set entirely by the generator at bus 2 

since it was the bus 2 generator that responded to any load 

change. But now they are all different, with only bus 2 price at 

12.11 $/MW-hr. This difference reflects that, because of the 

transmission constraint, a load increase at one bus will incur a 

different cost than a load increase at another bus. 

 

Comment #4 is worth investigating further. Let’s increase the load 

at the highest price bus, bus #3, from 1.1787 to 1.1887 per unit, an 

increase of 1 MW. The resulting dispatch and flows are shown in 

Fig. 7. In order to gain intuition into what has happened, we have 

repeated Fig. 6 just below it so as to provide a convenient 

comparison. 
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PB5=0.4222 
PB1 = 

-0.0443 

PB4 = 

0.4665 

PB3 =0.3 
PB2=0.1222 

Pg1=0.5pu 

Pd3=1.1887pu 

Pd2=1pu 

1 2 

3 4 

Pg2=1.1778pu 

Pg4=0.5109pu 

 
Fig. 7: Flows for case 2 with 1 MW increase in Pd3 

 

 

PB5=0.4197 
PB1 = 

-0.0393 

PB4 = 

0.4590 

PB3 =0.3 
PB2=0.1197 

Pg1=0.5pu 

Pd3=1.1787pu 

Pd2=1pu 

1 2 

3 4 

Pg2=1.1803pu 

Pg4=0.4984pu 

 
Fig. 6: Case 1 flows 

 

The comparison shows that in order to supply an additional MW at 

bus 3, the generation levels of 2 different units had to be modified. 

Specifically, Unit 2 was decreased from 1.1803 to 1.1778, a 

decrease of 0.0025 per unit (0.25 MW) and Unit 4 was increased 

from 0.4984 per unit to 0.5109 per unit, an increase of 0.0125 
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(1.25 MW). Thus, Unit 4 was increased enough to supply the 

increased load at bus 3 and the decreased generation at bus 2. 

 

Question: Why did we not just increase Unit 2 or increase Unit 4 

by 1 MW? 

 

Answer: Because the resulting flow on branch 3 would exceed its 

capacity!!! 

 

In fact, it is not possible to supply additional load at bus 3 with 

only a single unit increase. We will always have to compensate for 

the load AND redispatch to compensate for the additional flow on 

the branch 3. As a result, the nodal price at bus 3 is a function of 

the generation costs at those buses that are used in the particular 

redispatch that achieves the minimum cost. Although we only used 

two different units here, there could be situations where more than 

two units must be redispatched to supply an additional MW at a 

bus when congestion is present. How many units must be 

redispatched depends on 

 

 the bids of the units; 

 the location of the units relative to the congested line (or lines). 

 

It will find the minimum cost redispatch, and so it will tend to 

utilize the less expensive units. However, it will also tend to use 

the units that have to move the least amount relative to the solution 

before the additional MW was added. Thus, it could be the case 

that a unit bid at $13 gets moved up instead of a unit bid at $12 if 

the first unit has location which required that it only move 1.1 MW 

and the second unit has a location which requires that it move 1.5 

MW. 
                                                 

[
i
]  S.Zionts, “Linear and Integer Programming,” Prentice-Hall, 1974. 


