HW# 5 SOLUTIONS

The LaGrangian of the problem is given by -

$$\mathcal{L} = x_1^2 + 4x_2^2 - \lambda(x_1 + x_2 - 4).$$

Hence, the necessary conditions of optimality are given by —

$$\frac{\partial \mathcal{L}}{\partial x_1} = 0 = 2x_1 - \lambda$$

$$\frac{\partial \mathcal{L}}{\partial x_2} = 0 = 8x_2 - \lambda$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 = -x_1 - x_2 + 4.$$

$$\Rightarrow \begin{bmatrix} 2 & 0 & -1 \\ 0 & 8 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -4 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ \lambda \end{bmatrix} = \begin{bmatrix} 3.2 \\ 0.8 \\ 6.4 \end{bmatrix}$$

The extent value

13 :

$$f(x) = x_1^2 + 4x_2^2$$

= 3,22+4(.7)2=12.8

First, we restate the inequality constraints to be in the form: $g_i \leq 0$

$$g_1(\mathbf{x}) = 4 - x_1 - x_2 \le 0$$

 $g_2(\mathbf{x}) = x_1 - 3 \le 0$
 $g_3(\mathbf{x}) = x_2 - 5$

The Langrangian of the problem is —

$$\mathcal{L} = x_1^2 + x_2^2 + \beta_1(4 - x_1 - x_2) + \beta_2(x_1 - 3) + \beta_3(x_2 - 5).$$

Our guess is that the solution will be on the line defined by —

$$x_1 + x_2 - 4 = 0.$$

Problem 2 (Continued)

In other wards, we will guess that g, is briding (which means $\beta_1 > 0$) and g_2 and g_3 are non-briding (which mean $\beta_2 = \beta_3 = 0$). The necessary optimality edits

are $\frac{22}{2x_1} = 2x_1 - \beta_1 = 0$ $\frac{23}{2x_2} = 2x_2 - \beta_1 = 0$ $\frac{22}{2x_2} = x_1 + x_2 - 4 = 0$

 $\Rightarrow \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 2.0 \\ 2.0 \\ 4.0 \end{bmatrix}$

Note B, > 0 which is required. What about gr and go?

 $g_2(x) = x_1 - 3 = 2 - 3 = -1 \le 0$ OK! $g_3(x) = x_2 - 5 = 2 - 5 = -3 \le 0$ OK!

So we have found the SOLUTION!

The LaGrangian is given by -

$$\mathcal{L} = x_1^2 + 3x_2^2 + 4x_3^2 + \lambda(x_1 + x_2 + x_3 - 5)$$

 $+\beta_1(x_1-3)+\beta_2(x_2-2)+\beta_3(x_2+x_3-5).$

Hence, the necessary conditions of optimality are given by
$$0 = \frac{\partial \mathcal{L}}{\partial x} = 2x_1 - \lambda + \beta_1$$

$$0 = \frac{\partial \mathcal{L}}{\partial x_1}$$

$$0 = \frac{\partial \mathcal{L}}{\partial x_2}$$

$$\frac{\partial x_1}{\partial x_2}$$

$$0 = \frac{\partial \mathcal{L}}{\partial x_2}$$

$$0 = \frac{\partial \mathcal{L}}{\partial x_2}$$

$$0 = \frac{\partial \mathcal{L}}{\partial x_3}$$

 $0 = \frac{\partial \mathcal{L}}{\partial \lambda}$

$$0 = \frac{\partial \mathcal{L}}{\partial x_2}$$

$$0 = \frac{\partial \mathcal{L}}{\partial x_3}$$

$$rac{\partial \mathcal{L}}{\partial x_2}$$
 $rac{\partial \mathcal{L}}{\partial x_3}$

We shall start by ignoring the inequality constraints, i.e., set $\beta_1=\beta_2=\beta_3=$

$$= 8x_2 - \lambda + \beta_3$$
$$= x_1 + x_2 + x_3$$

$$0 = \frac{32}{\partial \lambda} = x_1$$

$$0 = \beta_1(x_1 - 3), \beta_1 \geq 0$$

$$0 = \beta_2(x_2 - 2), \beta_2 \geq 0$$

$$0 = \beta_3(x_2 + x_3 - 5), \beta_3 \geq 0.$$

 $= 6x_2 - \lambda + \beta_2 + \beta_3$

The resulting equations are —

Substituting into the last equation, we get — $\frac{\lambda}{2} + \frac{\lambda}{6} + \frac{\lambda}{8} = 5$

which implies that
$$\lambda = 6.3158$$
. In turn, this implies that $x_1 = 3.158$, $x_2 = 1.053$, $x_3 = .79$.

From this solution, it is clear that the first inequality constraint is violated. As a result we set $x_1 = 3$, while keeping $\beta_2 = \beta_3 = 0$. The resulting

lated. As a result we set $x_1 = 3$, while keeping $\beta_2 = \beta_3 = 0$. The resulting equations are -

value of λ , one obtains the solution $x_2 = 1.14, x_3 = .88, \beta_1 = .87 > 0.$

This solution meets all the necessary conditions of optimality.

essary conditions of optimality.

In the above example we started by ignoring the inequality constraints. This led to a solution in which one of the constraints is violated. As a result we guessed that the optimal solutions are on the boundary of the violated constraint. Effectively this converted that into a new equality constraint. Our guess was correct, in the sense that the resulting solution met the nec-

This implies that $\frac{\lambda}{6} + \frac{\lambda}{8} = 2$. Consequently, $\lambda = 6.87$. Substituting this last