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Fast Power Flow Methods 
1.0 Introduction 

 

What we have learned so far is the so-called “full-

Newton-Raphson” (NR) power flow algorithm. The 

NR algorithm is perhaps the most robust algorithm in 

the sense that it is most likely to obtain a solution for 

“tough” problems, which are problems that start from 

guesses that are not close to their solution. For 

example, solving a large power flow case from a 

“flat” start is usually considered to be a “tough” 

problem, and as a result, it is best to do that with a 

NR. But NR is slow! 

 

Often, the problem is not so “tough,” and in that case, 

the so-called fast decoupled (FDC) algorithm is also 

effective in getting the solution, there is no loss of 

accuracy, and it is much faster. A common situation 

where FDC is attractive is when you have solved the 

case, and then you want to re-solve the case (using a 

“hot” start) to analyze the effect of some not-so-

dramatic change. Here, the fact that the problem is 

not so “tough” calls for relaxing solution algorithm 

robustness.  
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There are situations where speed is paramount, but 

accuracy is not. For example, in on-line analysis of 

50,000 contingencies, we may want to only filter the 

contingencies that have potential to result in 

problems, and then perform full analysis on those. In 

such cases, the DC power flow is appropriate. 

Although DC power flow is fast and robust, it is not 

very accurate. 

 

Solving the power flow equations can be 

computationally intensive. In these notes, we review 

FDC and DC power flow methods. You can see the 

relation between the NR and these two in Table 1, in 

terms of speed, accuracy, and solution robustness. 

Table 1 
Solution method Speed Accuracy Solution robustness 

Newton-Raphson Slow Accurate Robust 

Fast decoupled Fast Accurate Less robust 

DC Very fast Approximate Robust 

 

2.0 The fast decoupled power flow  

 

The Jacobian matrix,  
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has a special characteristic in that the elements of the 

off-diagonal submatrices JQθ and JPV are usually very 

small relative to the elements of the diagonal 

submatrices JPθ and JQV (In fact, we have seen that in 

the first iteration of a flat start, when we assume all 

angles are 0, the elements of the off-diagonal 

matrices are all 0.) This is because every term in the 

expressions of the off-diagonal blocks are (a) 

multiplied by a “G” or (b) multiplied by a “sin”. The 

overall terms are small because, for transmission: 

 conductance G tends to be small and  

 angular differences across circuits tend to be small, 

resulting in small “sin” terms. 

These observations are consistent with our 

understanding that P is not very sensitive to voltage 

magnitude (i.e., small 
k
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), and Q is 

not very sensitive to angle (i.e., small 
k

j xQ
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We can take advantage of these observations in the 

following way. Instead of using the exact Jacobian, 

let’s assume that all elements of the off-diagonal 

submatrices are in fact 0 and remain 0 throughout 

the entire NR algorithm. In other words, let’s just use 

the following Jacobian: 
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Note what this does to our update equation: 
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Substituting (2) into (3), we have: 
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Performing the indicated matrix multiplication, we 

obtain: 
)()()( jjjP

PJ 
    (5) 

)()()( jjjQV
QVJ      (6) 

 

Equations (5) and (6) have the following remarkable 

feature: real power equations are decoupled from the 

voltage magnitudes, and reactive power equations 

are decoupled from the angles. The implication is 

that either one of equations (5) and (6) may be solved 

independent of the other one! 
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Our power flow algorithm remains exactly as it was before, with the only 

exception being in Step 4. 

1. Specify: 

 All admittance data (series Y, charging capacitance, transformer taps, 

& shunts) 

 Pd and Qd for all buses (whether PV, PQ, or swing) 

 Pg and |V| for all PV buses 

 |V| for swing bus, with =0  

2. Set the iteration counter j=0. Use one of the following to guess the initial 

solution. 

 Flat Start: Vk=1.0 0 for all buses. 

 Hot Start: Use the solution to a previously solved case for this 

network. 

3. Compute the mismatch vector for x
(j)

, denoted as f(x). In what follows, 

we denote elements of the mismatch vector as Pk and Qk 

corresponding to the real and reactive power mismatch, respectively, for 

the k
th
 bus (which would not be the k

th
 element of the mismatch vector 

for two reasons: one reason pertains to the swing bus and the other reason 

to the fact that for type PQ buses, there are two equations per bus and not 

one). This computation will also result in all necessary calculated real 

and reactive power injections. Perform the following stopping criterion 

tests: 

If |Pk|< P for all type PQ & PV buses and 

If ||Qk|< Q for all type PQ buses,  

Then go to step 5 

Else 

Go to step 4. 

4. Find an improved solution as follows: 

 Evaluate the Jacobian J at x
(j)

. Denote this Jacobian as J
(j)

 

 Solve for x
(j)

 by applying LU decomposition to: 

 

                  
)()()( jjjP

PJ 
 

        
)()()( jjjQV

QVJ    

 Compute the updated solution vector as x
(j+1)

= x
(j)

+ x
(j)

. 

 Return to step 3 with j=j+1. 

5. Stop. 

 

This is only 

change in 

algorithm!! 



 6 

How to see that the FDC algorithm is faster than NR? 

 In NR, step 4 computes  
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The Jacobian has dimension (2N-1-NG). 

 In FDC, JPθ has dimension (N-1), and JQV has 

dimension (N-NG).  

For example, if we have 20000 buses and 2000 

generators, then the Jacobian in the NR has 

dimension of 37,999, but the FDC algorithm 

Jacobians will have dimensions of 19,999 and 

18,000, respectively. 

 

It is known that the speed of LU decomposition is a 

function, approximately linear, of the number of 

elements. The number of elements in NR is 

(37,999)2=1.44E9, whereas in FDC it is 

(19,999)2+(18,000)2=7.24E8. Therefore, FDC will be 

about twice as fast per iteration as NR.  

 

However, because the Jacobian gives the “direction” 

to move the solution in each iteration, we do suffer a 

loss in accuracy per iteration, and therefore we may 

need more iterations to obtain the final solution. 
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Given these two opposing forces (less time per 

iteration and more iterations), it is usually the case 

that FDC is between 1.5 and 2 times faster than NR. 

 

But what about accuracy? We have said that the FDC 

algorithm will be less accurate per iteration. Does 

that imply that it will provide a less accurate solution 

once it stops iterating?  

 

The answer to this question depends on the stopping 

criterion. Note that in the above FDC algorithm, the 

stopping criterion is given in Step 3, and it is exactly 

the same as the stopping criterion used in the NR. 

That is, both algorithms are computing the mismatch 

as kk PxP )(  and kk QxQ )( , and )(xPk  and )(xQk  are 

computed with the full real and reactive power flow 

equations, respectively, in both algorithms. 

 

It is very important to recognize that the 

approximation in FDC algorithm is applied to the 

Jacobian matrix but NOT the power flow equations 

used to compute the elements of the mismatch vector. 

 

The conclusion that we can make here is that A 

POWER FLOW SOLUTION OBTAINED BY FDC 

IS JUST AS ACCURATE AS A POWER FLOW 

SOLUTION OBTAINED BY NR. 
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3.0 FDC algorithm: enhancements 

 

We may simplify the FDC algorithm still further, 

making it still faster (but less accurate) per iteration 

by working with the expressions of the Jacobian 

elements for JPθ and JQV.  

 

Consider the terms
P

jkJ .  If we neglect G and under 

small angle approximation (so that sin(θj-θk)≈0 and 

cos(θj-θk)≈1): 
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Now consider the terms 
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Again, using small Gjk and small angle 

approximation, the above is 

2
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We will now make use of an assumption that the 

voltage profile is “flat,” i.e., |Vk|=|Vj|. Then (9) 

becomes: 
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Now consider the summation in the curly brackets.  

jNjjjjjjjj

N

k

jk BBBBBBB  



 ...... 1,1,21

1
 (11) 

Recall that from definition of Y-bus elements: 

 k≠j: Bjk=-bjk bjk=-Bjk 

 k=j:  

  Bjj=bj1+bj2+…+bj,j-1+bj+bj,j+1+…+bjn 

and using the relation from the first bullet: 

    =-Bj1-Bj2-…-Bj,j-1+bj-Bj,j+1-…-BjN   (12) 

where bj is sum of all shunt susceptance  

at bus j. 

 

Substituting this last expression (12) for Bjj into (11), 

we obtain: 
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Substituting (13) into (10), we obtain: 
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We could perform the subtraction in (14) using (12) 

to see that the term is just the negative of the sum of 

all non-shunt branches connected to bus j. 

 

However, bj is typically very small compared to Bjj so 

that neglecting bj is quite accurate, resulting in: 

jjj
j

jP
jj BV
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J
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Likewise, under assumptions of flat voltage profile 

and small angle, we can show that: 
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Summarizing eqs. (7), (15), (16), and (17), we have: 
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Noting that the Jacobian matrix has no equations or 

variables for bus 1 (the swing bus), we define the B’ 

matrix as: 
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where this matrix may be obtained from the Y-bus by 

simply stripping off the first row and first column 

(assuming the swing bus is #1) and taking the 

imaginary part of all elements. This matrix is 

appropriate for writing the JPθ terms of (7) and (15) in 

compact notation, as given by (19) below: 

   VBVJ
P 


     (19) 

where 
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Observe that B’ is pre-multiplied and post-multiplied 

by [V] to account for the product of two voltages in 

(7) and (15). 

 

Now, regarding the JQV terms… 



 12 

If we could assume that we would have reactive 

power flow equations for all buses in the network, 

then we would use B’ for the JQV terms as well. But 

we do not have reactive power flow equations for the 

PV buses, only for the PQ buses.  

 

To account for this, we need to eliminate the rows 

and columns corresponding to type PV buses from B’ 

and from [V]. 

 

Using the numbering scheme 1,…,NG, as being the 

voltage control buses, and bus Ng+1,…,N as being 

the type PQ buses, then eliminate row and column 

number 1,…,Ng-1 from B’ and [V]. 

 

Let’s refer to the resulting matrices as B’’ and [V’’]. 

Then (16) and (17) become:  

 BVJ
QV        (21) 

Summarizing, our decoupled pf equations are: 

   VBVJ
P 


     (19) 

 BVJ
QV        (21) 

 

 

Now let’s look at our correction formula… 
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Recalling eqs. (5) and (6): 
)()()( jjjP

PJ 
    (5) 

)()()( jjjQV
QVJ      (6) 

and substituting (19, 21) into (5-6), we obtain: 

    )()( jj
PVBV       (22) 

  )()( jj
QVBV      (23) 

Multiplying both sides by -1 results in: 

    )()( jj
PVBV       (24) 

  )()( jj
QVBV      (25) 

 

There are two more changes which prove useful in 

terms of capturing additional computational 

efficiency (more speed).  

The first change is an approximation: let the second 

[V] in eq. (24) be the identity matrix based on the 

assumption that we have a “flat” voltage profile (all 

the same) and that all voltages are close to 1.0. 

 

Making this change in eq. (24), our correction 

equations become: 

  )()( jj
PBV        (26) 

  )()( jj
QVBV      (25) 
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The second change is to pre-multiply (26) by [V]-1 

and (25) by [V’’]-1. This change results in  

  )(1)( jj
PVB 


     (27) 

      )(1)( jj
QVVB 


    (28) 

Considering (27), since [V] is diagonal, [V]-1 is  
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Multiplication of (29) by the real power mismatch 

vector gives the right-hand-side of (27): 
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A similar thing can be done for the reactive power 

correction equation (28): 
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Multiplication of (31) by the reactive power 

mismatch vector gives the right-hand-side of (28): 
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Based on (30) and (32), eqs. (27) and (28) become: 
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where the notation of the far right-hand-side in (33) 

and (34) indicates the right-hand-sides of (31) and 

(32). 

 

Two comments remain: 
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1. Where’s the speed-up? We still retain the speed up 

of the previous FDC algorithm, which is due to the 

fact that the LU-decomposition is faster per 

iteration as a result of the decoupling (and 

corresponding reduction in total matrix elements). 

The method described here provides additional 

speed-up from two sources: 

 The B’-matrix need not be reevaluated in each 

iteration, and the B’’ matrix is formed by simply 

deleting appropriate rows and columns from B’, 

and so we save the time of evaluating Jacobian 

matrix elements. 

 Because the left-hand-side of eq. (33) is 

constant, we need perform LU-decomposition 

for this equation only once. Given the L and U 

factors, we need to only perform forward and 

backward substitution for each different right-

hand-side. We are not quite as fortunate with the 

reactive power correction equation, (34), 

because there we must re-factorize each time the 

list of voltage control buses changes. 

 

2. Algorithm: I indicated the power flow algorithm is 

exactly the same as in the NR, but there is a minor 

difference in that Steps 3 and 4 (page 5 above) can 

be alternated, as follows: 
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a. Step 3a: Compute mismatch of P
~

  using 
)1( 


j

  and 
)1( 


j

V . 

b. Step 4a: Solve eq. (33) for 
)( j

 . 

c. Step 3b: Compute mismatch of Q
~

   using 
)( j

  and 
)1( 


j

V . 

d. Step 4b: Solve eq. (34) for 
)( j

V .  

e. Step 3c: Perform stopping criterion tests: 

If |Pk|< P for all type PQ & PV buses and 

If |Qk|< Q for all type PQ buses,  

Then go to step 5 

Else 
)()()1( jjj
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Return to step 3 with j=j+1. 

The reason why this improves speed is because the 

update on voltages are done using a “step” based on 

the most recent update on angles, and this tends to 

reduce the necessary number of iterations. 
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4.0 DC Power Flow 

 

Return to equation (33), repeated here for 

convenience: 
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Now assume all voltages are 1.0. Then eq. (33) 

becomes: 
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So, equation (35) becomes: 

PB
j
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This equation, when solved just once (j=1) for Δθ(1), 

and with a “flat-start” solution, implies that 

θ=0+Δθ(1)=Δθ(1), and, if we assume that this solution 

is the correct one, then in other words,  

PPPPB  )0(    (37) 

where P(0) are the real power flow equations for 

buses 2 to N evaluated at θ(0)=0 (i.e., the flat start), 

and P are the real power flow injections into each bus 

2 to N. Therefore, 

PB         (38) 

This gives all of the angles for the network with a 

single solution to a set of linear equations. Then, the 

real power flows can be computed with 

)( jkkjkj BP       (39) 

which is the power flowing across a circuit connected 

between buses k and j under conditions of (a) 

neglecting resistance, (b) small angle approximation, 

and (c) all voltage magnitudes are 1.0. 

 

 


