
 1

Fast Power Flow Methods
1.0 Introduction

What we have learned so far is the so-called “full-

Newton-Raphson” (NR) power flow algorithm. The

NR algorithm is perhaps the most robust algorithm in

the sense that it is most likely to obtain a solution for

“tough” problems, which are problems that start from

guesses that are not close to their solution. For

example, solving a large power flow case from a

“flat” start is usually considered to be a “tough”

problem, and as a result, it is best to do that with a

NR. But NR is slow!

Often, the problem is not so “tough,” and in that case,

the so-called fast decoupled (FDC) algorithm is also

effective in getting the solution, there is no loss of

accuracy, and it is much faster. A common situation

where FDC is attractive is when you have solved the

case, and then you want to re-solve the case (using a

“hot” start) to analyze the effect of some not-so-

dramatic change. Here, the fact that the problem is

not so “tough” calls for relaxing solution algorithm

robustness.

 2

There are situations where speed is paramount, but

accuracy is not. For example, in on-line analysis of

50,000 contingencies, we may want to only filter the

contingencies that have potential to result in

problems, and then perform full analysis on those. In

such cases, the DC power flow is appropriate.

Although DC power flow is fast and robust, it is not

very accurate.

Solving the power flow equations can be

computationally intensive. In these notes, we review

FDC and DC power flow methods. You can see the

relation between the NR and these two in Table 1, in

terms of speed, accuracy, and solution robustness.

Table 1
Solution method Speed Accuracy Solution robustness

Newton-Raphson Slow Accurate Robust

Fast decoupled Fast Accurate Less robust

DC Very fast Approximate Robust

2.0 The fast decoupled power flow

The Jacobian matrix,

QVQ

PVP

JJ

JJ
J

 (1)

 3

has a special characteristic in that the elements of the

off-diagonal submatrices JQθ and JPV are usually very

small relative to the elements of the diagonal

submatrices JPθ and JQV (In fact, we have seen that in

the first iteration of a flat start, when we assume all

angles are 0, the elements of the off-diagonal

matrices are all 0.) This is because every term in the

expressions of the off-diagonal blocks are (a)

multiplied by a “G” or (b) multiplied by a “sin”. The

overall terms are small because, for transmission:

 conductance G tends to be small and

 angular differences across circuits tend to be small,

resulting in small “sin” terms.

These observations are consistent with our

understanding that P is not very sensitive to voltage

magnitude (i.e., small
k

j

V

xP

)(

 and
j

j

V

xP

)(

), and Q is

not very sensitive to angle (i.e., small
k

j xQ

)(
 and

k

j xQ

)(
).

We can take advantage of these observations in the

following way. Instead of using the exact Jacobian,

let’s assume that all elements of the off-diagonal

submatrices are in fact 0 and remain 0 throughout

the entire NR algorithm. In other words, let’s just use

the following Jacobian:

 4

QVT

P

J

J
J

0

0

 (2)

Note what this does to our update equation:

Q

P

xJ
jj)()(

 (3)

Substituting (2) into (3), we have:
)()(

)(

0

0

jj

Q

P

V
J

J
j

QVT

P

 (4)

Performing the indicated matrix multiplication, we

obtain:
)()()(jjjP

PJ
 (5)

)()()(jjjQV
QVJ (6)

Equations (5) and (6) have the following remarkable

feature: real power equations are decoupled from the

voltage magnitudes, and reactive power equations

are decoupled from the angles. The implication is

that either one of equations (5) and (6) may be solved

independent of the other one!

 5

Our power flow algorithm remains exactly as it was before, with the only

exception being in Step 4.

1. Specify:

 All admittance data (series Y, charging capacitance, transformer taps,

& shunts)

 Pd and Qd for all buses (whether PV, PQ, or swing)

 Pg and |V| for all PV buses

 |V| for swing bus, with =0

2. Set the iteration counter j=0. Use one of the following to guess the initial

solution.

 Flat Start: Vk=1.0 0 for all buses.

 Hot Start: Use the solution to a previously solved case for this

network.

3. Compute the mismatch vector for x
(j)

, denoted as f(x). In what follows,

we denote elements of the mismatch vector as Pk and Qk

corresponding to the real and reactive power mismatch, respectively, for

the k
th
 bus (which would not be the k

th
 element of the mismatch vector

for two reasons: one reason pertains to the swing bus and the other reason

to the fact that for type PQ buses, there are two equations per bus and not

one). This computation will also result in all necessary calculated real

and reactive power injections. Perform the following stopping criterion

tests:

If |Pk|< P for all type PQ & PV buses and

If ||Qk|< Q for all type PQ buses,

Then go to step 5

Else

Go to step 4.

4. Find an improved solution as follows:

 Evaluate the Jacobian J at x
(j)

. Denote this Jacobian as J
(j)

 Solve for x
(j)

 by applying LU decomposition to:

)()()(jjjP

PJ

)()()(jjjQV

QVJ

 Compute the updated solution vector as x
(j+1)

= x
(j)

+ x
(j)

.

 Return to step 3 with j=j+1.

5. Stop.

This is only

change in

algorithm!!

 6

How to see that the FDC algorithm is faster than NR?

 In NR, step 4 computes

Q

P

xJ
jj)()(

The Jacobian has dimension (2N-1-NG).

 In FDC, JPθ has dimension (N-1), and JQV has

dimension (N-NG).

For example, if we have 20000 buses and 2000

generators, then the Jacobian in the NR has

dimension of 37,999, but the FDC algorithm

Jacobians will have dimensions of 19,999 and

18,000, respectively.

It is known that the speed of LU decomposition is a

function, approximately linear, of the number of

elements. The number of elements in NR is

(37,999)2=1.44E9, whereas in FDC it is

(19,999)2+(18,000)2=7.24E8. Therefore, FDC will be

about twice as fast per iteration as NR.

However, because the Jacobian gives the “direction”

to move the solution in each iteration, we do suffer a

loss in accuracy per iteration, and therefore we may

need more iterations to obtain the final solution.

 7

Given these two opposing forces (less time per

iteration and more iterations), it is usually the case

that FDC is between 1.5 and 2 times faster than NR.

But what about accuracy? We have said that the FDC

algorithm will be less accurate per iteration. Does

that imply that it will provide a less accurate solution

once it stops iterating?

The answer to this question depends on the stopping

criterion. Note that in the above FDC algorithm, the

stopping criterion is given in Step 3, and it is exactly

the same as the stopping criterion used in the NR.

That is, both algorithms are computing the mismatch

as kk PxP)(and kk QxQ)(, and)(xPk and)(xQk are

computed with the full real and reactive power flow

equations, respectively, in both algorithms.

It is very important to recognize that the

approximation in FDC algorithm is applied to the

Jacobian matrix but NOT the power flow equations

used to compute the elements of the mismatch vector.

The conclusion that we can make here is that A

POWER FLOW SOLUTION OBTAINED BY FDC

IS JUST AS ACCURATE AS A POWER FLOW

SOLUTION OBTAINED BY NR.

 8

3.0 FDC algorithm: enhancements

We may simplify the FDC algorithm still further,

making it still faster (but less accurate) per iteration

by working with the expressions of the Jacobian

elements for JPθ and JQV.

Consider the terms
P

jkJ . If we neglect G and under

small angle approximation (so that sin(θj-θk)≈0 and

cos(θj-θk)≈1):

jkkj

kjjkkjjkkj
k

jP
jk

BVV

BGVV
xP

J

)cos()sin(

)(

(7)

Now consider the terms
P

jjJ .

 2

1

2

)cos()sin(

)(
)(

jjjkjjkkjjk

N

k

kj

jjjj
j

jP
jj

VBBGVV

VBxQ
xP

J

(8)

Again, using small Gjk and small angle

approximation, the above is

2

1

)(
jjjjk

N

k

kj
j

jP
jj VBBVV

xP
J

 (9)

We will now make use of an assumption that the

voltage profile is “flat,” i.e., |Vk|=|Vj|. Then (9)

becomes:

 9

jj

N

k

jkjjjjjk

N

k

j

jjjjk

N

k

jj
j

jP
jj

BBVBVBV

VBBVV
xP

J

1

22

1

2

2

1

)(

 (10)

Now consider the summation in the curly brackets.

jNjjjjjjjj

N

k

jk BBBBBBB

 1,1,21

1
 (11)

Recall that from definition of Y-bus elements:

 k≠j: Bjk=-bjk bjk=-Bjk

 k=j:

 Bjj=bj1+bj2+…+bj,j-1+bj+bj,j+1+…+bjn

and using the relation from the first bullet:

 =-Bj1-Bj2-…-Bj,j-1+bj-Bj,j+1-…-BjN (12)

where bj is sum of all shunt susceptance

at bus j.

Substituting this last expression (12) for Bjj into (11),

we obtain:

j

jNjj

jNjjjjjjj

jjjj

N

k

jk

b

BB

BBbBBB

BBBB

...

......

...

1,

1,1,21

1,21

1

(13)

Substituting (13) into (10), we obtain:

 jjjj
j

jP
jj BbV

xP
J

2)(

 (14)

 10

We could perform the subtraction in (14) using (12)

to see that the term is just the negative of the sum of

all non-shunt branches connected to bus j.

However, bj is typically very small compared to Bjj so

that neglecting bj is quite accurate, resulting in:

jjj
j

jP
jj BV

xP
J

2)(

 (15)

Likewise, under assumptions of flat voltage profile

and small angle, we can show that:

jkj

kjjkkjjkj
k

jQV
jk

BV

BGV
V

xQ
J

)cos()sin(

)(

(16)

jjj

jjj

j

j

j

jQV
jj

BV

VB
V

xQ

V

xQ
J

)()(

 (17)

Summarizing eqs. (7), (15), (16), and (17), we have:

jkkj
k

jP
jk BVV

xP
J

)(
 (7)

jjj
j

jP
jj BV

xP
J

2)(

 (15)

jkj
k

jQV
jk BV

V

xQ
J

)(
 (16)

jjj

j

jQV
jj BV

V

xQ
J

)(

 (17)

 11

Noting that the Jacobian matrix has no equations or

variables for bus 1 (the swing bus), we define the B’

matrix as:

nnnn

n

n

BBB

BBB

BBB

B

...

...

...

...

'

32

33332

22322

 (18)

where this matrix may be obtained from the Y-bus by

simply stripping off the first row and first column

(assuming the swing bus is #1) and taking the

imaginary part of all elements. This matrix is

appropriate for writing the JPθ terms of (7) and (15) in

compact notation, as given by (19) below:

 VBVJ
P

 (19)

where

nV

V

V

V

00

00

3

2

 (20)

Observe that B’ is pre-multiplied and post-multiplied

by [V] to account for the product of two voltages in

(7) and (15).

Now, regarding the JQV terms…

 12

If we could assume that we would have reactive

power flow equations for all buses in the network,

then we would use B’ for the JQV terms as well. But

we do not have reactive power flow equations for the

PV buses, only for the PQ buses.

To account for this, we need to eliminate the rows

and columns corresponding to type PV buses from B’

and from [V].

Using the numbering scheme 1,…,NG, as being the

voltage control buses, and bus Ng+1,…,N as being

the type PQ buses, then eliminate row and column

number 1,…,Ng-1 from B’ and [V].

Let’s refer to the resulting matrices as B’’ and [V’’].

Then (16) and (17) become:

 BVJ
QV (21)

Summarizing, our decoupled pf equations are:

 VBVJ
P

 (19)

 BVJ
QV (21)

Now let’s look at our correction formula…

 13

Recalling eqs. (5) and (6):
)()()(jjjP

PJ
 (5)

)()()(jjjQV
QVJ (6)

and substituting (19, 21) into (5-6), we obtain:

)()(jj
PVBV (22)

)()(jj
QVBV (23)

Multiplying both sides by -1 results in:

)()(jj
PVBV (24)

)()(jj
QVBV (25)

There are two more changes which prove useful in

terms of capturing additional computational

efficiency (more speed).

The first change is an approximation: let the second

[V] in eq. (24) be the identity matrix based on the

assumption that we have a “flat” voltage profile (all

the same) and that all voltages are close to 1.0.

Making this change in eq. (24), our correction

equations become:

)()(jj
PBV (26)

)()(jj
QVBV (25)

 14

The second change is to pre-multiply (26) by [V]-1

and (25) by [V’’]-1. This change results in

)(1)(jj
PVB

 (27)

)(1)(jj
QVVB

 (28)

Considering (27), since [V] is diagonal, [V]-1 is

nV

V

V

V

1
00

1

00
1

3

2

1

 (29)

Multiplication of (29) by the real power mismatch

vector gives the right-hand-side of (27):

n

nn

n V

P

V

P

V

P

P

P

P

V

V

V

3

3

2

2

3

2

3

2

1
00

1

00
1

 (30)

A similar thing can be done for the reactive power

correction equation (28):

 15

nV

V

V

V

1
00

1

00
1

2N

1N

1

g

g

 (31)

Multiplication of (31) by the reactive power

mismatch vector gives the right-hand-side of (28):

n

n

N

N

N

N

n

N

N

n

N

N

V

Q

V

Q

V

Q

Q

Q

Q

V

V

V

g

g

g

g

g

g

g

g

2

2

1

1

2

1

2

1

1
00

1

00
1

 (32)

Based on (30) and (32), eqs. (27) and (28) become:

 16

P

V

P

V

P

V

P

B

j

n

n

j ~

)(

3

3

2

2

)(

 (33)

Q

V

Q

V

Q

V

Q

VB

j

n

n

N

N

N

N

j

g

g

g

g

~

)(

2

2

1

1

)(

 (34)

where the notation of the far right-hand-side in (33)

and (34) indicates the right-hand-sides of (31) and

(32).

Two comments remain:

 17

1. Where’s the speed-up? We still retain the speed up

of the previous FDC algorithm, which is due to the

fact that the LU-decomposition is faster per

iteration as a result of the decoupling (and

corresponding reduction in total matrix elements).

The method described here provides additional

speed-up from two sources:

 The B’-matrix need not be reevaluated in each

iteration, and the B’’ matrix is formed by simply

deleting appropriate rows and columns from B’,

and so we save the time of evaluating Jacobian

matrix elements.

 Because the left-hand-side of eq. (33) is

constant, we need perform LU-decomposition

for this equation only once. Given the L and U

factors, we need to only perform forward and

backward substitution for each different right-

hand-side. We are not quite as fortunate with the

reactive power correction equation, (34),

because there we must re-factorize each time the

list of voltage control buses changes.

2. Algorithm: I indicated the power flow algorithm is

exactly the same as in the NR, but there is a minor

difference in that Steps 3 and 4 (page 5 above) can

be alternated, as follows:

 18

a. Step 3a: Compute mismatch of P
~

 using
)1(

j

 and
)1(

j

V .

b. Step 4a: Solve eq. (33) for
)(j

 .

c. Step 3b: Compute mismatch of Q
~

 using
)(j

 and
)1(

j

V .

d. Step 4b: Solve eq. (34) for
)(j

V .

e. Step 3c: Perform stopping criterion tests:

If |Pk|< P for all type PQ & PV buses and

If |Qk|< Q for all type PQ buses,

Then go to step 5

Else
)()()1(jjj

)()()1(jjj

VVV

Return to step 3 with j=j+1.

The reason why this improves speed is because the

update on voltages are done using a “step” based on

the most recent update on angles, and this tends to

reduce the necessary number of iterations.

 19

4.0 DC Power Flow

Return to equation (33), repeated here for

convenience:

P

V

P

V

P

V

P

B

j

n

n

j ~
'

)(

3

3

2

2

)(

 (33)

Now assume all voltages are 1.0. Then eq. (33)

becomes:

P

P

P

P

P

P

P

B

j

n

j

n

j

)(

3

2

)(

3

2

)(

0.1

0.1

0.1

 (35)

So, equation (35) becomes:

PB
j

)(

 (36)

 20

This equation, when solved just once (j=1) for Δθ(1),

and with a “flat-start” solution, implies that

θ=0+Δθ(1)=Δθ(1), and, if we assume that this solution

is the correct one, then in other words,

PPPPB)0((37)

where P(0) are the real power flow equations for

buses 2 to N evaluated at θ(0)=0 (i.e., the flat start),

and P are the real power flow injections into each bus

2 to N. Therefore,

PB (38)

This gives all of the angles for the network with a

single solution to a set of linear equations. Then, the

real power flows can be computed with

)(jkkjkj BP (39)

which is the power flowing across a circuit connected

between buses k and j under conditions of (a)

neglecting resistance, (b) small angle approximation,

and (c) all voltage magnitudes are 1.0.

