
Exam 2, EE 553, Fall 2012, Dr. McCalley 
Closed books, Closed notes, calculator permitted, 75-minute time limit. 

Answer Question 6 on the exam paper. Otherwise, do all work on separate paper. 

Turn in that paper together with this exam. 

 
1. (23 pts) Two interconnected identical control areas having a single generating unit in each 

are characterized by the following information: 

Machine base: 300 MVA 

Frequency sensitivity of load: D=1.0 pu on nominal base 

Nominal load: 250 MVA 

Droop setting R=0.05 pu on machine base 

a. Compute the frequency sensitivity D and the droop setting R, all on a 500 MVA base.  

Solution:  

5.0
500

250
)0.1( D  083.0

300

500
)05.0( R  

b. For this part of the problem, assume that the machines in both control areas are on 

governor control but the secondary AGC loop is disabled.  

i. The following equation can be used to obtain steady-state frequency: 
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control area 1 following a step load increase of 20 MW in control area 1.  
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ii. Compute the new steady-state generation level, in MW, for the machine in 

control area 1 and the machine in control area 2. 

Solution:  
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  The machine in control area 2 is the same size with the same droop, therefore  

∆Pm2∞=∆Pm1∞=9.6 MW. 

iii. Why is the total generation change in the interconnection not equal to the 

increase in load of ∆PL=20MW?  

Solution:  

∆Pm1∞+∆Pm2∞=9.6+9.6=19.2 which is less than 20, so no it is not equal because 

the load is sensitive to the frequency decline and has decreased by 0.8 MW. 

NAME______________________________________________________ 



iv. The change in tie-line flow ∆Ptie=∆P12 is -0.02 pu on a 500 MW base. 

Compute the area control error for both control areas if the frequency bias for 

both control areas are B=12.5 pu MW/pu freq. Note that ACEi=-∆Pint,i-βi∆ω∞ 

where ∆Pint,i is the change in net export for control area i.  

Solution:  

In pu, ACE1=-[-0.02]-12.5[-0.0016]=0.04 

In MW, ACE1=(0.04)(500)=20.0 

In pu, ACE2=-[0.02]-12.5[-0.0016]=0. 

c. Now generalize the above results for a two-area system by completing the following 

table with either – (for decrease), + (for increase), or 0 (no change). All cells should 

be filled. The ∆ω and ∆P12 values are steady-state values following governor action 

but before secondary control action. 

∆ω ∆P12 Load change Resulting secondary control action 

∆Pgen1 ∆Pgen2 

- - ∆PL1 + 
+ 0 

  ∆PL2 0 

+ + ∆PL1 - 
- 0 

  ∆PL2 0 

- + ∆PL1 0 
0 + 

  ∆PL2 + 

+ - ∆PL1 0 
0 - 

  ∆PL2 - 
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2. (8 pts) In the Laplace domain, the change in mechanical power into a generation unit is given 

by 
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Derive the steady-state value of ΔPm for a step-change in load of “L”, i.e., ΔPL(t)=Lu(t) 

where u(t) is the unit step function occurring at t=0. 

Solution: 

Using 
s

L
sPL  )( , and applying the final value theorem, we have: 
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3. (16 pts) The following optimization problem is solved by branch and bound:  

maximize z=5x1+ 8x2 

subject to 

x1+x2≤ 6,   5x1+9x2 ≤ 45,   x1 ≥ 0,   x2 ≥ 0, x1 and x2 integer 

 

a. The solution to the first step is z*=41.25, x1*=2.25, x2*=3.75. Write down four problems 

you could solve in the second step of the branch and bound algorithm. 

b. For each one of the below situations, assume that the only thing you know is that one 

feasible solution is z*=39, x1*=3, x2*=3. 

i. Someone tells you that they have identified a certain node in the branch and 

bound algorithm for which the corresponding linear program provides a solution 

of z*=41, x1*=1.8, x2*=4. Would you branch further from this node? Why or 

why not?  

ii. Someone tells you that they have identified a certain node in the branch and 

bound algorithm for which the corresponding linear program is infeasible. Would 

you branch further from this node? Why or why not? 

iii. Someone tells you that they have identified a certain node in the branch and 

bound algorithm for which the corresponding linear program provides a solution 

of z*=37, x1*=1, x2*=4. Would you branch further from this node? Why or why 

not? 

iv. Someone tells you that they have identified a certain node in the branch and 

bound algorithm for which the corresponding linear program provides a solution 

of z*=40, x1*=0, x2*=5. Would you branch further from this node? Why or why 

not? 
c. Solution:  

a.                              PROBLEM 1     

maximize z=5x1+ 8x2 

subject to 

x1+x2≤ 6,   5x1+9x2 ≤ 45,   x1 ≥ 0,   x2 ≥ 0, x1 and x2 integer 

x1>3 

 

         PROBLEM 2 

maximize z=5x1+ 8x2 



subject to 

x1+x2≤ 6,   5x1+9x2 ≤ 45,   x1 ≥ 0,   x2 ≥ 0, x1 and x2 integer 

x1<2 

 

                             PROBLEM 3     

maximize z=5x1+ 8x2 

subject to 

x1+x2≤ 6,   5x1+9x2 ≤ 45,   x1 ≥ 0,   x2 ≥ 0, x1 and x2 integer 

x2>4 

 

         PROBLEM 4 

maximize z=5x1+ 8x2 

subject to 

x1+x2≤ 6,   5x1+9x2 ≤ 45,   x1 ≥ 0,   x2 ≥ 0, x1 and x2 integer 

x2<3 

 
 

b.  

i. Yes, we should branch further because the objective, 41, is better than the best bound obtained so far, 39.  

ii. No, we should not branch further; because this solution is infeasible, it cannot be made feasible by 

adding constraints, and so further branching will just yield more infeasible linear programs.  

iii. No, we should not branch further, for two reasons (either of which is enough to justify the answer). 

First, the given solution is feasible, therefore further branching (adding constraints), cannot improve it and 

remain feasible. Second, the objective, 37, is not as good as our best, 39, so further branching (adding 

constraints), cannot do better than 37 and so cannot do better than 39. 

iv. No, we should not branch further because the given solution is feasible, therefore further branching 

(adding constraints) cannot improve it and remain feasible.  

 

4. (16 pts) A two-unit system is dispatched so that Pg1=220 MW and Pg2=66.6 MW. The cost-

rate functions for the two units are given as  
2
1111 01.02.870)( ggg PPPC  ,  2

2222 02.05.990)( ggg PPPC   

An approximate loss expression is given as  222 500002.0)(  GGL PPP . 

How would you redispatch the two units in order to lower the overall production costs? Show 

computations to justify your answer. 

Solution: 

You would lower Pg1 and raise Pg2 since these actions will decrease the product L1IC(Pg1) 

and increase the product  L2(IC2). Two sets of computations are provided below to justify this 

answer. 
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The optimality criterion is  2453.12164.12*0067.1?)6.12(1
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5. (24 pts) Define the following for a two-generator, three bus, three line system. Buses 1 and 2 

have generation but no load. Bus 3 has load only. 

Pi
0
 pre-contingency injection at bus i 

Pi
k
 post-contingency injection at bus i for outage of circuit k. 

Pi
min

 minimum injection at bus i 

Pi
max

 maximum injection at bus i 

al,i the shift factor for circuit l, given injection at bus i, when all circuits are in 

service. It is used to obtain the flow on circuit l given injections at all 

buses i according to iil

i
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dl,k the line outage distribution factor for circuit l, given outage of circuit k. 

αl,k,i  the effective shift factor, given by ikki ada ,, l, . It is used to obtain the 

flow on circuit l following outage of circuit k and given injections at all 

buses i according to iikl

i
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CMax

lf  the maximum continuous flow on circuit l 
EMax

lf  the maximum emergency flow on circuit l 

)( 0

111 PfC  and )( 0

222 PfC   are cost-rate functions for generators at buses 1  

and 2, respectively.  

  Ki The 10 minute maximum change in Pi, i=1,2. 

Using only the nomenclature given above, 

a. Provide a formulation for the optimal power flow (OPF). 

Solution:  

 min )()( 0

22

0

1121 PfPfCC   

 subject to 

P1+P2=P3 
max0min

iii PPP   for i=1,2,3. 



 
max

3

1

0

,

max C

l

i

iil

C

l fPaf  


  for l =1,2,3 

b. Provide a formulation for the preventive-security-constrained OPF. 

Solution:  
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c. Provide a formulation for the corrective-security-constrained OPF, where we assume 

corrective actions must be limited to how much the controls can move in 10 minutes. 

Solution:  
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6. (13 pts) True-False: 

a. _F_ If load for a certain system consisted of 95% induction motors, it would make sense to set the 

frequency sensitivity coefficient D=0 in AGC analysis. 

b. _T_ A control area that always increases its generation in response to its ACE when the 

interconnection steady-state frequency is below 60 Hz will have a good CPS1 score. 

c. _F_ A reasonable range for heat rates in units of MBTU/MWhr, is 2.0-7.0. 

d. _T_ The lower the heat rate, the more efficient the unit. 

e. _T_ A generator cost function, in $/hr, is convex if its slope is non-decreasing with increasing 

generation. 

f. _F_ Modeling of combined cycle units in our LPOPF formulation is not possible because their cost 

functions are convex. 

g. _F_ Modeling of combined cycle units in our LPOPF formulation is not possible because piecewise 

linear approximations cannot be used for nonconvex cost curves. 

h. _T_ The exact cost curve for any steam unit with multiple valves is nonconvex. 

i. _T_ Assuming identical cost curve representation, running a fixed demand LPOPF with infinite 

transmission capacity results in the same dispatch obtained from a traditional economic dispatch 

calculation where transmission is not represented. 

j. _T_ A lossless LPOPF formulation with unconstrained transmission will always result in all identical 

nodal prices throughout the network. 

k. _T_ In an LPOPF formulation, the nodal price for a bus is the Lagrange multiplier corresponding to the 

equality constraint on the bus’s MW injection.  

l. _F_ One efficient method of solving the 24-hour unit commitment problem that yields a very good but 

approximate solution when start-up costs are high is to solve a security-constrained preventive-

corrective optimal power flow with all units connected at each individual hour, and then for that hour, 

shut down the units that are at their lower limits. 

m. _F_ The day-ahead markets for most ISOs use only the security-constrained unit commitment in 

obtaining the locational marginal prices for each hour of the given 24 hour period. 

 


