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Treatment of Uncertainty in Long-Term Planning 

1 Introduction 

The problem that the long-term planner is faced with solving is an 

inherently uncertain one because it addresses the future. In making 

use of software which implements generation expansion planning 

(GEP), transmission expansion planning (TEP), or co-optimized 

expansion planning (CEP), it is necessary to make many 

assumptions on what that future will be. Examples of attributes 

characterizing the future about which the planner must make 

assumptions include: 

• Cost of money (discount rate) 

• The rate at which technology investment cost will change 

(maturation rate) 

• Fuel costs forecast 

• Demand forecast 

• Plant retirement dates and salvage value 

• Policy changes (e.g., changes in production tax credit and/or 

renewable portfolio) 

• Renewable resources (e.g., wind and solar resources) 

• Distributed generation growth 

 

In these notes, we describe different ways to represent uncertainty 

and different ways to model it within optimization models such as 

GEP, TEP, and CEP. 

2 Representing uncertainty 

One can represent uncertainty by identifying the range within which 

one may reasonably expect each attribute to lie. For example, we 

could specify the price of natural gas in one of the following ways: 

 

Time-independent:  

• Point value: For all years, it will be $4.5/MMBTU; 
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• Range: For all years, it lies between $3/MMBTU and 

$6/MMBTU; 

• Distribution: For all years, it is normally distributed with an 

expected value of $4.5/MMBTU and a standard deviation of 

$0.5/MMBTU; as shown in Figure 1 below, this means it will fall 

within the μ±3σ=4.5±1.5=(3,6) with probability 0.997, i.e., there 

is only a 0.003 probability of finding it outside the range of (3,6).  

 
Figure 1: Confidence intervals for a normally distributed variable 

 

Time-dependent:  

• Point value: The year 1 value will be $4.5/MMBTU and will 

grow at 2% per year. 

• Range: The year 1 value will fall within a range of $3/MMBTU 

to $6/MMBTU, with the central value of $4.5/MMBTU growing 

at 2% per year; the lower bound growing at 1% per year and each 

the upper bound growing at 3% per year. 

• Distribution: The year 1 expected value will be $4.5/MMBTU 

with a $0.5 standard deviation, the expected value will grow 2% 

per year and the standard deviation will grow 5% per year. A plot 

of this uncertainty would appear as in Figure 2. One observes in 

this figure how (a) the expected price will increase with time, and 

(b) the uncertainty will also increase with time. 
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Figure 2: Specification of uncertainty in natural gas price 
 

 

Aside: We may also apply advanced forecasting techniques to 

provide future estimates of expected value and uncertainty. Some 

forecasting methods that are commonly used for this purpose 

include regression, time series forecasting (ARIMA models and 

exponential smoothing models), or neural networks and other 

machine learning methods. These are worthy topics of study for 

uncertainty representation, but we do not have time to address them. 

3 Two classes of uncertainty 

We may group uncertainty into two different classes. 

 

• Global uncertainties are those for which different values 

produce significantly different expansion planning results. 

Examples of global uncertainties are those related to the 

implementation of emissions policies, very large changes in 

demand growth, public rejection of a certain type of resource 

(nuclear) and its consequential unavailability, or an innovation 

that results in dramatic change in a technology’s investment 

costs. A set of realizations on global uncertainties are 

appropriately thought of as a future (some literature will use the 

term scenario with this). It is often difficult to forecast global 
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uncertainties because they may have occurred rarely or never, so 

that there is no historical information that can be used in making 

statistical inferences about their future occurrence. 

• Local uncertainties can be parameterized by probability 

distributions or uncertainty sets based on historical data. 

Examples of local uncertainties include small variations in near-

term load growth, investment costs, and fuel prices. 

 

Figure 3 illustrates conceptualization of a single uncertainty in terms 

of being represented globally and locally. 

 
Figure 3: Conceptualization of a single uncertainty 

characterized globally and locally 

 

Figure 4 illustrates conceptualization of multiple uncertainties in 

terms of being represented globally and locally. Each large red 

arrow represents a different set of realizations on several global 

uncertainties, i.e., they are different futures. The grey cones 

represent local uncertainty within each future. The pie charts are 

generation portfolios corresponding to the GEP solution resulting 

from consideration of the given uncertainties. 
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Figure 4: Conceptualization of multiple uncertainties 

characterized globally and locally 

4 Methods of handling uncertainty within optimization 

There are at least five ways of handling uncertainty within 

expansion planning optimization. 

• Scenario analysis 

• Monte Carlo simulation 

• Stochastic programming 

• Adaptation: core approach 

• Robust optimization 

 

We will describe each of these in the following sections. 

5 Scenario analysis 

In the simplest of scenario analyses, each uncertain attribute may 

take on two or more point values. A scenario is defined as a set of 

realizations on each uncertain attribute. An example from a 2008 
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study done by MISO is illustrative1. This example was taken from 

[1]. Table 1 shows an uncertainty matrix which provides six point 

values (low, med/low, reference, med/high, and high) for each of 

several uncertainties. The uncertainties are classified into capital 

costs, load, fuel prices, environmental allowance cost, economic 

variables, and siting limitations. 

 

Table 1: Uncertainty matrix 

 
Five different scenarios were created by selecting specific values for 

the various uncertainties.  The five different scenarios were named 

Reference, DOE 20% Wind Mandate, DOE 30% Wind Mandate, 

Environmental, and Regulatory Limitation. The specific choices of 

each uncertain variable for each scenario is listed in the scenario 

matrix of Table 2 where the entries are L (low), R (reference), M 

(not sure), and H (high). 

 
1 This was a part of the so-called Joint-Coordinated System Plan (JCSP) studies. Many other analyses were done for the 

JCSP studies than what are shown here, and certainly, since then, MISO has evolved this procedure in many other studies. 
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Table 2: Scenario Matrix 

 
A generation expansion plan was created, for each Eastern 

Interconnection region (see Figure 5), and for each scenario, using a 

15% planning reserve margin. 

 

 
Figure 5: Eastern Interconnection Regions used in Study 

 

Two transmission designs were developed, one under the reference 

scenario and one under the DOE 20% wind mandate scenario. They 

are illustrated below in Figure 6 and Figure 7. 

Midwest ISO - using Ventyx, 

Velocity Suite © 2008 
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Figure 6: Transmission design created for Reference Scenario 

 

 

 

Figure 7: Transmission design created for 20% DOE scenario 
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A robustness testing was performed by evaluating each of the two 

transmission designs under various scenarios. They were looking for 

the transmission plan that performs best under the various scenarios. 

 

Four scenarios were used for the robustness testing: Reference, 

Scenario 2 (20% Wind), Scenario 3 (30% wind), and Scenario 4 

(Environmental). The scenario for which the design was developed 

was not used in the robustness testing.  

 

To evaluate a design under a particular scenario, a set of 

performance measures were identified, as follows: 

• Long-term cost 

• Short-term cost 

• Benefit/Cost ratio 

• Reliability 

• Environmental Impacts (carbon emissions) 

• Land use criteria 

• Local economic impacts 

• National security criteria 

• Others 

Each performance measure was scored on a basis of 1-10 (with the 

higher score being better) and then a total score was computed as the 

sum of individual scores. Figure 8 shows the result for the 

transmission design performed under the reference scenario. Figure 

9 shows the result for the transmission design performed under 

scenario 2. The results indicate that the scenario designed under the 

reference scenario is more robust to the different futures. 

 

MISO has certainly evolved the approach used in this 2008 study, 

but the basic approach of identifying scenarios, each as a particular 

choice of a global uncertain parameter, is still a foundational part of 

their MTEP procedure. We return to this approach in Section 8 

where we will compare the latest MISO-MTEP scenario analysis 

approach to a recently developed optimization approach. 
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Figure 8: Scoring for Transmission Design Performed Under 

Reference Scenario 
 

 

Figure 9: Scoring for Transmission Design Performed Under 

Scenario 2 
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6 Monte Carlo Simulation  

One method of modeling parameter uncertainty is to represent each 

uncertain parameter x1, x2,… with its numerical distribution. Then 

repeatedly draw values from each distribution, and for each draw, 

make the desired computation using those values. If the parameter 

values are drawn as a function of their probabilities, as indicated by 

the distribution, then the computed reliability indices will also form 

a distribution, from which we may compute their statistics, e.g., 

mean and variance. The process is illustrated in Figure 10, where the 

loop must be implemented many times before the output converges 

to a steady-state distribution. 

 

Figure 10: Monte Carlo Simulation 

The draws (left-hand box in Figure 10) can be made by discretizing 

the probability density function (PDF) of each uncertain parameter, 

with each interval of each PDF assigned to an interval on [0,1] in 

proportion to its probability (area under the PDF curve for the 

discrete interval). Then a random draw on [0,1], which is then 

converted to the uncertain parameter value through the assignment, 

reflects the desired PDF of the uncertain parameter. Figure 11 

illustrates the process, where the uncertain parameter is load, 

assumed to be normally distributed about an expected value. 
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x1→ 

fX1(x1) 

 

Figure 11: Drawing Parameter Values According to a PDF 

This process is called Monte Carlo simulation (MCS) and is almost 

always an available option for making complex computations 

involving uncertain parameters. An advantage to MCS is that it is 

conceptually simple to implement.  

A disadvantage is that it can be computationally intensive if  

• the function (second box in Figure 10) is computationally 

intensive, because the function must be executed a large number 

of times to establish enough data to converge to a statistically 

valid output sample.  

• the number of uncertain parameters is large;  

It can be especially computationally intensive if both are true, i.e., if 

the function is computationally intensive and there are a large 

number of uncertain parameters. 

A particularly useful approach is called “Guided MCS.” There is a 

rich literature associated with application of Guided MCS to the 

development of operating rules, i.e., the rules associated with 

security-economy decision-making in real-time operations; a 

representative sample of this literature is [2, 3, 4, 5, 6]. This 

application is illustrated in Figure 12. 
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Figure 12: Guided Monte Carlo Simulation 

This particular application of Guided MCS for developing operating 

rules is not an expansion planning application. It is presented here 

because it is a method of treating uncertainty that could be applied 

to expansion planning if there is information about the investment 

solution that could be used to weight the uncertainty space. 

 

As observed in Figure 12, there are two main steps to Guided MCS: 

(A) Database Generation and (B) Statistical analysis. These steps are 

further broken down into sub-steps as indicated below. 

1. Database Generation 

1. Guided MCS 

2. Optimal power flow 

3. Contingency analysis 

2. Statistical analysis 

4. Estimate reliability indices (LOLE, LOLP, risk, …) 

5. Perform statistical analysis on output data to develop the 

operating rules. 

Our interest is the use of step 1 to “guide” the MCS; the implication 

here is that we will use insight to focus simulations on the part of the 

decision space of most interest. In the case of generating operating 

rules, this part of the decision space is the boundary (based on 
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reliability criteria) between acceptable and unacceptable operating 

conditions. This is illustrated in Figure 13. 

 

Figure 13: Illustration of boundary between acceptable and 

unacceptable conditions 
 

The “guiding” part of the MCS is also referred to in the literature as 

importance sampling. The idea in importance sampling is that the 

selection of operating points is done based on a revised distribution, 

where the revision is made so as to bias the selection towards the 

desired conditions. This idea is illustrated in Figure 14 below. 

 
Figure 14: Guided MCS (importance sampling) 
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This could be applied to expansion planning by biasing the selection 

of uncertainty realizations (more general term than “conditions”) to 

focus more heavily on those realizations that motivate investments. 

7 Stochastic Programming -  

These notes are adapted from notes developed by J. Beasley of 

Brunel University, West London [7].  

 

Stochastic programming can be separated into two distinct classes of 

problems: those with probabilistic constraints and problems with 

recourse.  

7.1 Chance-constrained programming 

Problems with probabilistic constraints are those that are posed with 

constraints that must be met with a certain probability. An example 

is provided below. 

 

 

1 2

1 2

1 1 2 2

max  ( ) 3

s.t.   x 16

Pr 4

f x x x

x

a x a x 

= +

+ =

+  
 

where a1 and a2 are uncertain and described by distributions; γ is a 

probability level chosen by the decision-maker to be acceptable to 

the particular situation to which the problem applies.  

 

This problem containing probabilistic constraints has been described 

as a chance-constrained optimization (CCO) problem, and its 

solution is referred to as chance-constrained programming; there is a 

rich literature related to it. Interestingly, up until 2012 there were 

only a few CCO applications to expansion planning in the literature, 

including a 2012 paper [8], but one of the best was a 2009 paper by 

Kit Po Wong’s group [9] (Dr. Wong passed away in 2018). One can 

enter titles of these papers into scholar.google.com to identify 

related papers published since then. 
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One solves this problem by choosing values of x1 and x2 such that 

the objective function is minimized, the deterministic constraint is 

satisfied, and the probability that the inequality is satisfied is greater 

than γ. A conceptual approach for solving this problem is as follows: 

1. Identify the {x1, x2} space that satisfies the equality constraint; 

call this space S1. 

2. Identify the {x1, x2} space that satisfies the probability constraint; 

call this space S2. 

3. The solution is {x1,x2}* contained in S1∩S2 that minimizes f(x). 

 

Most solution approaches involve transforming the chance 

constraints into deterministic ones and then applying an appropriate 

solver accounting for structure and convexity of the problem. 

7.2 Recourse problems 

Recourse problems are so-called because they enable recourse 

following a decision. What is recourse? 

 

An internet definition indicates it is  

“the act of resorting to a person, course of action, etc., in 

difficulty or danger.”  

 

A less formal equivalent of this is that recourse is an  

“act” that you take, once you have made some decision to get 

yourself in trouble. 

 

There are two “steps” here: a decision and then a recourse action. 

This very well characterizes recourse-oriented stochastic programs, 

or recourse problems. Over the past few years, reference to a 

“stochastic program” without further specification usually implies a 

recourse problem. 

 

We adapt two examples from Beasley [7].  
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7.2.1 Example 1: Single stage SP recourse problem 

We desire to make a decision now (period t=1) about the amount of 

capacity we need in year 5 (period t=2). 

 

We assume that this capacity is going to cost $2000/kW.  

 

We assume that the growth in peak load (including needed 

reserves), which drives the need for this capacity, is stochastic. We 

adopt a simple representation of the demand uncertainty by 

assuming the increase in peak load will be either  

• Low: 500 MW with probability 0.6 or  

• High: 700 MW with probability 0.4.  

We have to make a decision now (in period t=1) on how much 

capacity to build because it will take us 5 years to build the new 

capacity. Thus, we need to decide before the demand is actually 

known. 

We may represent this situation as a tree-like structure as indicated 

in Figure 15. 

 
Figure 15: Illustration of decision problem 

 

It is clear we will build no less than 500MW; no more than 700MW. 

 

But do we build 500MW? 550MW? 600MW? 650MW? 700MW? 

 

Future s=1 

500MW, 

prob=0.6 

Future s=2, 

700MW, 

prob=0.4 

t=1 

t=2 
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Let’s consider that we build 500MW at t=1. This decision will be a 

good one if the t=2 demand for capacity is indeed 500MW.  

However, if we build 500MW at t=1 but the t=2 demand for 

capacity is 700MW, then we will have to take recourse and add 

200MW at time 2 in order to meet that demand. For example, we 

can purchase (at a cost of $3000/kw) 200MW of capacity from our 

capacity-rich neighbor, or we can pay some large loads to shut down 

during peak conditions.  

 

We will assume in this simple model that we can buy capacity at t=2 

but we cannot sell capacity at t=2. This assumption is to keep things 

simple; we could easily relieve this assumption. 

 

We observe that, in this model: 

• We decide to build at t=1 

• We observe the realization of the uncertainties at t=2 

• We employ recourse, a further decision, depending upon the 

realization observed. 

 

Let’s set up an analytic model to reflect this situation. To do so, we 

will refer to the two different realizations of the future demand for 

capacity (i.e., 500 or 700 MW) as “futures” or “scenarios.” 

 

Define  

• t,s as denoting the time period and the future; 

• x1 is the amount of capacity we decide to build at period t=1. 

We might call these the “build” variables. 

• Cs is the required capacity corresponding to future s (assume 

the number of futures is S, i.e., s=1,2,…,S). 

• y2,s is the amount of capacity we will need to purchase at t=2 

when the value of the demand is realized. We might call these 

the “recourse” variables. 

We can write a constraint to ensure that the capacity requirement is 

always met: 
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1 2      1,2,...s sx y C s S+  =  

Observe that the amount of capacity we have in period t=2 may 

exceed the requirement. That is, we are not requiring 

1 2      1,2,...s sx y C s S+ = =  

because the equality sign would require either that we allow 

capacity sales (enabling y2s<0), or our solution would always be 

x1=500MW since otherwise, it would be impossible to satisfy the 

equality if we overbuild (i.e., choosing to build x1 and then learning 

in period t=2 that the required capacity is less than x1). 

 

We desire our objective to minimize total expected cost, given by 

6 6

1 2

1

2 10 Pr 3 10
S

s s

s

x y
=

 +    

We have already argued that y2,s<0 is not allowed. We will also 

impose the same for x1, i.e., x1<0 is not allowed, meaning we cannot 

elect to retire capacity in period t=1 (again, this is for simplicity and 

could be lifted if desired).  

We can now write down an optimization problem which achieves 

our objective, as follows: 

6 6

1 2

1

1 2

1

2

min   2 10 Pr 3 10

subject to

1,...,

0

0    1,...,

S

s s

s

s s

s

x y

x y C s S

x

y s S

=

 +  

+  =



 =



 

What will solving this optimization problem give us? 

• A value for x1, which is the amount of capacity we should 

decide to build now. 
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• Values for y2s, s=1,…,S; this provides us with the optimal 

recourse decisions for all possible futures given that we choose 

to build x1 now. Only one of these values will be relevant once 

the actual capacity requirement is known; the other values will 

be irrelevant.  

It is important to observe here that the uncertainty is characterized 

using a discrete distribution (i.e., a probability mass function) 

instead of a continuous distribution (i.e., a probability density 

function). This is typical; if one desires to make use of continuous 

distributions, the computations become more intensive. 

 

Five comments about terminology: 

• Both sets of variables x1 and y2s are decision variables in the sense 

used within the optimization literature. 

• The variable x1, previously referred to as “build” variables, is also 

referred to as a “here and now” decision variable. 

• The variables y2s, previously referred to as “recourse variables, are 

also referred to as “wait and see” decision variables. 

• We refer to the problem presented here as a single-stage problem 

because there is only one set of variables x1 corresponding to a 

decision under uncertainty (the variables y2s correspond to decisions 

made only after the uncertainties of the problem are revealed and so 

do not correspond to decisions made under uncertainty). 

• The SP recourse problem may also occur in a multistage form, which 

we address next. 

7.2.2 Example 2: Two-stage SP recourse problem 

Let’s now consider that we have a third period t=3, in addition to 

our first two periods t=1,2. Here, period t=1 is “now,” period t=2 is 

“year 5,” and period t=3 is “year 10.” We will retain all information 

used in Example 1 above, and to it we add information for period 

t=3. The problem is illustrated in Figure 16. Observe that t=2 

probabilities are non-conditional, whereas the t=3 probabilities are 

conditional.  
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Figure 16: Illustration of decision problem 

 

Here, we initially make a decision in period t=1 of how much 

capacity to build in period t=2, where we know the capacity 

requirement will either be 500MW (prob=0.6) or 700MW 

(prob=0.2). Once the uncertainty in period t=2 is revealed, we may 

make a recourse decision to purchase additional capacity in order to 

meet the capacity requirement in period t=2. All of this seems 

similar to the situation we had in Example 1.  

 

But now, at period t=2, we have another decision to make, which is 

how much capacity to build in period t=3. This is a decision under 

uncertainty; once made, uncertainty in period t=3 is revealed, and 

we may make a recourse decision to purchase additional capacity. 

 

To summarize then, as we move left to right across the tree of Fig. 

11, we encounter the following decision problems: 

• In the t=1 period, we decide how much capacity to build for the 

t=2 period. This is x1, as in Example 1. 

• In the t=2 period, the t=2 uncertainty is revealed. 

Future s=1 

600MW, 

Cdtprob=0.3 

700MW, 

prob=0.4 

t=1 

t=2 

500MW, 

prob=0.6 

Future s=2, 

700MW, 

Cdtprob=0.7 

Future s=4, 

800MW, 

Cdtprob=0.8 

Future s=3, 

900MW, 

Cdtprob=0.2 

t=3 
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• In the t=2 period, we make the recourse decision of how much 

capacity to purchase in order to satisfy capacity requirements of 

period t=2. These are the y2,s variables, as in Example 1. 

However, these variables may change, depending on the ultimate 

future we encounter, and there are four such futures. Therefore, 

we have y2,1, y2,2, y2,3, y2,4. Note carefully! By defining these 

variables across all four futures, we are recognizing that the best 

recourse decision at the t=2 period may differ depending on what 

happens during the t=3 period. 

• In the t=2 period, we decide how much capacity to build for the 

t=3 period. This would be x2, but there are four possible futures 

for t=2, s=1, 2, 3, 4. Therefore we have x2,1, x2,2, x2,3, x2,4. Note 

carefully! By defining these variables across all four futures, we 

are recognizing that the best decision at the t=2 period may differ 

depending on what happens during the t=3 period. 

• In the t=3 period, the t=3 uncertainty is revealed. 

• In the t=3 period, we make recourse decision of how much 

capacity to purchase in order to satisfy capacity requirements of 

period t=3. These are the y3,s variables, and we will have four of 

them, i.e., y3,1, y3,2, y3,3, y3,4. 

We assume the cost to build in period t=1 is the same as the cost to 

build in period t=2. We also assume the cost to buy capacity in 

period t=2 is the same as the cost to buy capacity in period t=3. 

 

We first consider period t=2, requiring that what we build in period 

t=1 plus capacity we buy via recourse during period t=2 must equal 

or exceed the required capacity in period t=2, i.e.,  

1 2      1,2,...s sx y C s S+  =  

These constraints will be: 

1 2

1 2

500     1,2

700     3,4

s

s

x y s

x y s

+  =

+  =  

At the t=2 period, we may have excess capacity given by 
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1 2

1 2

500     1,2

700     3,4

s

s

x y s

x y s

+ − =

+ − =  

And then at the t=2 period, we will make a decision to build 

additional capacity, and then at the t=3 period, we will learn the 

capacity requirement and subsequently take a recourse decision to 

purchase additional capacity. Thus, we will require that: 
Excess Capacity+Capacity built+Capacity Purchased>=CapRequired 

Writing in terms of our defined nomenclature, we have 

1 2 2 3

1 2 2 3

1 2 2 3

1 2 2 3

500 +y 600     1

500 +y 700     2

700 +y 900     3

700 +y 800     4

s s s

s s s

s s s

s s s

x y x s

x y x s

x y x s

x y x s

+ − +  =

+ − +  =

+ − +  =

+ − +  =

 

We might think we are done with constraints; however, we need to 

reconsider our build&recourse variables at the t=2 period; these are: 

x2,1, x2,2, x2,3, x2,4 

y2,1, y2,2, y2,3, y2,4 

The question we must ask is this: When we are at period t=2, how 

will we know what is going to happen at period t=3? The answer is 

that we will not know! We can only distinguish between variables if 

their past is different; we cannot distinguish between variables that 

have a different future but a common past!  

In other words, a decision maker at t=2 can only make a single 

decision, s\he cannot make two separate decisions at t=2 

depending on which t=3 future occurs.  

This means that period t=2 variables originating from the 500MW 

node must be equal, i.e.,  

x2,1=x2,2 

y2,1=y2,2 

and t=2 variables originating from the 700MW node must be equal, i.e., 

x2,3=x2,4 

y2,3=y2,4 

Why not define a single variable for each pair to start with? One answer is to clearly retain the expression of the nonanticipativity concept in the 

problem formulation, to remind us all of its necessity. Another answer is that stochastic programming problems are very “L-shaped” and as a result 

amendable to solution by decomposition methods where the nonanticipativity constraints are relaxed in the subproblem. 
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These are called the non-anticipativity constraints, implying that we 

cannot anticipate the future. This implies that futures with a 

common history must have the same set of decisions. 

 

We can now formulate our objective function.  

We have just one cost incurred with certainty, namely that 

associated with x1. All other costs are probabilistic. Let’s identify 

the probability of each future and the cost of each future, using total 

probabilities for each future. We also repeat our tree of Figure 16 

below, for convenience. 

Future Total 

probability of 

each future 

Cost 

1 0.6×0.3=0.18 6 6 6

21 21 312 10 3 10 3 10x y y +  +   

2 0.6×0.7=0.42 6 6 6

22 22 322 10 3 10 3 10x y y +  +   

3 0.4×0.2=0.08 6 6 6

23 23 332 10 3 10 3 10x y y +  +   

4 0.4×0.8=0.32 6 6 6

24 24 342 10 3 10 3 10x y y +  +   

 

 
Figure 16: Illustration of decision problem 

Future s=1 

600MW, 

Cdtprob=0.3 

700MW, 

prob=0.4 

t=1 

t=2 

500MW, 

prob=0.6 

Future s=2, 

700MW, 

Cdtprob=0.7 

Future s=4, 

800MW, 

Cdtprob=0.8 

Future s=3, 

900MW, 

Cdtprob=0.2 

t=3 
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We can now write down our optimization problem. The objective is 

the cost of each future weighted by its probability, and we want to 

minimize it. The constraints are the need to satisfy the capacity 

requirements at the t=2 and t=3 periods, together with the non-

anticipativity constraints. Thus, 
6

1

6 6 6

21 21 31

6 6 6

22 22 32

6 6 6

23 23 33

6 6 6

24 24 34

min    2 10

0.18 2 10 3 10 3 10

0.42 2 10 3 10 3 10

0.08 2 10 3 10 3 10

0.32 2 10 3 10 3 10

x

x y y

x y y

x y y

x y y



 +  +  +  

 +  +  +  

 +  +  +  

 +  +  +  

 

Subject to 

1 2

1 2

500     1,2

700     3,4

s

s

x y s

x y s

+  =

+  =  

1 2 2 3

1 2 2 3

1 2 2 3

1 2 2 3

500 +y 600     1

500 +y 700     2

700 +y 900     3

700 +y 800     4

s s s

s s s

s s s

s s s

x y x s

x y x s

x y x s

x y x s

+ − +  =

+ − +  =

+ − +  =

+ − +  =

 

x2,1=x2,2 

y2,1=y2,2 

x2,3=x2,4 

y2,3=y2,4 

and all variables ≥0 

 

Stochastic programming of this sort has been applied to electric 

power system investment planning. There are many papers on this 

topic; some good work was done by the group led by Ben Hobbs of 

Johns Hopkins University [10, 11, 12, 13]. 
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8 Adaptation 

Adaptation is an approach to design an investment strategy under 

uncertainty. The basic concept is illustrated in Figure 17. 

 
Figure 17: Illustration of adaptation cost 

The adaptation cost of Plan A to Scenario 2 is the minimum cost 
to move Plan A to a feasible or optimal design, Plan B, in 
scenario 2. It measures the cost of our Plan A if scenario 2 
happens. 
 

This leads to an important new optimization problem, as follows: 

 

Minimize:  

  CoreCosts(xf)+β[ Σi AdaptationCost(Δxi)] 

Subject to: 

   Constraints for scenario i=1,…N: gi(xf+Δxi)≤bi 

 

where: 

• xf: Core investments, to be used by all scenarios i 

• Δxi: Additional investments needed to adapt to scenario i 

 

This approach identifies an investment that is “core” in that the total 

“CoreCost” plus the cost of adapting it to the set of envisioned 

futures is minimum. The approach is illustrated in Figure 18. 
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Figure 18: Illustration of adaptation approach 

 

It is important to note that the “core” investments are not necessarily 

the same as the investments that are common to each scenario. This 

approach was applied to a GEP problem at the national level.  

Figure 19 shows the geographical scale of the problem addressed. 

 

 
Figure 19: Geography of the problem addressed 

Sixty-four scenarios were developed in terms of  

• Gas price 

• Gas production limits 

• Demand 

• National renewable portfolio standard 
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• CO2 cap 

• Wind plant investment cost 

An aggregation approach was used to identify 10 scenarios that best 

represented the 64. These 10 scenarios are listed in Figure 20. 

 
Figure 20: Selected scenarios 

 

The optimization problem was then solved for different values of β, 

and the results are plotted in Figure 21. 

 
Figure 21: Adaptation solutions for different values of β 
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A single value of β was selected, and a complete solution was 

produced over a 40 year horizon. The total installed capacity of the 

solution is shown in Figure 22. 

 
Figure 22: Total installed capacity over 40 years 

 

The solution shown is considered to be adaptable, or “flexible”. We 

observe that, with respect to the scenarios studied, adaptability 

means: 

• Increase Advanced CTs 

• Increase WIND 

• Increase NUCLEAR 

• Maintain NGCC 

• Retire COAL 
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9 Robust optimization 

 

10 Compare and contrast 

It would be good to compare and contrast the various ways of 

handling uncertainty.  
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