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Module PE.PAS.U16.5  
Markov models for reliability analysis 

U16.1 Introduction 

We have seen in modules U11 and U12 methods of analysis for 

nonrepairable and repairable components, respectively, while 

modules U14 and U15 provided methods of analysis for 

nonrepairable systems. Markov models provide us the most 

general method of all, applicable to nonrepairable and repairable 

components as well as nonrepairable and repairable systems. It is 

especially with respect to repairable systems that the method 

becomes attractive as no other method deals with this type of 

system with the same degree of effectiveness and simplicity. 

The reader would do well to review Section U12.1 on random 

processes in module U12 before proceeding. Here, we remind the 

reader that a random process is a collection of random variables 

indexed by a parameter (typically time) such that the random 

variables are ordered in a particular sequence. We recall that the 

indexing parameter may be discrete, resulting in a discrete-time 

process, or continuous, resulting in a continuous-time process. In 

addition, the state space, i.e., the values assumed by the random 

variables comprising the process, may be discrete, resulting in a 

discrete-state process, or continuous, resulting in a continuous-

state process. Formal terminology exists which relate to Markov 

processes, as follows [1]. 

1. Discrete-time Markov chain: a discrete-time/discrete state 

Markov process. 

2. Continuous-time Markov chain: a continuous-time/discrete state 

Markov process. 

3. Discrete-time Markov process: a discrete-time/continuous state 

Markov process. 
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4. Continuous-time Markov process: a continuous-time/continuous 

state Markov process. 

In this module, we only deal with #2 of the above, and we 

therefore use the term “Markov chain” to refer to it. An implication 

here is that we only study Markov processes that have discrete 

states as this is the approach that taken in the development of most 

power system reliability evaluation procedures. 

U16.2 Markov properties 

The formal definition of a Markov chain is as follows [2,3]: 

Definition: The random process {X(t), t 0} is a continuous-time 

Markov chain if for all s0, t 0 and nonnegative integers i, j, x(u), 

0u<s, 

])(|)([

]0),()(,)(|)([

isXjstXP

suuxuXisXjstXP




 

Interpretation: Assume that s represents the present of the random 

process. Then: 

 the conditioning event in the above definition  

X(s)=i, X(u)=x(u),  0u<s 

expresses the present and past of the random process. 

 the left-hand-side is the conditional probability of the “future” 

random variable X(t+s) 

Thus, the definition indicates that the conditional distribution of 

the “future” X(t+s) given the present X(s) and the past X(u) 

depends only on the present and is independent of the past.  

This means that the present “summarizes” the entire history of the 

process, i.e., all of the information contained in the values taken by 

the random variables of the past are contained in the random 

variable of the present. Thus, we say that a Markov process is a 

“memoryless” process. 
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Example [4]: Consider that the demand for electric power 

monitored at a low-voltage bus of a transformer station on any 

given day can be classified as either high or low (1 or 0). It has 

been observed that if the demand is high on a certain day, the 

probability that it will be high the next day is 0.75. If the demand is 

low, on the other hand, the probability that it will be low the next 

day is 0.5. Note: the probabilities depend on only today’s demand, 

and not yesterday’s demand. Therefore, the process describing the 

state of the demand (1 or 0) from day-to-day is Markov. 

 

A key concept in dealing with Markov processes is the notion of 

states. In general, a Markov process may have any number of 

states. For example, it is typical in determining appropriate 

maintenance intervals to model component states based on how 

much deterioration the component has incurred. Different 

approaches here include: 

 Two states: S1 (working) and S2 (failed) 

 Three states: S1 (working well), S2 (failed), S3 (working with 

deterioration) 

 Four states: S1 (working well) S2 (failed), S3(working with 

minor deterioration), S4 (working with major deterioration) 

Since many deterioration processes for most components are 

gradual, it is clear that we may have a large number of 

deterioration states. In addition, we may also provide for a number 

of states associated with different levels of maintenance.  

We note that, in general, the recognition of different states implies 

that the component may reside in any of them. Therefore, it is 

possible that the component, while residing in one state, may 

transition to another state. If we consider a certain time t and a 

certain time interval t, then there is a probability for each pair of 

states for which a transition is possible (including the pairs 
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comprised of two identical states). We call this probability the 

transition probability. 

For states j and k, we denote this probability as pjk(t,t) such that: 

])(|)([),( jtXkttXPttp jk   

Fig. U16.1 illustrates a 4-state Markov model together with the 

transition probabilities. The fact that no transitions are shown 

between states 1 and 4 or between states 2 and 3 indicates that the 

transition probabilities for these states are zero. In the diagram, the 

dependence of the transition probabilities on t and t is implied. 
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Fig. U16.1: Illustration of 4-state Markov model 

 

If the probability ])(|)([ isXjstXP   is independent 

of s (implying that transition probabilities are the same no matter 

what “present” time s we choose, then the Markov chain is said to 

be stationary or homogeneous.  

Although stationary Markov chains have transition probabilities 

independent of time, the transition probabilities do depend on the 

time interval of interest. Thus, for stationary Markov processes, it 

is appropriate to denote the transition probabilities as pjk(t) rather 

than pjk(t,t). 

We consider only stationary Markov processes in our treatment. 
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Can we draw any conclusions regarding the distribution associated 

with the “times to transition”?  

Given that there are possibly a number of other states to which we 

may transition, it is appropriate to think of the transition time as 

the amount of time it stays in a certain state before transiting to 

another state.  

Let’s call these times the transition times, and denote the transition 

time from state j as Tj. How is Tj distributed? 

To answer this question [3], suppose that a Markov chain enters 

state j at some time, say time t=0, and suppose that the process 

does not leave state j (that is, a transition does not occur) during 

the interval (0,10) minutes. What is the probability that the process 

will not leave state j during the 5 minutes after the 10 minutes is 

up, i.e, during the interval (10,15)? 

Now since we know that the process is in state j at time t=10, by 

the memoryless property, we also know the probability that it 

remains in state j during the first 5 minutes is the same as the 

probability that it remained in state j during the interval (0,5), i.e.,  

)5()0|5()10|15(  jjjjj TPTTPTTP  

And the same basic reasoning leads us to conclude: 

)()|( tTPsTtsTP jjj   

for all s0, t0, i.e., the distributions on transition times depend 

only on the time interval but not on the time itself. We have seen 

this kind of property before with what we called time to failure (in 

the case of nonrepairable components) and interevent times (in the 

case of repairable components), and we know that the only 

distribution which provides this property for a random variable is 

the exponential distribution (see module 10). 

Thus, all transition times for a Markov process are exponentially 

distributed! 
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In other words [3], a Markov chain is a random process that moves 

from state to state such that the amount of time it spends in each 

state, before proceeding to the next state, is exponentially 

distributed.  

A final word on Markov chains… the states must be mutually 

exclusive, i.e., the process cannot reside in two or more states at 

the same time. This should be self-evident from all discussion so 

far. 

U16.3 Relation to Poisson processes 

Module U12 provides an introduction to random (stochastic) 

processes, and we saw that the renewal process was one example, 

where all interevent times are identically and independently 

distributed (but with arbitrary distribution). We also saw that the 

Poisson process is a special case of the renewal process where the 

interevent times are exponentially distributed. 

Noting our conclusion in the last section that a Markov process has 

exponentially distributed transition times, it is natural to inquire 

about the relationship between a Markov and a Poisson process. 

We make the following observations: 

 A Poisson process is a counting process, i.e., the “state” of a 

Poisson process at a particular time is characterized by the 

number of events that have occurred up until that time. Thus, we 

see that a Poisson process has an infinite number of states         

0, 1, 2, …k,…, , and that any particular transition always takes 

the process from one state k to the next state k+1. Further, the 

time between transitions must be exponential. 

 A Markov process may transition from any state to any other 

state and is not constrained to only transition from state k to 

state k+1, and the time between transitions must be exponential. 

So we infer from the above that a Poisson process is a special case 

of a Markov process, such that a Markov process will be Poisson if 
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the transitions are constrained to always occur from state k to state 

k+1. 

U16.4 Solving for state probabilities 

Examine Fig. U16.1 again, and note that the indicated probabilities 

are those of transiting from one state to another in the next time 

interval t. What are typically of interest, however, are the 

probabilities that the random process will be in any particular state 

at a give time t. We denote these state probabilities at pj(t), 

contained in the row vector: 

 )()()( 1 tptptp n  

where, for any particular time t, it must be the case that: 

1)(
1




n

j
j tp

 

We aim to obtain these probabilities in this section, in four steps, 

by developing:  

1. Transition intensities 

2. Two system matrices 

3. The system differential equation 

4. The solution procedure 

Our development in this section is adapted from [5]. 

U16.4.1 Transition intensities 

We indicated above that for stationary Markov processes, the 

transition probability is a function of the time interval of interest.  

If we select the time interval t to be very small, then we can 

assume that the transition probability is a linear function of the 

time interval, i.e.,  
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tjtXkttXPtp jkjk  ])(|)([)(  

(U16.1) 

where the constant of proportionality is λjk and is referred to as the 

state j to state k transition intensity, 

defined as: 

t

tp jk

t
jk








)(
lim

0
 ,    jk   (U16.2) 

(The transition intensity from a working state to a failed state is 

equivalent to the hazard function used in modules U11 and U12). 

Likewise, we may consider pjj(t), the probability that the random 

process will remain in state j (no transition) within the next time 

interval t. This is given by: 

])(|)([)( jtXjttXPtp jj   

Now it is tempting, by analogy, to equate this to λjjt, in terms of 

the “transition intensity from state j to state j.” However, it will 

prove more convenient later to define the complement, i.e., the 

“transition intensity from state j to any other state k, kj.” We 

denote this as λj, where, for small t, λjt1-pjj(t), so that 

tjtXjttXPtp jjj  1])(|)([)(

(U16.3) 

where the constant of proportionality is the 

state j transition intensity, 

defined as: 

t

tp jj

t
j








)(1
lim

0
                       (U16.4) 
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For stationary Markov processes, to which we have confined 

ourselves, the transition intensities are constant for all time and 

may therefore be called transition rates as well, providing the clear 

indication that  

 λjk may be interpreted as the expected number of transitions per 

unit time from state j to state k, and 

 λj may be interpreted as the expected number of transitions per 

unit time from state j to any other state.  

Now consider that the random process is in state j at some 

particular moment in time. In the next time interval t, there are 

two kinds of events that can occur. Either the process will not 

transition or it will transition to one of the other states, so that if we 

add the probabilities of all possible events, we obtain 1, i.e.,  





kj

jkjj tptp 1)()(  

 



kj

jkjj tptp )()(1  

Substitution into (U16.4) results in: 

t

tp
kj

jk

t
j












)(

lim
0


 

But by equation (U16.2), each of the terms in the above 

summation, when divided by t, results in λjk, so that 





kj

jkj 
  (U16.5) 

U16.4.2 Two system matrices 

The development of section U16.4.1 provides that we may specify 

two matrices in terms of the two different sets of parameters 

identified.  
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The stochastic transitional probability matrix (according to 

Billinton [6]) or the transition probability matrix (according to 

Endrenyi [5]) is comprised of what we have called the transition 

probabilities pjk(t), given by: 























)()(

)()(

)(

1

111

tptp

tptp

tP

nnn

n







 

Note that the sum of the row elements is 1. This matrix is useful 

for determining the state probabilities at time (t+t) if we know the 

state probabilities at time t. We can see this by observing that the 

probability of being in state j at time (t+t) is equal to  

 The probability of: 

o being in state j at time t and  

o not making a transition to any other state in t 

This is pj(t)pjj(t) 

 Plus the probability of being in any state k at time t and 

transiting to state j in t. This is ∑jkpk(t)pkj(t). 

Thus, we see that: 

)()()()()( tptptptpttp
kj

kjkjjjj  


  (U16.6) 

We can write this in matrix form as 

)()()( tPtpttp    (U16.7) 

We call the above relation the state transition relation.  

Example: Consider the state diagram for a single repairable 

component, as illustrated in Fig. U16.2, where state 1 is working 

and state 2 is failed (and being repaired). Write the state transition 



Module PE.PAS.U16.5 Markov models for reliability analysis 11 

relation for this state diagram and express it in terms of the 

transition intensities. 
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Fig. U16.2: Two state system 

 

The state transition relation is given by: 

    













)()(

)()(
)()()()(

2221

1211

2121
tptp

tptp
tptpttpttp  

Using (U16.1) and (U16.3) (which indicate that pjk(t)λjkt and 

pjj(t) 1-λjt), we may express the above in terms of the state 

transition intensities as: 

    













tt

tt
tptpttpttp

221

121

2121
1

1
)()()()(




(U16.8) 

The second system matrix that we may specify, comprised of the 

transition intensities λjk and λj, is called the transition intensity 

matrix, given by: 

























nnn

n

n

A















1

2221

1121

 

From (U16.5), we see that the elements in any row of A must add 

to zero. This means that the determinant of A is zero, and thus the 

rows of A are not independent.  
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Because the elements of the transition intensity matrix A are given 

by pjk(t)λjkt and pjj(t) 1-λjt for small t, we can say that, 

whereas the transition probability matrix P describes the behavior 

of the random process in arbitrary time intervals t, the transition 

intensity matrix A describes the behavior of the random process for 

very small intervals of time [2]. 

Example: Obtain the transition intensity matrix for the two-state 

model of Fig. U16.2. 















221

121




A

  (U16.9) 

Note that the determinant is λ1λ2-λ12λ21, but because λ1= λ12 and 

λ2= λ21 (since there is only one other state to which a state may 

transition), we see that the determinant is zero. 

The transition intensity matrix is related to the transition 

probability matrix according to: 

t

ItP
A

t 






)(
lim

0
 

where I is the (square) identity matrix of dimension equal to that of 

A and P(t). The above relation also enables expression of P(t) in 

terms of A, if t is small, according to: 

ItAtP  )(  

We will see in the next subsection that the transition intensity 

matrix is important in setting up the system differential equations. 

U16.4.3 The system differential equations 

Reconsider (U16.6), repeated below for convenience: 
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)()()()()( tptptptpttp
kj

kjkjjjj  


 

Note that it is written in terms of the transition probabilities. Let’s 

rewrite it in terms of transition intensities by using (U16.1) and 

(U16.3) (which indicate that pjk(t)λjkt and pjj(t) 1-λjt): 

ttpttpttp
kj

kjkjjj  


 )(]1)[()(
 

Bringing pj(t) over to the left-hand-side, and then dividing both 

sides by t, we obtain: 









kj
kjkjj

jj
tptp

t

tpttp
 )()(

)()(
 

In the limit as t goes to zero, we recognize the left-hand-side as a 

derivative, so that: 





kj

kjkjjj tptptp  )()()(
 

We recognize the right-hand-side as the jth row of a matrix product 

consisting of the row vector p(t) and the transition intensity matrix 

A. Therefore, we have that: 

Atptp )()( 
  (U16.10) 

This is a first-order differential equation. If we were to discretize 

this equation so as to integrate it numerically on a computer, we 

would find that the value at step (k+1) (i.e., t=(k+1)t) depends 

only on the value at step k (i.e., t=kt). This is a property of all 

first order differential equations, and it is no coincidence, because 

it also reflects that the system is Markovian! A reasonable 

conclusion that we may draw here is that all Markovian systems 
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may be modeled using first order differential equations, a 

conclusion that is analytically pleasing.  

U16.4.4 Solution procedure 

As indicated at the end of the previous subsection, we may obtain 

the solution to (U16.10) through numerical integration on a 

computer. Alternatively, we may solve it directly. LaPlace 

Transforms provides a convenient tool for this purpose. 

Taking the LaPlace Transform of (U16.10), we obtain: 

Asppssp )(~)0()(~   (U16.11) 

where the tilde over a function represents the LaPlace transform of 

that function. Note that in (U16.11) that p(0) represents the initial 

condition of the system and is obtained by assuming that the 

random process is in one particular state k, and not in any other 

state jk, such that pk(0)=1.0 and pj(0)=0  jk.  

Rearranging (U16.10), we have: 

)0()(~)(~ pAspIssp   

where the insertion of the identity matrix I,  





















10

010
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I
 

does not change the first term but shows clearly the transition to 

the next step, which is to factor according to: 

  )0()(~ pAIssp   
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Now if we post-multiply both sides by [sI-A]-1, we get: 

  1
)0()(~ 

 AIspsp  (U16.12) 

 

and we may use tables of LaPlace transforms to obtain p(t) from 

(U16.12).  

Remark: Recall that we said that A is singular, which means that it 

has a zero determinant, and as a result, it cannot be inverted. 

However, this does not mean that the matrix [sI-A] is also singular. 

In fact, [sI-A] is a matrix with properties that depend on the 

LaPlace variable s, and therefore its singularity (or nonsingularity) 

depends on the value of s. In system theory, the values of s that 

make the matrix [sI-A] singular are called the eigenvalues of the 

system characterized by the differential equation (U16.10). When 

A is singular, as it is in our case, it implies that the system has a 

zero eigenvalue. A system having a zero eigenvalue will have a 

constant term in the time-domain expressions of the state variables, 

which in our case are the elements of p(t). For stable systems 

(systems for which the time-domain expressions of the state 

variables are bounded from above and below as time increases), 

this constant term is the steady-state, or long-term value. In 

Markov modeling, we call these steady-state values the long-run 

[5] or the limiting state [6] probabilities. Random processes for 

which long-run probabilities exist are said to be ergodic. 

 

Example: For the two-state system illustrated in Fig. U16.2, 

determine the state probabilities assuming that the system is 

initially working (that is, it is initially in state 1). 

The fact that the system is initially working means that p(0)=[1 0]. 

The transition intensity is given by (U16.9), repeated here for 

convenience: 
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Then, (U16.12) becomes: 
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(U16.13) 

The inversion operation is carried out as usual for a 22 matrix, 

according to: 
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Recalling for this two-state model that λ1= λ12 and λ2= λ21, the 

inverse becomes: 
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and (U16.13) becomes 
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(U16.14) 

The individual state probabilities then become: 

)(
)(~

2112

21
1
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  (U16.15) 

and  

)(
)(~

2112

12
2








ss
sp

  (U16.16) 

Using partial fraction expansion, we obtain: 
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Taking the inverse LaPlace transform of the above, we get: 
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(U16.17) 
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(U16.18) 

We may obtain the long-run or limiting state probabilities (steady-

state values of p1(t) and p2(t)) if we let t. This results in: 

2112

21
1









p

   (U16.19) 
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2112

12
2






p

   (U16.20) 

Figure U16.3 illustrates the time-domain response for the 2-state 

system [7]. 

 

t 
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Fig. U16.3: Transient Response [7] 

 

It is of interest to compare the above results with Example U12.2 

in module 2, where we used an alternating renewal process to 

characterize a repairable component, with failure time and repair 

time exponentially distributed with parameters λ and , 

respectively. In that case, we found that the system availability was 

given by: 

tetA )()( 







 







(U16.21) 

In comparing the two results, note that: 
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 The “working” state of Example U12.2 is the same as the state 1 

here, and the “failed” state of Example U12.2 is the same as the 

state 2 here.  

 The time to failure of Example U12.2 is the same as the time to 

transition from state 1 to state 2, and the time to repair is the 

same as the time to transition from state 2 to state 1. 

 The parameter λ of Example U12.2 characterizes the 

exponentially distributed failure time, which is characterized by 

λ12 here. The parameter  of Example U12.2 characterizes the 

exponentially distributed repair time, which is characterized by 

λ21 here.  

Making appropriate substitutions into U16.22, we have: 

t
etA

)(

2112

12

2112

21 2112)(








 







 

Comparing the above with (U16.17) and (U16.18), we see that it is 

identical to (U16.17), which gives the probability of being in state 

1 at any time t. Since state 1 is the working state, its probability is 

interpreted as the probability that the component is working, which 

is exactly the definition of availability. 

It is consoling to see that the Markov approach to analyzing a 

repairable component agrees with the approach based on Renewal 

theory. However, it raises the question: Why develop duplicate 

methods to do the same thing? We will see the answer to this 

question in the next section.  

U16.5 Obtaining long-run probabilities 

In many cases, it is of interest to obtain only the long-run 

probabilities. In such cases, it is unnecessary to solve the 

differential equation of (U16.10), which is 
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Atptp )()( 
 

because a long-run probability is a steady-state value and therefore 

we know in advance that all derivatives are zero, i.e.,  

Ap


0
   (U16.22) 

where p= p(t=). Therefore, the problem of obtaining the long-

run probabilities requires that we merely solve linear algebraic 

equations rather than differential equations. This makes us very 

happy . 

Let’s try it on our example. 

Example: Obtain the long-run probabilities for the two-state model 

by solving the algebraic equations.  

Equation (U16.22) is: 
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Extracting the equations yields: 

212121

212121

0
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pp
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Here, we see that we have a problem, as multiplying either 

equation by -1 results in two identical equations, and given that 

there are two unknowns, the system of equations is under-

constrained, and therefore there is no unique solution. In fact, if we 

know our linear system theory, we would have seen this coming 

since we have already recognized that A is singular. 
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But all is not lost. The issue is quickly resolved using common 

sense. There are only 2 possible outcomes for any particular time t: 

either the random process is in state 1 or it is in state 2. There are 

no other possibilities, and this is also true when t=. Therefore, we 

have p1,+ p2,=1, giving us another linear equation which is 

independent from any of the (in this case just one) equations from 

(U16.22). Therefore, we can write: 
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or  
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Post-multiplying both sides by the inversion of the 22 matrix 

results in: 
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which is: 
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The LaPlace transform that we have applied in the example 

provided so far is useful for Markovian systems that do not have a 

large number of states. However, the power of the Markov 

modeling approach is that it can handle even very large systems 

quite well, as ultimately, all that is required is the solution of a set 
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of first-order differential equations, assuming the time response is 

desired. If all that we desire is the steady-state response, then we 

need only deploy an algebraic solver for linear systems. Here, for 

example, the LU decomposition approach commonly used in large 

power system analysis computer packages is a very appropriate 

tool. 

U16.6 State Frequencies and Durations 

The material from this section is adapted from [5]. Two parameters 

of any Markovian system that are often of interest are the state 

frequencies and the state durations. 

 State frequency: We denote the frequency of state j as fj. This is 

the expected number of stays in (or arrivals into, or departures 

from) state j per unit time, computed over a long period.  

 State duration: We denote the duration of state j as Tj. This is 

the expected amount of time per stay the random process is in 

state j, computed over a long period. 

By these definitions, both the state frequency and the state duration 

are means taken over the long-term behavior of the process.  

16.6.1 Frequencies and Durations for the 2-state model 

These notions are illustrated in Fig. U16.4 [7] for a 2-state system. 

 

    T2 

Tc 

T1 

time 

down 

up 

Fig. U16.4: History of a 2-state process [7] 
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Fig. U16.4, the upper history is actual, whereas the lower history is 

one in which all up-times T1 are the same and all down-times T2 

are the same, implying that all cycle times Tc are also the same 

throughout the history of the process, and are equal to the mean 

up-time, mean down-time, and mean cycle time, respectively, of 

the actual process history. These times are precisely the state 

durations for this 2-state process. 

In obtaining the corresponding frequencies, one should note first 

that the frequency of a state is the number of times of visiting that 

state in a certain time period divided by the amount of time in that 

period (where the time period is taken from the beginning of an up-

state to the end of a down state). In Fig. U16.4, we could just count 

the number of up states (or down states) in the total time interval, 

which would be 7), and divide by the amount of time (which is not 

shown). This method may be applied to the upper diagram (actual 

history) or to the lower diagram, as long as the time interval is long 

enough. 

It is important to note that the result is the same independent of 

whether we count up states or down states.  

But an easier, and equivalent method is to count the number of up 

(or down) states in a single cycle (which is 1) on the lower diagram 

and divide by the cycle time Tc, i.e., 1/Tc.  Clearly, we obtain the 

same answer for frequency of state 1 and for frequency of state 2, 

i.e., 

f1=f2=1/Tc    (U16.23) 

Consider f1=1/Tc, and multiply both sides by T1, resulting in 

T1f1=T1/Tc 

The right-hand-side is the ratio of the mean duration in state 1 to 

the mean cycle time, and we recognize this ratio as the long-run 

probability that the process is in state 1, p1,. Therefore,  

T1f1=p1, 

 f1=p1,/T1          (U16.24) 
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Likewise,  

f2=p2,/T2      (U16.25) 

16.6.2 Frequencies and durations for the general case 

Equations (U16.24) and (U16.25) suggest that we can compute 

frequencies based on 

fj=pj,/Tj    (U16.26) 

But our development was based on a 2-state model. Is it reasonable 

to infer the general result? 

This question is easily answered if we think of any general Markov 

model as being comprised of a single state, call it state j, and all 

other states. The conceptualization of this model is given in Fig. 

U16.5 [5].  

 

j 
All other 

states 

 

Fig. U16.5: Any Markov model conceptualized as 2 states [5] 

Denote fj and Tj as the frequency and duration for state j, 

respectively. We also use Ta as the duration for all other states. 

Then the cycle time is Tc=Tj+Ta.  

We now have a situation that is described in precisely the same 

terms as our simple 2-state model, and the same kind of analysis 

follows, i.e.,  

fj=1/Tc    (U16.27) 

                     Tj fj=Tj/Tc      

   Tj fj=pj,       

fj= pj,/Tj    (U16.28) 
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16.6.3 Relation of frequencies and durations to transition intensities 

We desire to relate the frequencies and durations to the transition 

intensities, as they represent indices that decision-makers often 

use. 

To do this, we introduce the concept of frequency of transfer from 

state j to state k. This frequency, fjk, is defined as the expected 

number of direct transfers from state j to state k per unit time.  

From this definition, and noting that the expected number of 

transfers in a time interval is equal to the probability of 1 transfer if 

the time interval is very small (E[NA]=N*P[A] with very small 

time intervalN=1), we may write that: 
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We recognize the limit, by (U16.1) and (U16.2), as λjk, and the 

term P[X(t)=j] as the long-run state probability pj,. Therefore: 

fjk=λjk pj,    (U16.29) 

One may also at this point distinguish fjk from λjk by noting that 

whereas λjk is conditioned by the system being in state j, fjk is not. 

Therefore,  

 whereas λjk gives the expected number of transfers from state j 

to state k per unit time, given the system is in state j, 

 fjk gives the expected number of transfers from state j to state k 

per unit time, with no condition specified. 

Therefore, the fik will always be less than λjk, unless pj,=1.0, 

which could be the case in a two-state process with λkj=0 (0 repair 

time, or instant renewal).  
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Now, from our definitions,  

 fj is the expected number of stays in (or arrivals into, or 

departures from) state j per unit time, and 

 fjk is the expected number of transitions (or departures from) 

state j to state k per unit time,  

Then it follows that  





jk

jkj ff
   (U16.30) 

Substitution of (U16.29) into (U16.30) results in: 








jk

jkjj
jk

jkj ppf  ,,   (U16.31) 

Equating (U16.31) to (U16.28), we have: 
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f ,

,

  (U16.32) 

Solving for Tj, we obtain: 






jk
jk

jT


1

    (U16.33) 

which tells us that the mean duration of stays in any given state 

equals the reciprocal of the total rate of departures from that state 

[5]. 

16.6.4 Relation of frequencies and durations to MTTF, MTTR, MTBF 

It is worthwhile recalling that we have used durations for a 2-state 

model in module U12, where we saw that MTTF=1/λ and 

MTTR=1/, where λ and  were the failure and repair rates 
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(intensities), respectively. These expressions are consistent with 

(U16.33) where MTTF=T1, MTTR=T2, λ= λ12, = λ21, and there is 

only one term in the summation of (U16.33).  

It is also useful to consider (U16.27), fj=1/Tc, for the 2-state model. 

In this case, Tc=T1+T2=MTTF+MTTR, so that 

MTTRMTTF
ff




1
21  

We can also define here the mean-time-between-failures as  

MTBF=MTTF+MTTR 

so that clearly,  

MTBF
ff

1
21   

Here we see that the MTBF is the entire cycle time for the 2 state 

model, i.e., MTBF=Tc=T1+T2. We also see, once again, that the 

state 1 frequency is the same as the state 2 frequency, since the 

number of times it leaves from state 1 is the same as the number of 

times it enters into state 2. 

U16.7 Analysis of a multistate model 

We consider a three-phase transformer comprised of three single-

phase transformers with one spare single phase transformer [5], 

characterized by the following information: 

 The failure rates of the single phase transformers, including the 

spare, are the same, denoted by λ. 

 Only a single repairman is available (so only 1 transformer may 

be repaired at a time), and it is his job to first get the spare 

installed as soon as one transformer fails, and second, after 

installing the spare, to repair the failed transformer. 

 The transition rate for installing the spare is  and that of 

repairing a failed transformer is . 
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 Define failure as having fewer than 3 transformers up (ignoring 

the possibility of operating them open-delta). As soon as fewer 

than three transformers are up, it is assumed that the whole bank 

is removed from service and no further failures can occur. 

Our goal is to compute the long-run probabilities. The states are 

identified according to the following reasoning: 

 The initial state is assumed to be 3 units up, 1 spare. We denote 

this as state 1. 

 As a result of our definition of failure, the only failure state is 

one in which 2 units are up with no spare. Denote this as state 4.  

 There are two other states: 

o From state 1, one unit may fail, leaving the system with 2 

units up and 1 spare. This state we denote as state 2. 

Because there are three banks that may fail, the transition 

rate from state 1 to state 2 is 3λ. Also, we note that from 

state 4, the repairman may repair a failed transformer so 

that the system transitions from 4 back to 2. 

o From state 2, the repairman can install the spare, leading 

to a state where 3 units are up, with no spare. 

o From state 3, the system may either return to state 1 via 

repair of a failed transformer or it may transition to state 4 

as a result of failure of one of the transformers. 

The state space diagram for this system is illustrated in Fig. U16.6. 
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3λ 3λ 

 STATE 1 

3 units up, 

1 spare 

STATE 2 

2 units up, 

1 spare 

STATE 3 

3 units up, 

0 spare 

STATE 4 

2 units up, 

0 spare 

 

Fig. U16.6: State Space Diagram for Transformer Bank with Spare 

Our first step is to set up the transition intensity matrix. This is: 
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Recall that we may obtain long-run probabilities from (U16.22), 

repeated here for convenience: 
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Also recall that we know that A is singular, so we need to 

eliminate one of the equations and replace it with  
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p1,+p2,+p3,+ p4,=1 

This amounts to replacing one column in A with a column of 

“ones,” simultaneous with replacing the corresponding zero in the 

row vector of the left-hand-side with a 1, resulting in: 
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Lets solve it for several different sets of data. We specify the data 

in terms of failure rate per year for each transformer, repair time in 

hours, and the install time in hours. It is important to convert all of 

the data into the same units, according to the following: 

λ=failure rate per year/8760 

 =1/(repair time in hours) 

 =1/(install time in hours) 

Results are indicated in Table U16.1.  

Table U16.1: Results for Transformer Example 

Failure 

Rate 

(per yr) 

Repair 

Time 

(hrs) 

Install 

Time 

(hrs) 

p1, p2, p3, p4, 

0.1 1000 50 0.9641 0.0017 0.0330 0.0011 

1 1000 50 0.6744 0.0155 0.2310 0.0791 

1 1000 10 0.6829 0.0031 0.2339 0.0801 

1 200 50 0.9162 0.0168 0.0628 0.0043 

1 200 10 0.9286 0.0034 0.0636 0.0044 
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Note that states 2 and 4 are the ones that we would want to avoid, 

whereas states 1 and 3 are operable. The results indicate that 

failure rates of 1 per year will cause us to see a lot of down time, 

even if we minimize the install time, unless we can minimize 

repair time. 

U16.8 Combining states 

It is often convenient, and possible, to reduce the number of states 

in a Markov model without losing accuracy in the results 

associated with the retained and original results. However, it is 

required, in doing so, that the resulting model remain Markovian, 

i.e., that the transition times remain exponentially distributed.  

Two definitions are necessary first: 

 Internal states are the states to be merged. 

 External states are the remaining states to be retained. 

We will simply state the necessary condition, when combining 

states, such that the model remains Markovian. Proofs are given in 

a variety of textbooks, and in a paper [8] that is convenient to 

power system engineers. The condition is [5]: 

A group of (internal) states can be merged if the 

transition intensities to any external states are the 

same from each internal state. 

Note that the condition puts a requirement on the transition 

intensities out of the internal states but not on the transition 

intensities into the internal states. We call this the merging 

condition. 

Consider that we detect a group of states satisfying the condition. 

Let’s denote the group of states as J such that all states j to be 

merged are internal states and satisfy j  J. The situation is 

illustrated in Fig. U16.8.  
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Fig. U16.8: Combining States 

 

An obvious step to take when merging states is to maintain both 

transitions into the group of internal states and transitions from the 

group of internal states to external states. This is done in Fig. 

U16.8 since states m and n had transitions into and from the states 

in group J before and after the merging.  

The question becomes, however:  

What should be the combined state J probability, frequency, and 

transition intensities, denoted by pJ, fJ, λkJ, and λJk, respectively?  

In denoting the new transition intensities, k may represent any 

external state to which an internal state is connected. In Fig. U16.8, 

k=m and k=n. 

16.8.1 State Probability 

The events corresponding to the random process being in any of 

the internal states j  J are mutually exclusive, as a result of this 

being a Markov process (which requires states to be mutually 

exclusive, i.e., the process cannot reside in more than one state at a 

time).  

As a result, the state probability for combined state J is given by: 




 
Jj

jJ pp ,,    (U16.34) 
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16.8.2 State frequency 

The frequency of the new state J, fJ, is the total of the frequencies 

of leaving an internal state j for an external state k, and therefore 


 


Jk Jj

jkJ ff
    (U16.35) 

By (U16.29), fjk=λjk pj,, the above may be expressed as 
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                                (U16.36) 

Note that the first summation cannot be replaced by eq. (U16.34) 

since the second summation is different for each term in the first 

summation. 

16.8.3 Transition intensities 

The transition intensities λkJ, and λJk are computed on the basis of 

two requirements on characterizing indices: 

 the frequencies of transfer from external state k to J, fkJ, must be 

the same as that from external state k to all the internal states j 

before their combination, meaning: 





Jj

kjkJ ff
 

and replacing the frequencies on both sides by pλ, we get: 
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   (U16.37) 

 the transitions from J to k must be the same as  





Jj

jkJk ff
 

and again replacing the frequencies on both sides by pλ, we get: 
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jkjJkJ pp ,     
   (U16.38) 

where, this time, we cannot remove pj from the summation as 

we did in (U16.37), so, in solving for λJk, we obtain: 
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   (U16.39) 

If the merging condition is satisfied, that all the λjk are the same, 

then it is just a constant within the summation and can therefore 

be factored from the numerator of (U16.39), resulting in: 

jkJk            (U16.40) 

Note the difference between eq. (U16.40) and the merging 

condition. The merging condition requires λjk to be the same for 

all j in J in order to merge, whereas eq. (U16.40) indicates what 

the resulting transition rate from the merged state should be 

after merger. 
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Therefore, (U16.37) and (U16.40) result in the following general 

rule for merging states [10]: 

Rule 1: When two (internal) states have identical transition 

rates to common external states, those two states can be 

merged into one. Entry rates are added. Exit rates remain 

the same. 

It should also be mentioned that a state diagram representing a 

Markov model may also include states which have entry transitions 

but no exit transitions, i.e., once that state is reached, the process 

will never depart. Such states have 1.0 transition probability to 

themselves and are called absorbing states. For example, 

catastrophic failure states are often modeled as absorbing states. If 

a state diagram consists of multiple absorbing states, then they may 

be combined into a single state. Obviously, absorbing states satisfy 

the merging condition (which is captured in rule 1), since they 

have no transitions to other states. So we arrive at a version of rule 

1 that is specialized for the case of absorbing states.  

Rule 2a: Multiple absorbing states may be merged into a 

single state. Entry rates from the common external states 

are added.  

Another special case of rule 1 which deserves mention is when a 

non-absorbing state makes transition only to an absorbing state. In 

this case, the two states still satisfy rule 1 because they have no 

transitions to any external states (note that rule 2a covers the case 

when two states have no transitions to any state). They may 

therefore be combined according to rule 2b: 

Rule 2b: An absorbing state may be combined with a 

nonabsorbing state if the nonabsorbing state may 

transition only to the absorbing state and no external state. 

In this case, entry rates from the common external states 

are added.  
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The above three rules preserve model integrity, and calculations 

for external states will be the same as what would have been 

obtained without the model simplifications.  

One final comment should be made here. It is typical that the states 

are classified according to some criteria. The most basic and most 

common criterion is whether the state is a success state or a failure 

state, but it is possible and not uncommon to have more than just 

two classifications. For example, there may be multiple failure 

modes making it desirable to classify failure states according to 

which failure mode it corresponds. In such a case, one would 

typically not want to combine states of different classes since there 

was apparently some original motivation to distinguish between 

them, and once they are combined, it is no longer possible to do so. 

So we have a final rule: 

Rule 3: Two states satisfying rules 1, 2a, or 2b should be 

combined only if they are of the same state classification. 

Example [11]: Use our rules to simplify the state diagram of Fig. 

U16.9. 
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Fig. U16.9: Example for combining states 

 

In Fig. U16.9, there are two identifiers within each state circle. The 

top one indicates the state ID, i.e., S0, S1, …. The bottom one 
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indicates the class to which the state belongs; in this case, possible 

classes are 1, 2, or 3.  

One recognizes states S3 and S4 immediately as absorbing states 

and therefore, according to rule 2a, they are candidates for 

combining. We may do so without violating rule 3 since the two 

states are both of class 3 and therefore of the same class. There are 

not common entry states so there is no need to add entry rates. The 

resulting model following combination of states S3 and S4 is given 

in Fig. U16.10. 
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Fig. U16.10: After combining states S3 and S4 into S3’ 

 

We note from Fig. U16.10 that S2 has transition only to S3’, which 

is an absorbing state, and therefore, according to rule 2b, they are 

candidates for combining. We may do so without violating rule 3 

since the two states are both of class 3 and therefore of the same 

class. There is a common entry state, S1, so we must add the 

corresponding entry rates from S1: 0.2+0.1=0.3. The resulting 

model following combination of states S2 and S3’ is given in Fig. 

U16.11, which represents the most simplified model for this 

example. 
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Fig. U16.11: After combining states S2 and S3’ into S3’’ 

U16.9 Construction procedure for Markov models 

The most important aspect to developing good Markov models, 

and probably to developing good models of any type, is to 

understand the physical system being modeled. Without a thorough 

and proper understanding of the system, further model 

development is not typically fruitful, although the effort of doing 

so may lead to increased understanding of the physical system. If 

the analyst finds that understanding of the physical system is 

lacking, then time should be taken to gain this understanding. 

Typically, this begins with a significant amount of reading 

documents that describe the system – e.g., books, papers, manuals, 

etc. An on-site visit to view the system is a must. Discussions with 

knowledgeable people, face-to-face if possible, are extremely 

useful. Subsequent activities stemming from these steps, that can 

facilitate obtaining this understanding, are described in the 

following subsections. There can be considerable overlap in the 

activities described in these subsections. 

U16.9.1 Failure definition 

Perhaps the most important step is to identify what it means for the 

overall system to fail. This can be hard, when the system has the 

characteristic that it may continue to operate at a lower 

performance level while in a degraded state. Is the degraded state 

a failure, or not? In large scale power systems, a loss of 
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continuity between source and load almost always constitutes a 

failure, and there are various other levels of refinements to power 

system failure criteria, e.g., in terms of circuit loading, bus 

voltages, etc. In fact, most power systems operate under well-

defined industry-developed reliability criteria, which typically 

serve well to guide the answer to this question. 

Such explicit criteria may not be available for smaller, more self-

contained systems, and so, in such cases, one must develop the 

failure criteria. In this case, one suggested rule [10] is “needed 

functions must be accomplished in the needed time period.” If the 

system, while in the degraded state, is able to do this, then it is not 

a failed state. 

16.9.2 Perform a system-level FMEA analysis 

Identifying all individual system components, their function(s), 

how they are intended to operate, and how they may fail. This step 

is typical of what is called a failure modes and effects analysis (a 

bottom-up approach), and there are a number of good references 

that are useful in guiding such effort. The end result should also 

include the system effects of each failure mode for each 

component, the criticality, or severity, of those effects, and the 

transition rate for each failure mode. 

16.9.3 Categorize failures 

Different failure modes may be categorized or classified according 

to their system level effect and criticality. A typical classification 

is whether each failure is “success” or “failure” from an overall 

systems point of view. In some cases, there may be different 

graduations between these two extremes such that there are a 

number of different classes of interest (see the related discussion in 

Section 16.8.3 above). 

This step is sometimes called a “failure effects analysis” [5]. It is 

perhaps the most important, and often the most computationally 

intensive, step of the entire procedure.  
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The power system engineer is able to appreciate this last statement 

when considering all of the possible topological states of a large-

scale power system such that a state is defined by the identity of 

the elements (circuits and generators) that are in service. If we 

desire to classify these states in terms of failure or working, where 

failure is defined as all voltages within a desired acceptable band 

and all flows below a desired acceptable circuit rating, then we 

would have to run a power flow computation for every single state.  

16.9.4 Develop the Markov model 

Markov model construction begins from a successful state – i.e., a 

state where all components are operating. Then begin identifying 

other states using the following rule: “For any successful state, 

list all failure rate categories for all successful components.” 

Once all successful states and their transition to failure states have 

been identified, then the model is completed by drawing in all 

necessary repair transitions.  

16.9.5 Simplify the model 

Absorbing and transition states should be merged according to the 

rules for combining states as specified in Section 16.8.  

16.9.6 Solve for the state probabilities 

Develop the transition intensity matrix A and then use it to solve 

for the state probabilities. If only long-run state probabilities are 

desired, then one may simply solve (U16.22) involving only linear, 

algebraic equations. If one wants the transient state probabilities as 

well, then the differential equation (U16.10) must be solved, which 

may be done in one of three ways: 

 LaPlace Transforms: This approach results in a rigorous 

analytical expression and is quite desirable. However, it is 

typically only tractable for models with a small number of 

states. 



Module PE.PAS.U16.5 Markov models for reliability analysis 42 

 Numerical integration: This is a certain and complete solution 

procedure that, if properly implemented on a computer, will 

provide the solution.  

 Transition matrix: This approach is, although approximate, as 

good as the numerical integration approach if the time 

increment is chosen to be very small. It has the advantage of 

being the simplest approach of the three.   

16.9.7 Computing the reliability indices 

One the state probabilities are obtained, we may compute class 

probabilities, frequencies, and durations associated with any 

particular group of states. If the class of interest is that 

corresponding to “failure,” then we obtain the failure state 

probability (otherwise known as the probability of failure), the 

failure state frequency (how frequently the system fails), and the 

failure state duration (how much time the system is expected to 

reside in the failed state). 

Class Probabilities: Assume that class C contains n states jC. 

Then the probability of residing in one of the class C states is the 

probability of residing in state j1 or j2 or j3 or … or jn. Since all 

Markov states are mutually exclusive, this is simply the summation 

of the individual probabilities, as implied by (U16.34), so that 




 
Cj

jC pp ,,    (U16.41) 

Class frequency: The class frequency fC is the frequency for which 

the system resides in the class of states C. It is computed by 

(U16.36) according to: 

 
 


Cj Ck

jkjC pf ,     (U16.42) 

One can understand fC as the sum of the class C state probabilities, 

each multiplied by the rate of transitions from the respective state 
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to a state of another class. If there were only two classes, success 

W and failure F, then fF would be the sum of the system failure 

state probabilities, each multiplied by the rate of transitions from 

the respective state to the success domain [5]. Alternatively, fC is 

the sum of {the expected number of transfers from the class C 

states 
Ck

jk (which is a sum of conditional probabilities) 

multiplied by the probability of being in that Class C state ,jp }.  

Class mean duration: The class mean duration TC is the expected 

amount of time, i.e., the mean time, for residing in states of class 

C. From (U16.28) we have that TC=pC,/fC, and on substitution of 

(U16.41) and (U16.42), we have: 
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16.9.8 Example 

An interesting illustration of Markov model construction is given 

in the appendix. There are 4 classes of states identified. The state 

probabilities are obtained using the transition matrix approach. 

This illustration was obtained from [12], originally taken from 

[11]. 

U16.10 Truncating the state space 

One can recognize an underlying philosophy behind the procedure 

of Section 16.9, where we identify all states that the process may 

possibly visit, classify them, construct the Markov model, and then 

compute indices associated with the states within certain classes of 

interest. This approach is sometimes referred to as the state 
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enumeration approach since we must enumerate all of the states in 

order to classify them.  

In principle, there is nothing wrong with this approach. In practice, 

however, it suffers from the fact that in many kinds of systems, the 

number of states can be extremely large, and their complete 

enumeration can be very tedious. As a result, it is of interest to 

look for ways to reduce the state space. If one thinks of the state 

space in terms of a growing “tree” of states on a piece of paper, 

where the tree grows from left to right, then our task can be viewed 

as an effort to truncate this tree so that many states, and thus much 

evaluation work, are eliminated. In this sense, then, we are 

attempting to truncate the state space. 

The fundamental concept behind state space truncation is to 

eliminate states that have probabilities not significantly affecting 

the desired reliability indices. This can save much computational 

time as it means that we eliminate the need to classify many of the 

states (and thus the need to analyze them using some 

computationally intensive tool such as, for example, the power 

flow program). 

A note of care, however, is in order. The above stated concept does 

not necessarily mean that we simply eliminate low probability 

states – but rather, we eliminate the states that do not significantly 

affect the desired reliability indices. If our desired reliability 

indices are probability, frequency, and duration of system failure, 

then we need to eliminate states that do not significantly affect 

these indices. The point is that a low probability state may actually 

comprise a significant portion of the total system failure 

probability. 

Reference [5] provides a very illuminating example in regards to 

this point, which we also describe here. 

Consider a system comprised of N identical, independent 

components (e.g., transmission circuits) such that the availability 

of each component is A (long-run probability of being in the 
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working state) and the unavailability is 1-A (long-run probability 

of being in the failed state).  

The probability of a state where r out of N components have failed 

is the product of the probability that r out of N components have 

failed and the probability that the remaining N-r components have 

not: (1-A)rAN-r. Since the number of ways that r out of N identical 

components can fail is given by N!/r!(N-r)!, the probability of 

residing in a state having r failed components, called an r-fold 

failure, is given by a binomial distribution according to: 

rNr
r AA

rNr

N
p 


 )1(

)!(!

!
   (U16.44) 

Let N=35 and A=0.9. The probability distribution for r=1,…r=9 is 

shown in Figure U16.12. 
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Fig. U16. 12: Probability distribution for r-fold failures [5] 
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It is clear that states consisting of more than about 7 failed 

components constitute a very small portion of the total state space 

probability. 

We are mainly interested in, however, for each of the r-fold failure 

states, the percentage for which are system failures. Call this Fr. In 

order to determine this, we need to understand the system, what it 

means to fail, and how to detect the system failure. In a power 

system, for example, we would need to run the load flow program 

for each state to determine the failure. 

Let’s avoid tedious discussion of this kind of analysis and simply 

assume that Fr, the proportion of states in each set of r-fold failure 

states that are system failures, increases linearly between some r=r1 

and some r=r2, such that for r<r1, there are no system failure states 

and for r>r2, all states are system failure states.  

This is actually quite representative of many systems. In a power 

system, for example, it might very well be the case that no N-1 or 

N-2 contingency causes system failure, but all N-k contingencies, 

k>6, do cause system failure. 

Let r1=2 and r2=6. Then we can observe how Fr, the proportion of 

system failures in each set of r-fold failure states, according to 

shaded regions of the bars in Fig. U16.13, increases with r. The 

actual value of the probability of system failure for each set of r-

fold failure states is pF3=Frpr. We see clearly that r12 has no 

system failures and r26 has only system failures. 
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Fig. U16.13: Probability distribution for r-fold failures [5] 

 

Fig. U16.13 illustrates that although the sets of r=8- and r=9-fold 

failures comprise small portions of the total state probabilities,  

perhaps 3%, they comprise much larger portions of the total 

system failure probabilities (as a percentage of the total blackened 

portion) – about 9%. 

One common approach to state-space truncation is to analyze only 

failures for r=1, …, r=r0, where r0 is chosen so that for r>r0, the 

corresponding system failure states have such low probability that 

they do not affect the total system failure probability. A well-

known example of this in power systems is when analyses are done 

only for so-called N-1 (r0=1) or possibly N-2 (r0=2) contingencies 

only, excluding N-3 and higher order contingencies. 

Consider indexing the spread of r-fold failures that contain both 

success and failure states as m=r2-r1. For the example of Fig. 

U16.12 and U16.13, r1=2 and r2=6, so that m=4, i.e. there are      
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m-1=3 levels of r-fold failures that contain both success states and 

failure states. 

Let’s define an error associated with selecting a particular r0 for 

truncating the state space as: 
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Let’s assume that an error of 10% (=0.10) is acceptable, and 

identify the minimum truncation level r0 that would satisfy this 

error. In the example of Fig. U16.12 and U16.13, where N=35, 

m=4, 1-A=0.01, the minimum truncation level would be 7, since 

we already observed for the 8- and 9-fold failures comprise about 

9% of the total system failures.  

Repeating this analysis for different values of N, A, r1,and  m 

results in Table U16.2. In inspecting this table, one should be clear 

regarding the various terms, repeated here for convenience: 

 r1: highest level of r-fold failures that cannot cause system 

failure. 

 m: indexes the spread of r-fold failures that contain both success 

and failure states. 

 r0: minimum truncation level necessary to achieve 10% error. 

For example, inspection of the Table U16.2 element corresponding 

to  N=35, 1-A=0.1, r1=2, and m=4, indicates r0=7, implying that for 

a system size of 35 components, each of which have unavailability 

of 0.1, if system failures only occur for more than 2 component 

failures (N-k, k>2) and always occur for 2+4=6 or more 
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component failures (N-k, k>6), then one must analyze up to the 7 

component failures (N-k, k<7) to achieve 10% accuracy. 

Table U16.2: Minimum truncation levels for 10% error [5] 

 

1-A 

 

r1 

Minimum truncation level (ro) for 10% error 

N=10 N=35 N=100 N=1000 

m=4 m=8 m=4 m=8 m=16 m=4 m=8 m=16 m=16 m=160 

 

 

0.1 

1 4 4 6 7 7 14 14 15 - - 

2 4 4 7 7 7 14 14 15 - - 

3 5 - 7 8 8 14 14 15 112 113 

30 - - - - - - - - 112 113 

 

 

0.01 

1 2 2 3 3 3 4 4 4 - - 

2 3 3 4 4 4 5 5 5 - - 

3 4 - 5 5 5 5 5 5 15 15 

30 - - - - - - - - 33 33 

 

 

0.001 

1 2 2 2 2 2 2 2 2 - - 

2 3 3 3 3 3 3 3 3 - - 

3 4 - 4 4 4 4 4 4 5 5 

30 - - - - - - - - 31 31 

 

One can draw the following conclusions from Table U16.2: 

 The level r0 appears to be fairly insensitive to m, suggesting that 

the level r0 would be fairly insensitive to other models of pFr that 

might be used in place of the linear one used in this analysis. 

 The level r0 is heavily influenced by system size N and 

component unavailability 1-A.  
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o If the unavailability is high, e.g., on the order of 0.1, then 

large systems require very large r0, i.e., such systems 

require analysis of N-k failures with k very large in order 

to achieve accurate results. 

o If the unavailability is low, e.g., 0.001 or less, then 

reasonable accuracy requires significantly lower levels of 

r0, even for large systems. Fortunately, this is usually the 

case for bulk power transmission systems. 

 The level r0 is also influenced by r1. In most bulk transmission 

systems today, under stressed, but secure conditions, it would 

be the case that r1=1, indicating that we could only guarantee no 

system failures for N-1 contingencies. 

It is of interest to consider the effect of truncation on 

computational intensity, as characterized by the number of system 

states to be evaluated, s. If no truncation is performed, then all 

system states must be evaluated, so that is s=2N. If truncation is 

applied up to level r0, then the number of states to be evaluated is 

given by 


 


0

0 )!(!

!r

r rNr

N
s

   (U16.46) 

(It can be shown that the above evaluates to 2N if r0=N). It is of 

interest to plot the dependence of s associated with a particular r0 

to achieve a desired level of accuracy against the number of 

components. Such plots are provided on a logarithmic scale in Fig. 

U16.14 [5] for systems of size 10 up to N=100. These plots were 

developed using a linear model for Fr, with r1=2 and r2=8. 
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Fig. U16.14: Number of states to be evaluated, s, for a given error 

 and component unavailability 1-A [5] 

 

One observes from Fig. U16.14, that: 

 The case of no error (=0), where s=2N, is independent of (1-A). 

 With (1-A)=0.08, s increases almost exponentially with N, even 

with high error allowed (=0.5). 

 With lower values of (1-A), i.e., 0.01 and 0.001, the increase in 

s with N is no longer exponential and tends to be almost flat for 

large values of N. 

As a final comment in this section, another method to save on 

computations is to restrict the states to be evaluated to the so-called 

minimal-cut states [5]. These are the failed states for which any 

repair transition (repair of any failed component in that failed state) 

will result in a success state. Thus, we see that the repair of any 

one of the components restores the system to the working 

condition, and as a result, such states are rightfully called 

minimum cut states. It is possible to show that the summation of 

minimum cut state probability is a lower bound on system failure 

probability. We investigate this further in a later module. 
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U16.11 Standby: effect of hidden failures/maintenance 

Reference [5] provides an interesting example that illustrates the 

power of Markov models together with some insights regarding the 

effects of hidden failures and maintenance when a standby unit is 

available.  

Consider a substation having a main transformer C and a standby 

transformer D, where the standby unit cannot fail when it is not in 

service, and it is ready for service each time it is called upon to 

operate (so no installation time). The state-space diagram of this 

system is shown in Fig. U16.15. The only system failure state is 

state 4. 
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Fig. U16.15: State space diagram of substation with standby 

transformer [5] 

The transition intensity matrix is given by: 
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To solve for the long-run probabilities, we use (U16.22), which is 

0=pA together with ∑p,i=1 to obtain the state probabilities. It is 
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easiest to do numerically on a computer, but one may also extract 

the equations, do some tedious algebra, and, on applying the 

assumptions that  

a. the probability of being is the normal state (state 1) is very high, 

i.e., p11, and 

b. all repair rates are much greater than all failure rates, i.e.,        

λC, λD<< C, D,  

it can be shown then the probability of system failure, which is p4, 

is given by 
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By (U16.31), repeated here for convenience,  
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we have that the failure frequency, which is f4, is given by 
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If the repair rate of both transformers is the same, i.e., C=D, then 

we obtain: 
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Module PE.PAS.U16.5 Markov models for reliability analysis 54 

It is interesting to compare the results (U16.47b) and (U16.48b) 

with a slightly different situation where, instead of a standby unit, 

both units are operating, in which case, we may have a transition 

from state 1 to state 3 with intensity λD. Analysis of this situation 

results in [5] 
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If we apply here λC, λD<< C, D, with C=D we obtain 
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where we see that the probability and frequency of failure (both 

units down) in the standby system are half the corresponding 

values in a system where the same two transformers are 

continuously operating in the normal state. The improvement in 

reliability is due to the fact that the standby unit cannot fail when it 

is not in service, i.e., when the system is in the normal state 1. 

Let’s extend our standby example illustrated in Fig. U16.15 to 

include the possibility that the spare transformer fails when it is not 

operating. Such a failure mode might be rightfully termed a hidden 
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failure since the transformer failure state would remain undetected 

until the transformer was needed and put into service. It is known 

that such situations are not uncommon for certain kinds of 

protection systems. 

We model this situation using the following two assumptions: 

 The hidden failure may occur only during the time when the 

main unit, C, is operating and the spare unit, D, is off-line in 

standby. (If the hidden failure occurred during unit D operation, 

then it would not be a hidden failure. Although, in actuality, the 

hidden failure may occur during the repair mode (state 3), it is 

convenient to assume that such failures are only manifested 

once the unit goes back into standby mode, so that a hidden 

failure may only occur from state 1. We denote the transition 

intensity of hidden failure as h. 

 Once the hidden failure occurs (from state 1), then the failure 

state is reached only on occurrence of failure to unit C, with 

transition intensity C. 

The resulting state diagram is illustrated in Fig. U16.16. 
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Fig. U16.16: State space diagram of substation with standby 

transformer and hidden failure [5] 

The transition intensity matrix for the model shown in Fig. U16.16 

is given as: 
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Again, we solve for the long-run probabilities, using (U16.22), 

which is 0=pA together with ∑p,i=1 to obtain the state 

probabilities. Extracting the equations, and doing some tedious 

algebra, and, again applying the assumptions (a) and (b) (p11 and 

λC, λD<< C, D), we obtain the relations: 
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The reliability of standby device can be improved by periodic 

inspection and preventive maintenance of it. A standby model 

including the effects of an “inspection/maintenance” program is 

illustrated in Fig. U16.17, where only the standby device is 

inspected and maintained. We assume that the 

“inspection/maintenance” activity on the spare is carried out only 

during the time period when the main unit is up and the spare unit 

is not failed, which means we may transition to an 

“inspection/maintenance” state from only states 1 and 5. 
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The difference between transitioning to a maintenance mode from 

state 5 and transitioning to a maintenance mode from state 1 is that 

in state 5, a hidden failure does in fact exist, whereas in state 1, it 

does not. Therefore, from state 5, we go to state 3, which is a state 

where the spare is “down” and must be repaired with repair rate 

μD. In contrast, from state 1, we go to state 6, which is a state 

where the spare is not “down” but just in maintenance and 

therefore returns to state 1 NOT with repair rate μD but with 

maintenance rate μM. It should be the case that μD<<μM (mean time 

to repair should be significantly greater than the mean time to 

maintain). 
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Fig. U16.17: State space diagram of substation with standby 

transformer, hidden failure, maintenance, and inspection [5] 

In the model of Fig. U16.17, state 6 represents the state where the 

standby device is undergoing maintenance while the main unit is 

still operating. It is possible, of course, that during this 

maintenance, the main unit, C, may fail, in which case it transitions 

to state 7.  

From state 7, since the main unit is failed, we transition to state 2 

upon completion of the maintenance, where the spare is in service. 

Fig. U16.17 also illustrates that the spare has a hidden failure when 

it is inspected/maintained, as indicated in the transition from state 

5 to state 3.  
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The system failure states are now 4 and 7. 

The transition intensity matrix for the model shown in Fig. U16.16 

is given as: 
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Again, we solve for the long-run probabilities, using (U16.22), 

which is 0=pA together with ∑p,i=1 to obtain the state 

probabilities. Extracting the equations, and doing some tedious 

algebra, and, again applying the assumptions (a) and (b) (p11 and 

λC, λD<< C, D) together with the additional assumptions that  

c. The transition rate for hidden failures in the spare is much lower 

than the transition rate for normal failures in the main unit, i.e., 

λh<< λC,  

d. All repair rates are much greater than the maintenance rate, i.e., 

λm<<C, D. 
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Equation (U16.55), normalized by λh, is plotted against λm 

normalized by λC, for different values of = λCTm.  
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Fig. U16.18: Effect of maintenance on system failure frequency [5] 

Conclusions that can be drawn from these curves are: 

 Reduction of fF can be achieved through reducing the mean 

duration of maintenance Tm. Since Tm=T6= 1/(μm+λc), we can 

achieve this by increasing μm (we have no control over λc). 

 At the same time, the maintenance rate λm must be set to an 

optimal value, which depends on γ=λcTm.  

Note that if Tm is large, an increase of the maintenance rate only 

increases the system failure frequency, implying that if you require 

a lot of time to perform the maintenance, performing maintenance 

frequently is not a good idea since the system will be exposed, for 

an extended period (the maintenance period) to a situation where a 

single component failure causes system failure.  

It is evident that, in general, frequent short-term inspections 

(relatively high λm) allowing for relatively few maintenance 

overhauls of longer duration (low Tm) will improve system 

reliability.  

The ability to model the influence of inspection and maintenance 

on failure is an important but complex subject of great current 
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interest. For example, the model illustrated in Fig. U16.19 allows 

representation of inspection, maintenance, and deterioration in a 

component together with associated decision-making processes. 

We will not have time to discuss this model further, but the 

interested reader can refer to [13, 14]. 

 

Fig. U16.19: Advanced Model for Maintenance/Inspection Effects 

U16.12 First passage times 

A final topic that we wish to mention in this module is that of first 

passage times. The first passage time is the expected value of the 

amount of time the process will take to transition from a given 

state j to another state k, under the assumption that the process 

begins in state j. The computation is facilitated by forcing state k in 

the model to be an absorbing state. The method of computing first 

passage times is provided in [4]. Also, reference [15] discusses this 

issue from a power system reliability perspective and describes in 

very readable terms two different methods for computing it. 
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Appendix Markov Model Example 

The typical power plant, in which a GRS is installed, features high generation capacity 

and multiple generation units, interconnected to the system by two or more transmission 

lines. Without GRS, disturbances resulting in decreased transmission capacity may cause 

an out of step condition at the plant during high loading conditions. Any circuit that 

initiates GRS action during a forced outage condition is defined as a critical circuit. A 

properly designed GRS, activated by outage of any critical circuit, will trip a limited 

amount of generation at the plant in order to avoid out of step conditions for the 

remaining units [A.1-A.9]. Figure A.1 shows a portion of the IEEE Reliability Test 

System [A.10] together with an illustration of the GRS logic. Line 12--13 and line 13--23 

are critical lines. Without GRS, outage of either of these two transmission lines may 

result in a plant-out-of-step condition. To improve the transient stability performance of 

this plant, a GRS is installed. When the GRS detects a line outage on either of these two 

lines, it trips promptly only one generator to keep the other two generators in service. The 

GRS logic is simple: when there is a fault on a critical line, the breakers on this line open; 

an «open» signal (high level signal) from any breaker energizes the output of the OR 

gate. The high level signal from the OR gate output, together with the high level arming 

signal, sets the AND gate output in high level, which is input to the 2 out of 3 voting 

scheme. When two or more of the voting scheme input signals are high, the voting 

scheme output signal is high; otherwise, it is low. The high level signal from the voting 

scheme will trip the selected generator. Here, it is assumed that breakers and the voting 

scheme are fully reliable. Breakers are external to GRS; so assuming they are 100% 

reliable helps to isolate the GRS influence. Their failure potential can be included in this 
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analysis if desired. The voting scheme is assumed fully reliable to simplify the illustration 

process.  

 
Figure A.1. GRS logic circuit and voting scheme. 

 

 

 

 

 

 

 

1. Describe the system: 
The logic diagram has been already developed as Figure A.1. There are four GRS 

input events, corresponding to four initiating events, as shown in Table A.1. 

 

Signals to SPS Logic 

Event I1 I2 I3 I4 Probability 

E1 1 1 0 0 )FPr()FPr()EPr(
211

  

E2 0 0 1 1 )FPr()FPr()EPr(
212

  

E3 0 0 0 0 )FPr()FPr()EPr(
213

  

E4 1 1 1 1 )FPr()FPr()EPr(
214

  
Table A.1. Event input mapping table. 

 

2. Complete a system level FMEA: 
System states are represented by the combinations of states of 

all system components. Given defined modes, e.g.,  

 0 -- normal mode l. 

 1 -- failure mode 1. 
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 2 -- failure mode 2. 

The AND and OR gates have the following two failure modes:  

 1 -- the output of the component is "stuck" to 1. 

 2 -- the output of the component is "stuck" to 0. 

Thus, the FMEA as shown in Table A.2, which also shows the 

assumed failure rates, is created. 
 

Failure Mode and Effective Analysis (FMEA) 

Component Failure 

mode 

Failure 

effect 

Failure rate (per day) 

OR 1 Constant 1 1=0.0003/365 

OR 2 Constant 0 2=0.02/365 

AND 1 Constant 1 3=0.0003/365 

AND 2 Constant 0 4=0.02/365 
Table A.2. FMEA list for the illustration system. 

 

3. Develop the Markov Model: 
Four digits d1d2d3d4 are used to code the state of the system. 

The digit d1 represents the state of component OR (0-normal, 1-

failure mode 1, 2-failure mode 2). Digits d2, d3, and d4 represent 

the state of the three components ANDs (0-normal, 1-failure 

mode 1, 2-failure mode 2). By this definition, the following 

34=81 states are obtained,  

 0000 0001 0010 0100 0002 0020 0200 1000 2000 

 0011 0101 0110 0021 0201 0012 0102 0210 0120 

 1001 1010 1100 2001 2010 2100 0022 0202 0220 

 1002 1020 1200 2002 2020 2200 0111 0211 0121 

 0112 1011 1101 1110 2011 2101 2110 0221 0212 

 0122 1021 1201 1012 1102 1210 1120 2021 2201 

 2012 2102 2210 2120 0222 1022 1202 1220 2022 

 2202 2220 1111 2111 1211 1121 1112 2211 2121 

 2112 1221 1212 1122 2212 2122 2221 1222 2222 

In order to reduce the dimension of the transition matrix, the 

number of system states can be reduced by merging some states 
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as the three ANDs play the same role in the system. The 

criterion is: states that have identical d1 and the same 

combinations of d2, d3 and d4 are considered to be the same 

state and merged. As a result, the number of states is reduced to 

30, according to the following text. 

S0--0000  S1--0001, 0010, 0100 S2--0002, 0020, 0200 

S3--1000 S4--2000 S5--0011, 0101, 0110 

S6--0021, 0201, 0012, 0102, 0210, 0120 S7--1001, 1010, 1100  

S8--2001, 2010, 2100 S9--0022, 0202, 0220 S10--1002, 1020, 1200 

S11--2002, 2020, 2200 S12--0111 S13--0211, 0121, 0112 

S14--1011, 1101, 1110 S15--2011, 2101, 2110 S16--0221, 0212, 0122 

S17--1021, 1201, 1012, 1102, 1210, 1120  

S18--2021, 2201, 2012, 2102, 2210, 2120 S19--0222 

S20--1022, 1202, 1220 S21--2022, 2202, 2220 S22--1111 

S23--2111 S24--1211, 1121, 1112 S25--2211, 2121, 2112 

S26--1221, 1212, 1122 S27--2212, 2122, 2221 S28--1222 

S29--2222 

Here, S=S0,S1,...,Sn represent a state space of the GRS, where 

Sj is a set of mutually exclusive and exhaustive states. Further, 

each of the above states can be classified into one of the 

following C1, C2, C3 and C4 categories based on the response of 

each system state to system input events, 

 C1 -- If the input is an active signal, then the GRS trips 

successfully; if the input is an inactive signal; then the GRS has 

a nuisance trip. 

 C2 -- If the input is an active signal, then the GRS trips 

successfully; if the input is an inactive signal, then the GRS 

does not trip. 

 C3 -- If the input is an active signal, then the GRS fails to 

trip; if the input is an inactive signal; then the GRS has a 

nuisance trip. 

 C4 -- If the input is an active signal, then the GRS fails to 

trip; if the input is an inactive signal, then the GRS does not 

trip. 
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For example, S3 and S5 are both in C1 because when the GRS is 

in state S3 or S5, the GRS trips successfully if the input is an 

active signal, and it has a nuisance trip if the input is an inactive 

signal. Similar thinking leads to the following: 

 C1 -- S3,S5,S7,S10,S12,S13,S14,S15,S17,S22,S23,S24,S25. 

C2 -- S0, S1, S2, S6.  

C3 -- None. 

C4 -- S4,S8,S9,S11,S16,S18,S19,S20,S21,S26,S27,S28,S29. 

Figure A.2 shows the preliminary Markov model for the GRS. 
 

Figure A.2. The preliminary Markov model for the GRS. 
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4. Simplify the Markov model: 
First, the following two concepts are given: 

 A transition state is a state that has non-zero entry transition 

probability from other state(s) and non zero exit transition 

probability to other state(s). 

 An absorbing state is a state that has a 1.0 transition 

probability to itself. 

Then the reduction steps are as follows: 

 Merge absorbing states belonging to the same class. Entry 

transition probabilities are added. 

 For each absorbing state, eliminate all preceding states that 

a) are in the same class Cj as the absorbing state; b) have 

only one exit transition probability. Add the entry 

probabilities as the entry probabilities to the absorbing 

states. 

 Merge all transition states in the same class Cj that have 

identical transition probabilities to common states. Entry 

probabilities are added. Exit probabilities remain the same. 

Following the above reduction steps, the final reduction result 

is shown in Figure A.3. Detailed description of these reduction 

procedures can be found in reference [A.11]. 
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Figure A.3. The final simplification result. 

 

5. Calculate the state probabilities: 

Assume that the failure of the GRS components have 

exponential distributions. Therefore the pdf of component 

failure is tetf  )( , where  is the failure rate per unit time 

interval. Then the probability that the component fails before 

time t is 

tedtetF
t

tt    


0
1)(                   (eq. A.1) 

where the approximation improves as t  gets small. With this 

model, an n+1 by n+1 transition matrix A is obtained, where 

Aik (i=0,1,...,n, k=0,1,...,n) indicates the probability that the 

system transfers from state Si to Sk, and n indicates the state 

number.  
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Assume the probability list at initial time t=t0 is  

)))('Pr())('1Pr())('0Pr((Pr 000

)0( tSntStS    

after m time intervals, the probability list is  

m

mmm
m PtSntStS  )0()( Pr)))('Pr())('1Pr())('0Pr((Pr 

 

The elements in the probability list Pr(i) provide the probability 

that the system is in state Sj (j=1, …, n)  after m time intervals. 

Then the following results are obtained 

44
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By defining the following terms, 
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the following state transition matrix is obtained (note that 

because we numbered the states 0,1,…,13, state k corresponds 

to the k+1 row in the below matrix). 
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Pr(Si(t0)) provides the probability that the system is in state j at 

time t=t0. It is assumed that at initial time t=t0, every 

component is in perfect condition due to inspection or 

maintenance. Therefore 
 

)001(

)))t(SPr())t(SPr())t(SPr((Pr
0130100

)0(








 

 

After m time intervals from initial time t=t0, the probability list 

is 

m

mmm
m

P

tStStS





)0(

)(

Pr

)))(13Pr())(1Pr())(0Pr((Pr 
(eq. A.2) 

For example, if the time interval is chosen as one day, the 

elements in the probability list Pr(365) provide the probability 

that the system is in state Sj (j=1, … , n) after 365 time 

intervals, i.e., one year. Substituting the FMEA data in Table 

A.2 into (eq.A.2) gives 
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)077907.6080186.1

031264.1056896.1031574.1056896.1

075344.2053792.3076384.2028632.1
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Since S3, S5, S7, S10, S12 constitute C1, S0, S1, S2, S6 

constitute category C2, and S4, S8, S9, S11, S13 constitute C4, 

the following results are obtained 
 

04e9691.2)SPr()SPr()SPr()SPr()SPr()CPr(
12107531



 

01e7877.9)SPr()SPr()SPr()SPr()CPr(
62102

  

0)CPr(
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02e0933.2)SPr()SPr()SPr()SPr()SPr()CPr(
13119844



 

 

Figure A.4 shows how the GRS state probabilities change with time.  

 

 
Figure A.4. GRS state probabilities. 
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