Transmission Line Design Information

In these notes, I would like to provide you with some background information on AC transmission lines.

1. AC Transmission Line Impedance Parameters
AC transmission is done through 3-phase systems. Initial planning studies typically only consider balanced, steady-state operation. This simplifies modeling efforts greatly in that only the positive sequence, per-phase transmission line representation is necessary.

Essential transmission line electrical data for balanced, steady-state operation includes:
- Line reactance
- Line resistance
- Line charging susceptance
- Current rating (ampacity)
- Surge impedance loading

Figure 1 below shows a distributed parameter model of a transmission line where $z=r+jx$ is the series impedance per unit length (ohms/unit length), and $y=jb$ is the shunt admittance per unit length (mhos/unit length).
I have notes posted under the lecture for 9/13, at http://home.engineering.iastate.edu/~jdm/EE456/ee456schedule.htm, (called “TerminalRelations”) that derive the following model relating voltages & currents at either end of a line.

\[I(l) = I_1 = I_2 \cosh \gamma l + \frac{V_2}{Z_C} \sinh \gamma l \] \hspace{1cm} (1a)

\[V(l) = V_1 = V_2 \cosh \gamma l + Z_C I_2 \sinh \gamma l \] \hspace{1cm} (1b)

where:
- \(l \) is the line length,
- \(\gamma \) is the propagation constant, in general a complex number, given by

\[\gamma = \sqrt{zy} \] \hspace{1cm} with units of 1/(unit length), (1c)

where \(z \) and \(y \) are the per-unit length impedance and admittance, respectively, as defined previously.
- \(Z_C \) is the characteristic impedance, otherwise known as the surge impedance, given by
\[Z_C = \sqrt{\frac{Z}{y}} \] with units of ohms. \hfill (1d)

And \(\cosh \) and \(\sinh \) are the hyperbolic cosine and sine functions, respectively, given by:

\[
\cosh x = \frac{e^x + e^{-x}}{2}; \quad \sinh x = \frac{e^x - e^{-x}}{2}
\]

Those same notes (“TerminalRelations”) show that equations (1a, 1b) may be represented using the following pi-equivalent line model

Fig. 2

where

\[
Z' = Z \frac{\sinh \gamma l}{\gamma l} \hfill (2a)
\]

\[
Y' = Y \frac{\tanh(\gamma l/2)}{\gamma l/2} \hfill (2b)
\]

and \(Z=zl, \ Y=yl \).
Two comments are necessary here:

1. Equations (2a, 2b) show that the impedance and admittance of a transmission line are not just the impedance per unit length and admittance per unit length multiplied by the line length, \(Z=zl \) and \(Y=y\ell \), respectively, but they are these values corrected by the factors

\[
\frac{\sinh \gamma \ell}{\gamma \ell} \quad \frac{\tanh(\gamma \ell/2)}{\gamma \ell/2}
\]

It is of interest to note that these two factors approach 1.0 (the first from above and the second from below) as \(\gamma \ell \) becomes small. This fact has an important implication in that short lines (less than \(~100\) miles) are usually well approximated by \(Z=zl \) and \(Y=y\ell \), but longer lines are not and need to be multiplied by the “correction factors” listed above. The “correction” enables the lumped parameter model to exhibit the same characteristics as the distributed parameter device.

2. We may obtain all of what we need if we have \(z \) and \(y \). The next section will describe how to obtain them.
2. Obtaining per-unit length parameters

In the 9/6 and 9/8 notes at
http://home.engineering.iastate.edu/~jdm/EE456/ee456schedule.htm

I have derived expressions to compute per-unit length inductance and per-unit length capacitance of a transmission line given its geometry. These expressions are:

Inductance (h/m): \(l_a = \frac{\mu_0}{2\pi} \ln \frac{D_m}{R_b} \)

- \(D_m \) is the GMD between phase positions:
 \[D_m \equiv \left(d^{(1)}_{ab} d^{(2)}_{ab} d^{(3)}_{ab} \right)^{1/3} \]
- \(R_b \) is the GMR of the bundle:
 \[R_b = \left(r'd_{12} \right)^{1/2} \], for 2 conductor bundle
 \[= \left(r'd_{12} d_{13} \right)^{1/3} \], for 3 conductor bundle
 \[= \left(r'd_{12} d_{13} d_{14} \right)^{1/4} \], for 4 conductor bundle
 \[= \left(r'd_{12} d_{13} d_{14} d_{15} d_{16} \right)^{1/6} \], for 6 conductor bundle

Capacitance (f/m): \(c_a = \frac{2\pi \varepsilon}{\ln(D_m / R^c_b)} \)

- \(D_m \) is the same as above.
- \(R^c_b \) is Capacitive GMR for the bundle:
 \[R^c_b = \left(r_d d_{12} \right)^{1/2} \], for 2 conductor bundle
 \[= \left(r_d d_{12} d_{13} \right)^{1/3} \], for 3 conductor bundle
 \[= \left(r_d d_{12} d_{13} d_{14} \right)^{1/4} \], for 4 conductor bundle
 \[= \left(r_d d_{12} d_{13} d_{14} d_{15} d_{16} \right)^{1/6} \], for 6 conductor bundle

The effects of bundling are to increase \(R^c_b \). This tends to increase capacitance and therefore capacitive susceptance of the line.

The effects of bundling are to increase \(R_b \). This tends to decrease inductance and therefore inductive reactance of the line.
In the above, \(r \) is the radius of a single conductor, and \(r' \) is the Geometric Mean Radius (GMR) of an individual conductor, given by

\[
r' = re^{-\frac{\mu_r}{4}} = r \times 0.7788
\]

(3)

It is the radius of an equivalent hollow cylindrical conductor that would have the same flux linkages as the solid conductor of radius \(r \). (According to Ampere’s Law \(\int H \cdot dl = i_{EN} \), the magnetic field is zero if the closed contour \(\Gamma \) encloses no current. Therefore, a solid conductor has flux within the conductor whereas a hollow conductor has no flux within the conductor.)

2.1 Inductive reactance

The per-phase inductive reactance in \(\Omega/m \) of a non-bundled transmission line is \(2\pi f l_a \), where

\[
l_a = \frac{\mu_0}{2\pi} \ln \frac{D_m}{R_b} \Omega/m.
\]

Therefore, we can express the reactance in \(\Omega/mile \) as

\[
X_L = 2\pi f l_a \frac{1609 \text{ meters}}{1 \text{ mile}} = 2\pi f \left(\frac{\mu_0}{2\pi} \ln \frac{D_m}{R_b} \right) \frac{1609 \text{ meters}}{1 \text{ mile}}
\]

\[
= f \left(\mu_0 \ln \frac{D_m}{R_b} \right) \frac{1609 \text{ meters}}{1 \text{ mile}} = 2.022 \times 10^{-3} f \ln \frac{D_m}{R_b} \Omega/mile
\]

(4)

Let’s expand the logarithm to get
\[X_L = 2.022 \times 10^{-3} f \ln \frac{1}{R_b} + \frac{2.022 \times 10^{-3} f \ln D_m}{X_d} \Omega/\text{mile} \]

where \(f = 60 \) Hz. The first term is called the inductive reactance at 1-foot spacing, because it expresses equation (4) with \(D_m = 1 \) foot.

Note: to get \(X_a \), you need only to know \(R_b \), which means you need only know the conductor used and the bundling. But you do not need to know the geometry of the phase positions.

But what is \(X_d \)? This is called the inductive reactance spacing factor. Note that it depends only on \(D_m \), which is the GMD between phase positions. So you can get \(X_d \) by knowing only the distance between phases, i.e., you need not know anything about the conductor or the bundling.

2.2 Capacitive reactance

Similar thinking for capacitive reactance leads to

\[X_C = \frac{1}{f} \times 1.779 \times 10^6 \ln \left(\frac{1}{R_b^c} \right) + \frac{1}{f} \times 1.779 \times 10^6 \ln(D_m) \Omega - \text{mile} \]

\(X_a' \) is the capacitive reactance at 1 foot spacing, and \(X_d' \) is the capacitive reactance spacing factor. Note the units are
ohms-mile, instead of ohms/mile, so that when we invert, we will get mhos/mile, as desired.

3. Example
Let’s compute the X_L and X_C for a 765 kV AC line, single circuit, with a 6 conductor bundle per phase, using conductor type Tern (795 kcmil). AEP considered a similar design a few years ago when they proposed a 765kV transmission overlay for the nation, shown below.

The bundles have 2.5’ (30”) diameter, and the phases are separated by 45’, as shown in Fig. 3. Assume the line is lossless.

Fig. 3
We will use tables from [1], which I have copied out and placed on the website. Noting the below table (obtained from [2] and placed on the website), this example focuses on line geometry AEP 3.

<table>
<thead>
<tr>
<th>Company/Country</th>
<th>Nominal Voltage (kV)</th>
<th>No. of Sub-conductors</th>
<th>Conductor Diameter (cm)</th>
<th>Phase Spacing (m)</th>
<th>Min. Conductor Heights* (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro-Québec 1</td>
<td>735</td>
<td>4</td>
<td>3.50</td>
<td>15.2</td>
<td>15.2</td>
</tr>
<tr>
<td>Hydro-Québec 2</td>
<td>735</td>
<td>4</td>
<td>3.56</td>
<td>12.8</td>
<td>14.1</td>
</tr>
<tr>
<td>AEP 1</td>
<td>765</td>
<td>4</td>
<td>2.96</td>
<td>13.7</td>
<td>12.2</td>
</tr>
<tr>
<td>AEP 2</td>
<td>765</td>
<td>4</td>
<td>3.52</td>
<td>13.7</td>
<td>12.2/13.7</td>
</tr>
<tr>
<td>AEP 3</td>
<td>765</td>
<td>6</td>
<td>2.70</td>
<td>13.7</td>
<td>13.7</td>
</tr>
<tr>
<td>NYPA</td>
<td>765</td>
<td>4</td>
<td>3.52</td>
<td>15.2</td>
<td>15.5</td>
</tr>
<tr>
<td>Fesco</td>
<td>765</td>
<td>6</td>
<td>2.86</td>
<td>15.8</td>
<td>15.0</td>
</tr>
<tr>
<td>FURNAS</td>
<td>765</td>
<td>4</td>
<td>3.20</td>
<td>14.3</td>
<td>13</td>
</tr>
<tr>
<td>EDELCA 1 & 2</td>
<td>765</td>
<td>4</td>
<td>3.33</td>
<td>15.0</td>
<td>14.7</td>
</tr>
<tr>
<td>EDELCA 3</td>
<td>765</td>
<td>4</td>
<td>3.33</td>
<td>13.2</td>
<td>13.7</td>
</tr>
<tr>
<td>KEPCO</td>
<td>765</td>
<td>6</td>
<td>3.042</td>
<td>See Note 1</td>
<td>19.28</td>
</tr>
<tr>
<td>POWERGRID</td>
<td>765</td>
<td>4</td>
<td>3.50</td>
<td>15.4</td>
<td>15</td>
</tr>
<tr>
<td>RUSSIA 1</td>
<td>750</td>
<td>5</td>
<td>2.24</td>
<td>17.5</td>
<td>12</td>
</tr>
<tr>
<td>RUSSIA 2</td>
<td>750</td>
<td>4</td>
<td>2.91</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>RUSSIA 3</td>
<td>1150</td>
<td>8</td>
<td>2.75</td>
<td>21.5-25</td>
<td>17.5</td>
</tr>
<tr>
<td>TEPCO</td>
<td>1000</td>
<td>8</td>
<td>3.42/3.84**</td>
<td>See Note 1</td>
<td>25/35</td>
</tr>
</tbody>
</table>

* Minimum heights in areas frequented by people including agricultural areas.
** Larger conductor used in populated areas; smaller conductor used in mountainous areas.
1. Double-circuit low reactance line

The tables show data for 24” and 36” 6-conductor bundles, but not 30”, and so we must interpolate.

Get per-unit length inductive reactance:

From Table 3.3.1, we find
24” bundle: 0.031
36” bundle: -0.010
30” bundle: interpolation results in $X_a=0.0105$.

From Table 3.3.12, we find

45’ phase spacing: $X_d=0.4619$
And so $X_L=X_a+X_d=0.0105+0.4619=0.4724$ ohms/mile.

Now get per-unit length capacitive reactance.
From Table 3.3.2, we find
24” bundle: 0.065
36” bundle: -0.0036
30” bundle: interpolation results in $X'_a=0.0307$.

From Table 3.3.13, we find

45’ phase spacing: $X'_d=0.1128$

And so $X_C=X'_a+X'_d=0.0307+0.1128=0.1435$Mohms-mile.
Note the units of X_C are ohms-mile×10^6 [so that $B_C=1/X_C$ has units of 1/(ohms-mile×10^6)=Mhos×10^{-6}/mile].
So \(z = jX_L = j0.4724 \) Ohms/mile, and this is for the 6 bdl, 765 kV circuit.
And \(y = 1 / -jX_C = 1 / -j(0.1435 \times 10^6) = j6.9686 \times 10^{-6} \) Mhos/mile

Now compute the propagation constant, \(\gamma \),
\[
\gamma = \sqrt{zy} = \sqrt{j0.4724 \times j6.9686 \times 10^{-6}}
\]
\[
= \sqrt{-3.292 \times 10^{-6}} = j0.0018 / \text{mile}
\]
Recalling (2a, 2b)
\[
Z' = Z \frac{\sinh \gamma l}{\gamma l} \quad (2a)
\]
\[
Y' = Y \frac{\tanh(\gamma l / 2)}{\gamma l / 2} \quad (2b)
\]

Let’s do two calculations:
- The circuit is 100 miles in length. Then \(l = 100 \), and
 \[
 Z = j.4724 \text{ohms/mile} \times 100 \text{miles} = j47.24 \text{ohms}
 \]
 \[
 Y = j6.986 \times 10^{-6} \text{mhos/mile} \times 100 \text{miles} = j0.0006986 \text{mhos}
 \]
 \[
 \gamma l = \frac{j0.0018}{\text{mile}} (100 \text{miles}) = j0.18
 \]
Convert \(Z \) and \(Y \) to per-unit, \(V_b = 765 \text{kV}, S_b = 100 \text{MVA} \)
\[
Z_b = \frac{(765 \times 10^3)^2}{100 \times 10^6} = 5852.3 \text{ohms},
\]
\[
Y_b = \frac{1}{5852.3} = 0.0017087 \text{mhos}
\]
\[
Z_{pu} = j47.24 / 5852.3 = j0.0081 \text{pu},
\]
\[
Y_{pu} = j0.0006986 / 0.0017087 = j4.0885 \text{pu}
\]
\[
Z' = Z \frac{\sinh \gamma l}{\gamma l} = j0.0081 \frac{\sinh(j.18)}{j.18} = j0.0081 \frac{j.179}{j.18} = j0.00806 \\
Y' = Y \frac{\tanh(\gamma l/2)}{\gamma l/2} = j4.0885 \frac{\tanh(j.18/2)}{j.18/2} = j4.0885 \frac{j0.0902}{j.09} = j4.0976
\]

- The circuit is 500 miles in length. Then \(l = 500 \), and
\[Z = j.4724 \text{ohms/mile} \times 500 \text{miles} = j236.2 \text{ohms} \]
- \(Y = j6.986 \times 10^{-6} \text{mhos/mile} \times 500 \text{miles} = j0.0035 \text{mhos} \)

\[
\gamma l = \frac{j0.0018}{\text{mile}} (500 \text{miles}) = j0.90
\]

Convert \(Z \) and \(Y \) to per-unit, \(V_b = 765 \text{kV}, S_b = 100 \text{MVA} \)
\[Z_{pu} = j236.2 / 5852.3 = j0.0404 \text{pu}, \]
\[Y_{pu} = j0.0035 / 0.0017087 = j20.4834 \text{pu} \]
\[Z' = Z \frac{\sinh \gamma l}{\gamma l} = j0.0404 \frac{\sinh(j.90)}{j.90} = j0.0404 \frac{j.7833}{j.90} = j0.0352 \\
Y' = Y \frac{\tanh(\gamma l/2)}{\gamma l/2} = j20.4834 \frac{\tanh(j.90/2)}{j.90/2} = j20.4834 \frac{j0.4831}{j.45} = j21.99
\]

It is of interest to calculate the surge impedance for this circuit. From eq. (1d), we have

\[
Z_C = \sqrt{\frac{Z}{Y}} = \sqrt{\frac{j.4724}{j6.9686 \times 10^{-6}}} = 260.3647 \text{ohms}
\]

A line terminated in \(Z_C \) has a very special character with respect to reactive power: the amount of reactive power consumed by the series \(X \) is exactly compensated by the reactive power supplied by the shunt \(Y \), for every inch of the line.
Then the surge impedance loading is given by

\[P_{\text{SIL}} = \frac{V_{LL}^2}{Z_C} = \frac{(765 \times 10^3)^2}{260.3647} = 2.2477 \times 10^9 \]

The SIL for this circuit is 2247 MW. We can estimate line loadability from the St. Clair curves of Fig. 4 below as a function of line length.

Fig. 4

100 mile long line: \(P_{\text{max}} = 2.1(2247) = 4719 \text{ MW} \).

500 mile long line: \(P_{\text{max}} = 0.75(2247) = 1685 \text{ MW} \).
4. **Conductor ampacity**
A conductor expands when heated, and this expansion causes it to sag. Conductor surface temperatures are a function of the following:

a) Conductor material properties
b) Conductor diameter
c) Conductor surface conditions
d) Ambient weather conditions
e) Conductor electrical current

In addition, this same model is used to compute the conductor current necessary to cause a “maximum allowable conductor temperature” under “assumed conditions.”

- **Maximum allowable conductor temperature:** This temperature is normally selected so as to limit either conductor loss of strength due to the annealing of aluminum or to maintain adequate ground clearance, as required by the National Electric Safety Code. This temperature varies widely according to engineering practice and judgment (temperatures of 50 °C to 180 °C are in use for ACSR) [3], with 100 °C being not uncommon.
• Assumed conditions: It is good practice to select “conservative” weather conditions such as 0.6 m/s to 1.2 m/s wind speed (2ft/sec-4ft/sec), 30 °C to 45 °C for summer conditions.

Given this information, the corresponding conductor current (I) that produced the maximum allowable conductor temperature under these weather conditions can be found from the steady-state heat balance equation [3].

For example, the Tern conductor used in the 6 bundle 765kV line (see example above) is computed to have an ampacity of about 860 amperes at 75 °C conductor temperature, 25 °C ambient temperature, and 2 ft/sec wind speed. At 6 conductors per phase, this allows for $6 \times 860 = 5160$ amperes, which would correspond to a power transfer of $\sqrt{3} \times 765000 \times 5160 = 6837$ MVA.

Recall the SIL for this line was 2247 MW. Figure 4 indicates the short-line power handling capability of this circuit should be about $3(2247) = 6741$ MW. (Note that Fig. 4 shows the power limit does not exceed this value.)

➔ Short-line limitations are thermal-constrained.

When considering relatively long lines, you will not need to be too concerned about ampacity. Limitations of SIL or lower will be more appropriate to use for these long lines.
5.0 St. Clair Curves
Figure 4 is a well-known curve that should be considered as a planning guide and not an exact relationship. But as a planning guide, it is very useful. You should have some understanding of how this curve is developed. Refer to [4], a predecessor paper [5], a summary [6], and an extension (for voltage instability) in [7] for more details.

This curve represents three different types of limits:
• Short-line limitation at approximately 3 times SIL
• Medium-line limitation corresponding to a limit of a 5% voltage drop across the line;
• A long-line limitation corresponding to a limit of a 44 degree angular separation across the line.

This curve was developed based on the following circuit in Fig. 5.
This circuit was analyzed using the following algorithm, Fig. 6. Observe the presence of the voltage source E_2, which is used to represent reactive resources associated with the receiving end of the transmission line. The reactances X_1 and X_2 represent the transmission system at the sending and receiving ends, respectively. These values can be obtained from the Thevenin impedance of the network as seen at the appropriate terminating bus, without the transmission line under analysis.
Fig. 6
The key calculation performed in the algorithm is represented by block having the statement

\[|E_R| = f(\theta_1) \]

Referring to the circuit diagram, this problem is posed as:

Given: R, X, B, X₁, X₂, \(\theta_1 \), \(|E_2|\), \(|E_S|\)

Find: \(|E_1|\), \(\theta_s\), \(|E_R|\), \(\theta_R\)

Although the paper does not say much about how it makes this calculation, one can write two KCL equations at the two nodes corresponding to \(E_S\) and \(E_R\), and then separate these into real and imaginary parts, giving 4 equations to find 4 unknowns (note that the angle of \(E_2\) is assumed to be the reference angle and thus is 0 degrees).

The result of this analysis for a particular line design (bundle and phase geometry) is shown in Fig. 7, where we observe two curves corresponding to

- Constant steady-state stability margin curve of 30% (angle is \(\theta_1\), which is from node \(E_1\) to node \(E_2\)).

This value is computed based on

\[
\% \text{Stability Margin} = \frac{P_{\text{max}} - P_{\text{rated}}}{P_{\text{max}}} \times 100\%
\]

Here, \(P_{\text{max}}\) is the ampacity of the line, and \(P_{\text{rated}}\) is the allowable flow on the line.
• Constant line voltage drop curve of 5%, given by
\[
\% \text{VoltageDrop} = \left(\frac{E_s - E_r}{E_s} \right) \times 100\%
\]
In Fig. 7, the dark solid curve is the composite of the two limitations associated with steady-state stability and voltage drop. The 3.0 pu SIL value which limits the curve at short distances is associated with the conductor’s thermal limit.

The paper being discussed [4], in addition to 345 kV, also applies its approach to higher voltage transmission, 765 kV, 1100 kV, and 1500 kV (Unfortunately, for some reason, 500 kV was not included). For these various transmission voltages, it presents a table of data that can be used in the circuit of Fig. 5 and the algorithm of Fig. 6. This table is copied out below.

<table>
<thead>
<tr>
<th>NOMINAL VOLTAGE CLASS (kV)</th>
<th>SYSTEM STRENGTH AT EACH TERMINAL*</th>
<th>LINE CHARACTERISTICS**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MVA₃δ</td>
<td>% X = 100/MVA₃δ</td>
</tr>
<tr>
<td>345</td>
<td>30,000</td>
<td>.333</td>
</tr>
<tr>
<td>765</td>
<td>66,000</td>
<td>.151</td>
</tr>
<tr>
<td>1100(6)</td>
<td>95,000</td>
<td>.105</td>
</tr>
<tr>
<td>1500(6)</td>
<td>130,000</td>
<td>.077</td>
</tr>
</tbody>
</table>

* SYSTEM STRENGTH CORRESPONDING TO 50 KA FAULT DUTY
** POSITIVE-SEQUENCE CHARACTERISTICS (ON 100 MVA BASE)

The “system strength at each terminal”¹ is quantified by the fault duty at that terminal, assumed in both cases to be

¹ The fault duty or short circuit current at a bus provides an indication of the network’s voltage “stiffness” or “strength” at that bus. The higher a bus’s short circuit current, the lower the impedance between that bus and current sources (generators), the less the variation in voltage magnitude will occur for a given change in network conditions.
50 kA. Using this, we can get the fault duty in MVA according to

\[MVA_{3\phi} = \sqrt{3} \times V_{LL,nom} \times 50E3 \]

Then the corresponding reactance may be computed by

\[X_{pu} = \frac{V_{pu}^2}{MVA_{pu}} \]

This can be shown as follows:

\[S_{3\phi} = 3V_{ LN}^2 \times X. \]

Writing all \(S, V, \) and \(X \) quantities as products of their pu values and their base quantities, we get

\[S_{3\phi, base}S_{pu} = 3[(V_{pu}V_{LN,base})^2/(X_{pu}X_{base})] \]

Rearranging,

\[S_{3\phi, base}S_{pu} = [3V_{LN,base}^2/X_{base}][(V_{pu})^2/X_{pu}] \]

And we see that

\[S_{3\phi, base} = 3V_{LN,base}^2/X_{base} \] and

\[S_{pu} = (V_{pu})^2/X_{pu} \]

\[\Rightarrow X_{pu} = V_{pu}^2/S_{pu}. \]

We will assume that \(V_{pu} = 1, \) and with a 100 MVA base, the last equation results in

\[X_{pu} = \frac{1}{MVA_{3\phi}/100} = \frac{100}{MVA_{3\phi}} \]

For example, let’s consider the 765 kV circuit, then we obtain

\[MVA_{3\phi} = \sqrt{3} \times V_{LL,nom} \times 500000 \]

\[= \sqrt{3} \times 765000 \times 50000 = 6.625E10 \text{ volt - amperes} \]

which is 66,251 MVA.

Observe the table above gives 66,000 MVA.
Then, $X_{pu} = \frac{100}{66,000} = 0.00151pu$ which is 0.151%, as given in the table.

The table also provides line impedance and susceptance, which can be useful for rough calculations, but notice that the values are given in % per mile, which are 100 times the values given in pu per mile.

Finally, the table provides the surge impedance loading (SIL) of the transmission lines at the four different voltage levels, as 320, 2250, 5180, and 9940 MW for 345, 765, 1100, and 1500 kV, respectively.

Recall what determines SIL:

$$P_{SIL} = \frac{V_{LL}^2}{Z_C} \quad Z_C = \sqrt{\frac{z}{y}} = \sqrt{X_LX_C}$$

$$X_L = 2.022 \times 10^{-3} f \ln \left(\frac{1}{R_b} \right) + \frac{2.022 \times 10^{-3} f \ln(D_m)}{X_d} \quad \Omega/\text{mile}$$

$$X_C = \frac{1}{f} \times 1.779 \times 10^6 \ln \left(\frac{1}{R_b'} \right) + \frac{1}{f} \times 1.779 \times 10^6 \ln(D_m') \quad \Omega - \text{mile}$$
D_m is the GMD between phase positions:
\[D_m \equiv (d_{ab}^{(1)}d_{ab}^{(2)}d_{ab}^{(3)})^{1/3} \]

R_b is the GMR of the bundle
\[R_b = (r'd_{12})^{1/2}, \quad \text{for 2 conductor bundle} \]
\[= (r'd_{12}d_{13})^{1/3}, \quad \text{for 3 conductor bundle} \]
\[= (r'd_{12}d_{13}d_{14})^{1/4}, \quad \text{for 4 conductor bundle} \]
\[= (r'd_{12}d_{13}d_{14}d_{15}d_{16})^{1/6}, \quad \text{for 6 conductor bundle} \]
\[r' = re^{\frac{-\mu_r}{4}} \]

R^c_b is Capacitive GMR for the bundle:
\[R^c_b = (rd_{12})^{1/2}, \quad \text{for 2 conductor bundle} \]
\[= (rd_{12}d_{13})^{1/3}, \quad \text{for 3 conductor bundle} \]
\[= (rd_{12}d_{13}d_{14})^{1/4}, \quad \text{for 4 conductor bundle} \]
\[= (rd_{12}d_{13}d_{14}d_{15}d_{16})^{1/6}, \quad \text{for 6 conductor bundle} \]

So in conclusion, we observe that SIL is determined by
- Phase positions (which determines D_m)
- Choice of conductor (which determines r and r' and influences R_b and R^c_b)
- Bundling (which influences R_b and R^c_b).

We refer to data which determines SIL as “line constants.” (Although SIL is also influenced by voltage level, the normalized value of power flow, P_{rated}/P_{SIL}, is not.) Reference [4] makes a startling claim (italics added):
“Unlike the 345-kV or 765-kV line parameters, UHV line data is still tentative because both the choice of voltage level and optimum line design are not finalized. This uncertainty about the line constants, however, is not very critical in determining the line loadability -- expressed in per-unit of rated SIL -- especially at UHV levels. The reason lies in the fact that for a lossless line, it can be shown that the line loadability -- or the receiving-end power -- in terms of SIL of that line, \(\frac{S_R}{SIL} \), is not dependent on the line constants, but rather is a function of the line length and its terminal voltages. This concept is discussed further in the Appendix.”

The paper’s appendix derives this result for a lossless line:

\[
\frac{P_{\text{rated}}}{P_{\text{SIL}}} = j \left(\frac{E_S}{E_R} \right)^* \cos \beta L \left| E_R \right|^2 \sin \beta L
\]

where \(\beta = \omega / \upsilon \) and \(\omega \) is \(2\pi f \) (\(f=60\)Hz), and \(\upsilon \) is approximately the speed of light (186,000 miles/sec).

The paper justifies the “lossless line” requirement:

“Since the resistance of the EHV/UHV lines is much smaller than their 60-Hz reactance, such lines closely approximate a lossless line from the standpoint of loadability analysis. Therefore, the loadabilities in per-unit of SIL of these lines are practically independent of their respective line constants and, as a result, of their corresponding voltage classes.”

The paper develops the St. Clair curves for a 765 kV, 1100 kV, and a 1500 kV transmission line, and I have replicated it in Fig. 8 below. Observe that the three curves are almost identical. The paper further states (italics added):

“It is reassuring to know that one single curve can be applied to all voltage classes in the EHV/UHV range. Obviously, a general transmission loading curve will not cover the...
complete range of possible applications; nonetheless, it can provide a reasonable basis for any preliminary estimates of the amount of power that can be transferred over a well-designed transmission system.”

Fig. 8
A final statement made in the paper is worth pointing out (italics added):

“All any departures from the assumed performance criteria and system parameters -- which, for convenience, are clearly enumerated on the EHV/UHV loadability chart shown in Figure 8 -- must not be ignored and, depending on their extent, they should properly be accounted for in the line loadability estimates. To illustrate this, the effect of some of the variations in these assumed parameters such as terminal system strength, shunt compensation, line-voltage-drop criterion and stability margin, are investigated in the next section.”

Note from Fig. 8 the “assumed performance criteria”:

- Line voltage drop = 5%
- S-S stability margin = 30%

and the “system parameters”:

- Terminal system S/C – 50 kA (each end)
- No series or shunt compensation

The paper provides sensitivity studies on both the performance criteria and some system parameters. Finally, observe that Fig. 8 also provides a table with

- Nominal voltage
- Number and size of conductors per bundle
- Surge impedance loading
- Line charging per 100 miles

These are “line constant” data! Why do they give them to us?
Although $P_{\text{rated}}/P_{\text{SIL}}$ is independent of the “line constant” data, P_{rated} is not. To get P_{rated} from the St. Clair curve, we must know P_{SIL}, and P_{SIL} very much depends on the “line constant” data.

6.0 Resistance

I have posted on the website tables from reference [6] that provide resistance in ohms per mile for a number of common conductors and provided a section of those tables below.

A DC value is given, at 25°C, which is just $\rho l/A$, where ρ is the electrical resistivity in ohm-meters, l is the conductor length in meters, and A is the conductor cross-sectional area in meters2.

The tables also provide 4 AC values, corresponding to 4 different operating temperatures (25, 50, 75, and 100°C). These values are all higher than the DC value because of the skin effect, which causes a non-uniform current density to exist such that it is greater...
at the conductor’s surface than at the conductor’s interior. This reduces the effective cross-sectional area of the conductor\(^2\).

Resistance also increases with resistance because temperature increases the level of electron mobility within the material.

7.0 General comments on overhead transmission
In the US, HV AC is considered to include voltage levels 69, 115, 138, 161, and 230 kV.

EHV is considered to include 345, 500, and 765 kV. There exists a great deal of 345 and 500 kV all over the country. The only 765 kV today in the US is in the Ohio and surrounding regions, owned by AEP, as indicated by Fig. 9 [8]. Transmission equipment designed to operate at 765 kV is sometimes referred to as an 800 kV voltage class. There also exists 800 kV-class transmission in Russia, South Africa, Brazil, Venezuela, South Korea, and Quebec.

\(^2\) Loss studies may model AC resistance as a function of current, where ambient conditions (wind speed, direction, and solar radiation) are assumed.
Figure 10 shows ABB’s deliveries of 800 kV voltage class autotransformers (AT) and generator step-up banks (GSUs) from 1965 to 2001 [9].
It is clear from Fig. 10 there was a distinct decline in 765 kV AC investment beginning in early 1980s and reaching bottom in 1989. However, there has been renewed interest in 765 kV during the past few years, with recently completed projects in China & India. I am unaware of 765kV US projects moving forward in the near future.

UHV is considered to include 1000 kV and above. There is no UHV transmission in the US. There was 1200 kV UHV in neighboring countries to Russia [10], and in Japan, but the operational voltage of these lines were downgraded to 500kV. China completed a 1000 kV transmission project in 2009 [11].

8.0 General comments on underground transmission
Underground transmission has traditionally not been considered a viable option for long-distance transmission because it is significantly more expensive than overhead due to two main issues:
(a) It requires insulation with relatively high dielectric strength owing to the proximity of the phase conductors with the earth and with each other. This issue becomes more restrictive with higher voltage. Therefore the operational benefit to long distance transmission of increased voltage levels, loss reduction (due to lower current for a given power transfer capability), is, for underground transmission,
offset by the significantly higher investment costs associated with the insulation.

(b) The ability to cool underground conductors as they are more heavily loaded is much more limited than overhead, since the underground conductors are enclosed and the overhead conductors are exposed to the air and wind.

Table 1 [12] provides a cost comparison of overhead and underground transmission for three different AC voltage ranges.

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>110 - 219kV</th>
<th>220 - 362kV</th>
<th>363 - 764kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean MVA/circuit</td>
<td>200</td>
<td>600</td>
<td>1800</td>
</tr>
<tr>
<td>Mean Overhead Line Cost $/km/MVA</td>
<td>820</td>
<td>390</td>
<td>185</td>
</tr>
<tr>
<td>Mean Underground Cable Cost $/km/MVA</td>
<td>6100</td>
<td>4900</td>
<td>3700</td>
</tr>
<tr>
<td>Mean Cost Ratio</td>
<td>7</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Spread</td>
<td>3.4 - 16</td>
<td>5.1 - 21.1</td>
<td>14.6 - 33.3</td>
</tr>
</tbody>
</table>

Although Table 1 is dated (1996), it makes the point that the underground cabling is significantly more expensive than overhead conductors.
Note, however, that this issue does not account for obtaining right-of-way. Because underground is not exposed like overhead, it requires less right-of-way. This fact, coupled with the fact that public resistance to overhead is much greater than underground, can bring overall installation costs of the two technologies closer together. This smaller difference may be justifiable, particularly if it is simply not possible to build an overhead line due to public resistance. Such has been the case in France now for several years.

Another issue for underground AC is the high charging currents generated because of the capacitive effect caused by the insulation shield and the conductor. These high charging currents make voltage regulation very difficult for long underground AC transmission, and so typically underground AC is not used beyond a certain length.

53-338 presented at the AIEE Pacific General Meeting, Vancouver, B. C., Canada, September 1-4, 1953.

