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A Mixed Integer Disjunctive Model for Transmission
Network Expansion
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Abstract—The classical nonlinear mixed integer formulation of
the transmission network expansion problem cannot guarantee
finding the optimal solution due to its nonconvex nature. We
propose an alternative mixed integer linear disjunctive formula-
tion, which has better conditioning properties than the standard
disjunctive model. The mixed integer program is solved by a
commercial Branch and Bound code, where an upper bound
provided by a heuristic solution is used to reduce the tree search.
The heuristic solution is obtained using a GRASP metaheuristic,
capable of finding sub-optimal solutions with an affordable com-
puting effort. Combining the upper bound given by the heuristic
and the mixed integer disjunctive model, optimality can be proven
for several hard problem instances.

Index Terms—Combinatorial, heuristics, optimization, trans-
mission planning.

I. INTRODUCTION

T HE PROBLEM of determining the optimal set of candi-
date circuit additions for a power transmission network so

as to supply the forecasted loads with minimum cost is usually
formulated as a mixed nonlinear program. The nonlinearity is
due to constraints related to the linearized power flow equa-
tions, where bus voltage angle variables are multiplied by circuit
investment binary decision variables. The system generation is
supposed capable of supplying the forecasted load, and can-
didate circuits are informed for all possible network branches,
called rights-of-way. The linearized power flow model is com-
posed of Kirchoff’s first and second laws, which are linear equa-
tions relating node (bus) angles, generations and loads to circuit
flows. The linearized power flow equations are usually used in
planning studies of high voltage meshed networks, providing
good approximations for the circuit flows, and avoids the need to
iteratively solve the nonlinear power flow equations. Inequality
constraints are simple upper bounds on generations and circuit
flows.

In many real world large-scale applications, the mathemat-
ical model is a large-scale mixed integer problem. Successful
solution approaches include decomposition techniques [1], [2]
and heuristics [7], [8], although neither can guarantee optimality
of the solution. The decomposition approach, even if capable
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of solving medium sized problem instances, cannot prove opti-
mality of solution since the nonlinear model is nonconvex.

In this work a mixed integer disjunctive formulation will be
analyzed, where the nonlinear constraints are avoided by using
a disjunctive form to which they are equivalent. This standard
disjunctive formulation is solved using the B&B code of the
XPRESS [13] solver (release 11). A GRASP [11] based meta-
heuristic method [9], [10], capable of solving large problem in-
stances (but not proving optimality), is used in this work to pro-
vide an upper bound to the B&B solver, being described in the
Appendix.

The standard disjunctive formulation suffers from bad condi-
tioning due to the use of large penalties in the disjunctive con-
straints. An alternative disjunctive formulation using “optimal”
penalty factors and a tighter representation of power flows on
candidate circuits will also be presented, providing improved
performance.

The following notation will be used throughout this work:
number of nodes (busses);
number of candidate circuits (branches);
set of existing circuits connected to bus, ;
set of candidate circuits connected to bus, ;

;
vector of circuit flows (existing and candidates);
vector of circuit capacities (existing and candidates);
vector of bus generations;
vector of bus generation capacities;
vector of bus active loads;
vector of bus voltage angles (in radians);
vector of bus load curtailment;
binary vector of decision investment on candidate
circuits;
vector of candidate circuit unit cost (in million
dollars);
vector of circuit susceptances (the inverse of the
reactance);
penalty vector of candidate circuits.

The work is organized as follows. In Section II the classical
nonlinear formulation is presented, as well as the Benders de-
composition solution approach. Section III reviews the standard
disjunctive formulation, and discusses the alternative formula-
tion. These disjunctive formulations, solved by the B&B code
that is used in combination with the heuristic solution provided
by GRASP, are compared in Section IV by means of a (bench-
mark) medium sized problem instance. A real world problem in-
stance is solved in Section V and results are shown. Section VI
concludes; also future works are discussed.

0885–8950/01$10.00 © 2001 IEEE
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II. THE CLASSICAL NON-LINEAR FORMULATION OF THE

TRANSMISSIONEXPANSION PROBLEM

The classical formulation represents the linearized power
flow equations, bounds on generations and circuit flows, and
integrality constraints for investment variables, being shown
below.

(power node balance equation—first Kirchoff's law)

(2nd Kirchoff's law for existing circuits)

(2nd Kirchoff's law for candidate circuits)

(existing circuit flow upper and lower bounds)

(candidate circuit flow upper and lower bounds)

(bus generation upper bounds)

(integrality constraints of investment variables)

(reference bus angle is fixed, other

bus angles are free variables)

Note that a nonlinearity appears due to the product of vari-
ables and in the 2nd Kirchoff’s law for candidate circuits.
Consider the 2nd Kirchoff’s law for a candidate circuit: if

, the corresponding flow must be null, while if ,
equality is enforced, as required. This is a mixed integer non-
linear program, so it cannot be solved by classical optimization
techniques.

The nonconvex nature of the continuous relaxation of
this formulation can be avoided in two ways: relaxing 2nd
Kirchoff’s law for candidate circuits or by linearizing this
equation. Since the resulting model is mixed linear, the latter
allows using standard combinatorial optimization methods,
but, in general, solutions are infeasible. The latter allows
an implicit linearization scheme that arises when applying
Benders decomposition, where once a trial investment proposal
is made, an LP in variables, and results.

For each iteration, a trial expansion proposalis obtained by
solving a mixed integer program (the master), and the resulting
network configuration is then analyzed by solving a linear pro-
gram (the slave), which returns to the master a Benders cut
expressing the operation cost (the minimum load shedding re-
quired to respect network operating constraints) in terms of the
decision variables. The slave sub-problem LP formulation is the
same as the one shown in the Appendix, except for the unit

load shedding cost which is a large penalty (the optimal solution
must respect all network constraints). The master sub-problem
has an additional nonnegative continuous variable (the opera-
tion cost, expressed as the total load shedding), which is repre-
sented by means of Benders cuts which are expressed as linear
functions of the investment variables. After each iteration, the
Benders cut generated by the slave is included in the master
sub-problem. Only integrality constraints for investment vari-
ables and Benders cuts are part of the master subproblem.

The master’s solution value provides a lower bound (the
master is a relaxation of the model), while the master’s solu-
tion investment cost plus the slave’s solution operation cost
provides an upper bound (the solution is feasible, but may not
be optimal). Convergence is assured when these bounds meet,
and if not, a new iteration is performed. Although the Benders
decomposition has finite convergence, this linearization scheme
may result in discarding feasible solutions, since the nonconvex
nature of the model does not guarantee that the Benders cuts do
not cut off part of the feasible set.

This undesirable behavior was mitigated by means of a hierar-
chical Benders decomposition method [1], [2]. In this approach,
initially the 2nd Kirchoff’s law are relaxed and Benders decom-
position is applied to the resulting mixed integer linear program.
The Benders cuts thus obtained are valid cutting planes for the
original formulation. Next, the original formulation is solved by
the same method, but now the previous cuts guide the solution
through a smooth path, as experimental results have shown.

The computational effort of this decomposition scheme is
high due to the need to solve a mixed integer linear program (the
master) for each iteration. In general, many Benders iterations
are required until convergence. During the Benders iterations,
the incorporation of cuts result in increasing ill conditioning of
the master problem, and therefore slows down the solution time
of the master subproblems. Although no proof can be given with
respect to optimality of the resulting solution, this approach was
successfully applied to medium scale problem instances.

III. T HE DISJUNCTIVEMIXED INTEGERFORMULATION OF THE

TRANSMISSIONEXPANSION PROBLEM

In this formulation, the nonlinear constraints of the nonlinear
formulation are avoided by using a disjunctive form to which
they are equivalent. The standard disjunctive mixed integer
model is formulated as follows:

(power node balance equation—first Kirchoff's law)

(2nd Kirchoff's law for existing circuits)

(2nd Kirchoff's law for candidate circuits,

expressed in disjunctive form)
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(existing circuit flow upper and lower bounds)

(candidate circuit flow upper and lower bounds)

(bus generation upper bounds)

(integrality constraints of investment variables)

(reference bus angle is fixed, other

bus angles are free variables)

Note that the 2nd Kirchoff’s law for each candidate circuit
is now expressed as two linear inequalities. When a candidate
circuit binary variable is set to zero, the corresponding disjunc-
tive constraints enforce that no flow will go through the circuit,
while if it is set one the flow will obey the second Kirchoff’s
law equation, as required.

This standard disjunctive formulation was independently pro-
posed by [3] [4]. Benders decomposition was also applied to
this approach [6], using a very large penalty factor. It has been
proven [5] that if a candidate circuit is such that there is
an existing circuit on the same branch, the minimum value of
the penalty parameter is given by times the ratio of
the candidate susceptance and the existing circuit susceptance.
Also, if the candidate circuit is in a new right-of-way, its penalty
parameter is the product of its susceptance times the solution
value of a shortest path problem on the network between the
branch’s terminal nodes, where the “distance” between each
pair of nodes is measured by the ratio of the branch’s flow ca-
pacity and its reactance. By using these optimal penalties, ill
conditioning can be alleviated during the solution of the linear
relaxation along the B&B tree.

We now discuss an alternative disjunctive formulation with
better conditioning properties. In this formulation, Kirchoff’s
2nd law for each candidate circuit is represented by
two inequalities, each one related to the possible flow direction
(from to and from to ), resulting in lower and upper bounds
for flow in each direction:

(2nd Kirchoff's law for candidate circuit ,

upper bound)

(2nd Kirchoff's law for candidate circuit ,

lower bound)

The flow in each candidate circuit is now expressed as the
difference of two nonnegative flow variables, and :

[flow in each candidate circuit ]

Each branch angle difference is now expressed as the differ-
ence of two nonnegative angle differences, and :

(new constraints relating angle difference with

its corresponding nonnegative angle difference variables):

With the new candidate circuit flow variables, the flow
bounds are now expressed by:

(candidate circuit flow upper and lower bounds)

The objective function and other unmentioned constraints re-
main unaltered, as well as variables, , , and .

Comparing this formulation with the previous, it can be seen
that:

• the upper bound is tighter since is does not include in the
RHS the positive term with the penalty;

• the lower bound is exact when , and the RHS
is better than the one in the previous formulation when

.
The resulting formulation has more continuous variables, but

being tighter should be better than the previous standard dis-
junctive formulation. Note that, contrarily to the Benders de-
composition approach, which is an iterative scheme, the mixed
integer disjunctive model is solved only once. Since it has the
same number of binary variables as the nonlinear formulation,
and also the due to the tighter formulation, the B&B solution
processing effort should be much lower.

Another ingredient is necessary to accelerate the B&B tree
search, being commonly used in combinatorial optimization
methods. It is an upper bound (UB) to the solution value, and
the better it is, more effective is the effect of pruning the tree,
avoiding solving many LP relaxations during the search. A
natural UB is the solution value of a heuristic solution. The
computational effort of the heuristic must be much lower than
the one required by the B&B solver, but also its solution quality
must be such that the optimality gap (the difference between
the heuristic solution value and the optimal one) is low. These
requirements are satisfied by the solutions obtained using the
GRASP metaheuristic (see the Appendix), as results have
shown for several transmission planning problem instances
[10]. Very small gaps are obtained after a few GRASP itera-
tions, consuming small computing time.

In the next section, the standard and alternative disjunctive
formulations will be compared using a medium scale transmis-
sion network problem instance.

IV. THE STANDARD AND ALTERNATIVE DISJUNCTIVEMODELS:
A 46 BUS CASE STUDY

This network is used as a benchmark for transmission expan-
sion solution methods (see [1], [2], [4], [5], [8], [10]). It has
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TABLE I
CPU MINUTES OFB&B SOLVER USING UB

Fig. 1. 46 bus network and solution (without redispatch).

46 nodes (12 with generation) and 62 existing circuits, with
79 candidate rights-of-way and 3 possible duplications in each
one, resulting in a total of 237 binary variables. The network
represents the 230 KV and 500 KV high voltage nodes of the re-
duced South Brazilian system. There are 11 disconnected nodes,
where 2 of these have new generators, and therefore have to be
connected. The total load is 6800 MW and the total generation
capacity is 10 545 MW. Now suppose we use the same alter-
native formulation, and have an UB for the solution value. In
order to verify the impact of providing an UB to the B&B solver,
9 runs were made, varying the UB from 1.05 to 1.3 times the op-
timal solution value. Computing time results for the alternative
formulation are shown in Table I.

For the fixed dispatch case (the generation capacity of all gen-
erators is reduced so that total capacity equals total load), the
best solution obtained both by hierarchical Benders decomposi-
tion and GRASP has a cost of $154.26 millions, and 16 circuits
are built: 2 26/29, 2 42/43, 2 24/25, 2 29/30, 2 5/6,
19/25, 46/6, 31/32, 28/30 and 20/21 (see Fig. 1). Recently, this
solution was proved optimal by a Benders decomposition ap-
proach applied to the standard disjunctive formulation [5].

The optimality gap reduction along the GRASP iterations
depends on the random generator seed. Although one cannot
draw conclusive figures about the reduction, for this problem

instance, using the default seed, the gap dropped from 14% at
iteration 1 to 5% at iteration 38, the latter being a reasonable UB
to use.

For the standard disjunctive formulation, we used a fixed
penalty factor for all candidate circuits. It took 4 hours to
prove optimality of this solution on a Pentium III-450 MHz
PC with 128 Mb of memory, using the solver’s default pa-
rameters, without an UB. Using the alternative formulation
with “optimal” penalty factors, the CPU time required to prove
optimality dropped to 2 hours and 10 minutes, indicating the
superiority of the alternative formulation with respect to the
standard one.

The UB information was very effective: if we use the 105%
UB obtained after 38 GRASP iterations, the solution time re-
quired to prove optimality would be 81 minutes. It should be
noted that this solution was rapidly found in the B&B tree,
taking only 5 minutes. Note that he solution time increases in
a linear fashion as the UB increases. These results show that it
is worthwhile to have any UB, if it can be obtained in a small
fraction of the time required by the B&B search. This was the
case for GRASP, since several sub-optimal solutions are found
among the initial iterations.

For the redispatch case (original generator limits), the best so-
lution obtained both by decomposition and GRASP techniques
has a cost of $70.21 millions, and 8 circuits are built: 13/20,
20/23, 46/6, 2 20/21, 42/43 and 2 5/6. Using the stan-
dard formulation with the same “optimal” penalty factor, it took
33 seconds to prove optimality of the solution. The CPU time
using the alternative formulation was 57 seconds. The greater
flexibility gained with generator redispatching allows a great
deal of savings, and eases considerably the solution process, so
for this case both disjunctive formulations perform well.

V. THE ALTERNATIVE DISJUNCTIVE MODEL: A 79 BUS CASE

STUDY

The Southeastern Brazilian network has 79 nodes and
156 circuits. The peak load is 38 000 MW, and 268 candidates
are provided for voltage levels from 230 KV to 750 KV. There
are 7 disconnected nodes, two of which have new generators.
The best solution was obtained using GRASP, being found
at iteration number 280. This solution has a cost of $422
millions, where 24 circuits are built: 2 224/227, 2 210/41,
2 255/259, 2 220/242, 2 226/242, 220/250, 234/237,
221/224, 245/253, 245/239, 244/245, 226/259, 211/246,
226/227, 250/251, 207/206, 207/209, 249/250 and 216/215.

The B&B solver was applied to the alternative formulation
without an upper bound. The optimal penalty factor was calcu-
lated for each candidate right-of-way. This problem instance is
badly conditioned due to the very large penalties associated to
candidate rights-of-way connecting the two isolated generation
nodes. The optimal solution could not be found by the B&B
code due to the size of the search tree that exhausted the avail-
able memory, but several sub-optimal solutions were found. As
an example, a feasible solution with 8% of optimality gap was
obtained within 33 CPU minutes on the same PC.

With an upper bound of $423, and using high branching pri-
orities for all candidate circuits connecting isolated generation
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busses 244 and 245, the B&B solver was able to find the same
solution after 50 minutes, and prove the optimality, after 90 min-
utes, on a Pentium III 800 MHz with 128 MB of memory. Spe-
cialized inequalities for this problem are being tested, and we
expect to report results soon.

VI. CONCLUSION

The disjunctive mixed integer formulation of the transmis-
sion expansion problem allows using classical combinatorial
optimization techniques and therefore guarantees obtaining the
optimal solution, contrarily to the nonlinear formulation. An al-
ternative disjunctive formulation was presented which is tighter
than the standard one, resulting in significant reduction of com-
putational effort as shown in a benchmark case study. For a real
world problem instance, the alternative formulation proved op-
timality of the solution found by the GRASP metaheuristic. The
use of an upper bound easily found by GRASP, that is input to
the B&B solver applied to the alternative disjunctive mixed in-
teger formulation is a promising strategy to solve large scale
problem instances, and even to prove optimality.

The disjunctive formulation is being studied in order to incor-
porate valid inequalities that can be efficiently dealt with using
branch-and-cut schemes within the B&B code.

APPENDIX

THE GRASP METAHEURISTIC FOR THETRANSMISSION

EXPANSION PROBLEM

The greedy randomized adaptive search procedure [11] is
a metaheuristic method that has been successfully applied to
many hard combinatorial problems [12]. It is composed of two
different phases: construction and local search. In the construc-
tion phase, a feasible solution is produced in a greedy manner
by repeatedly randomly drawing promising candidates from a
restricted candidate list (RCL) until feasibility is attained. The
local search phase explores the construction phase’s solution
neighborhood in order to reach a local minimum. The random
nature of the construction phase gives GRASP a multistart na-
ture, therefore allows searching all the solution space, avoiding
getting trapped in local minima. The RCL is built according to
a greedy function, tailored for the problem at hand. The local
search also depends on the problem nature, due to the need to
characterize the neighborhood of a solution and define valid
moves to neighboring solutions. Since the local search is typ-
ically an exponential process in terms of the neighborhood size,
one must balance the effort of the search and the benefit obtained
in attaining a local minimum. The procedure is repeated for a
pre-specified number of iterations, and returns the best solution
found. Being a heuristic method, optimality cannot be proven,
therefore the procedure is stopped when the number of iterations
reaches a specified number. For many problem instances, the
best solution of the transmission expansion problem was found
by GRASP very early along the iterations.

In this GRASP implementation for the transmission expan-
sion problem, some enhancements have been used: among
others, the size of the RCL list is dynamically self-adjusted (the
so called reactive GRASP approach), and a linear distribution
function is used to bias the selection of the RCL candidate

variables, resulting in consistently better performance for
several problem instances, while avoiding the need to calibrate
the RCL size parameter.

The greedy function adopted for the transmission expansion
problem is derived from the dual variables of the network
performance problem which measures the total load shedding
required for each network configuration in order to respect
the linearized power flow equations, the bounds on circuit
flows and bus generation limits. Given a network configuration
resulting from a trial solution, a linear program is formulated as
follows. For each power balance node equation, a slack variable
(the load shedding) is introduced with unit cost in the objective
function, limited by the node’s load. The objective function
is the sum of load shedding costs. The network performance
problem formulation is presented below.

(power nodel balance equation—first Kirchoff's law)

(2nd Kirchoff's law for existing circuits)

(existing circuit flow upper and lower bounds)

(bus generation upper bounds)

(load shedding bounds)

(reference bus angle is fixed, other bus angles are

free variables)

The objective function measures the total amount of unfeasi-
bility in load supply, and is null if the trial investment proposal
is feasible. This problem is also the slave problem of the Ben-
ders decomposition applied to the nonlinear formulation. It has
been shown [1] that the multiplier with respect to a candidate
circuit’s susceptance is given by

where and is the Lagrange multiplier associated
to the balance equation for node(and likewise for node.)

The greedy function for any candidate circuitis defined as
the ratio , and takes into account the cost of the circuit in
order to penalize high voltage circuits (which are most expen-
sive) with a low greedy value. The RCL is composed of the best
candidates ranked by their greedy function values, and the RCL
size is controlled by the parameter, where . When
randomly sampling elements from RCL, the bigger is, more
random is the construction, and the smaller is, the greedier
is the construction. In the basic GRASP,is usually set to a
low value around 10% of the number of candidates. In reactive
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GRASP, this RCL size parameter is self adjusted along the itera-
tions, according to a probability distribution of possiblevalues
within the unit interval. The distribution is estimated according
to the relative frequency of the ratio of the best solution to the
average solution value observed along everyiterations, for
each value. Another enhancement is, instead of sampling ran-
domly from the RCL, to use a linear bias distribution to induce
the selection of circuits with higher greedy function values.

Each time a candidate is selected and added to the network, a
network performance problem must be solved, and a new RCL
is obtained. When a feasible solution is completed, a check con-
sisting in removing each added candidate in decreasing cost
order is performed so as to eliminate eventually redundant ad-
ditions made along the construction phase.

The local search strategy for the transmission expansion
problem is based on 2-exchange movements, meaning that
for each built candidate in the current solution, a possible
neighbor consists in flipping off this candidate and flipping on
another candidate not in the solution. Each such neighbor must
have smaller cost than the current solution and be checked for
feasibility by solving a network performance problem. Once
a feasible movement if made, the same one-at-a-time circuit
removal check is also performed. The local search stops when a
local minimum is found, or a maximum number of movements
is made.

Every new solution found is checked against the incumbent,
and the incumbent is updated if the cost is lower. The incumbent
is returned at the end. Note that one can keep other near-optimal
solutions in a pool so as to compare them using detailed network
models.
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