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Co-optimization

1 Introduction

Many of you are familiar with the basic electricity market
operation which maximizes the economic surplus of the market,
where the surplus may be loosely thought of as the difference
between the aggregate willingness to pay for the commodity
(energy) and the aggregate cost of supplying that commodity. A
simple analytic statement of this problem is below:

min ngk P, + Z—sdk P,
ke{generator _buses}  ke{load _buses}

Subject to:

P=B'¢

P =(DxA)x8

—Pg max <P < Pg max
0 < Py < Py max» VK € {load _buses}

0<P, <P, . 7k € {gen_buses

gk, max ?
where

e Sgk IS the price offered in $/puMWh from generator k
Py, & decision variable, is the generation in puMW at bus k
Sak 1S the bid made in $/puMWh from demand k
Pak, a decision variable, is the demand in puMW at bus k
P is the Nx1 vector of nodal injections in puMW: Pj=Pg;-Pg;
B’ is the so-called “B-prime” matrix which is the negative of
the imaginary part of the network’s admittance matrix Y, i.e.,

B'=—Im{Y}
The B-prime matrix here must be NxN, i.e., it must have

dimension equal to the number of buses in the network.
e @isthe Nx1 column vector of bus angles, in radians.



e Pg is the Mx1 column vector of branch flows in puMW,;
branches are ordered arbitrarily, but whatever order chosen
must also be used in constructing D and A.

e D is an MxM matrix having non-diagonal elements of zeros;
the diagonal element in row k, column k contains the negative
of the susceptance of the k" branch.

e A is the MxN node-arc incidence matrix. It is also called the
adjacency matrix, or the connection matrix.

We could also write this problem with fixed demand, i.e., with the
Pak’s specified and therefore no longer a decision variable. In that
case, the problem is just a cost-minimization problem. In either
case, the problem is an optimization problem, and not a co-
optimization problem, because there is only a single resource being
optimized — the MWh.

But this problem actually over-simplifies today’s electricity market
engines because it does not account for reserves. The simplest
approach to account for reserves reformulates as follows:

min ngk ng + Z—Sdk Py + Zrk P

ke{generator _buses}  ke{load _buses} ke{generator _buses }

Subject to:

P=B'¢

Pg = (DxA)x0

—Pgmax <Pg < Pg max

0 < Py <Py max» Vk € {load _buses}
0<Py + Pk < ng -, Vk € {gen _buses}

2P

ke{gen_ buses}
where Py is the reserve at bus K, r¢ is the offered price of those
reserves, and RR is the system reserve requirement.



This is a case of co-optimization because there are two different
interdependent commodities (or resources) that are being
optimized in the same problem. These commodities are energy and
reserves. Energy cannot supply the reserve requirement and
reserves cannot supply the energy requirement. Yet, the amount of
energy that an agent (generator) provides sets a constraint on the
amount of reserves that it can simultaneously provide, and vice-
versa.

As an aside, we mention that the co-optimization of the electricity
market actually coordinates at least! two different kinds of
reserves: regulating reserves and contingency reserves (and the two
combined are sometimes referred to as operating reserve). Figure 1
[1] below illustrates.
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Figure 1. Cooptimization within electricity markets

With this introduction, we may proceed to propose a formal
definition for co-optimization, as follows:

Co-optimization is the simultaneous optimization of two or more
different yet related resources within one optimization formulation.

! Ramping reserves may be a third type in some electricity markets.
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Co-optimization optimizes two (or more) objectives which depend
on different but related decisions, as expressed in the following
generalized co-optimization formulation.

min f,(x)+ f,(y)
subject to: P-CO

There are three important observations to be made of the above
problem:

1. Form of objective: The objective function consists of two (or
more) functions, with each being dependent on a unique set
of decision variables.

2. Interdependence: The two (or more) groups of decision
variables are interdependent through the constraints.

3. Comparison to multi-objective optimization: Co-optimization
IS not the same as what is referred to as a multi-objective
optimization. In multi-objective optimization, the objective
functions depend on the same decision variables. Thus, a
multi-objective optimization problem might appear as

min { f,(x), f,(x)}

subject to:

g9(x)=0
A standard multi-objective problem has conflicting
objectives, i.e., when x is changed so as to improve f1 (make
f1 smaller in this case), then f, degrades (gets larger in this
case). Thus, the issue in multi-objective optimization is to
select x to achieve the best tradeoff between the different
objectives. The security-economy tradeoff problem is like
this: we redispatch away from the most economic point to be
secure, i.e., we choose operating condition x to minimize cost

(f1) but then redispatch from there to lower risk (f2),
necessarily incurring higher costs. Figure 2 illustrates [2].
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Figure 2: A Pareto-optimal tradeoff curve of electric

grid operational costs and risk

In contrast, a cooptimization problem does not necessarily see a
plus and minus tradeoff like this, i.e., it is possible that an increase
in one objective f1(x) may result in either an increase or a decrease
in another objective f,(y). Cooptimizing generation and
transmission is like this. Building more generation X, increases
fi(x), and connecting that generation may also incur more
transmission vy, increasing fx(y). On the other hand, building
generation x close to the load may require high generation cost
f1(xX) and zero transmission cost fy(x); increasing the transmission
cost fa(y) to reach remotely located but cheap generation may in
this case reduce the generation cost f1(X).

There are two other co-optimization problems of interest which we
briefly describe in this introduction.

1.1 Generation and transmission

The first problem we describe is the co-optimization of both
generation and transmission. In the past, planning was done by first
solving the GEP problem and then the TEP problem, after which
the planning effort concluded. This approach can be extended to an
iterative approach, which is an approximate way of performing co-



optimization, and finally, it can be done most effectively using a
single analytical optimization. These three approaches are
illustrated in Figure 3.
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Better +production costs pptlmlze: Tr‘ansmlssmn T&G
approach assuming transmission investment given Cap plan plan
GEP TEP
Best Optimize: Cap investment+transmission investment T&G
approach +production costs plan
CEP

Figure 3: Three GEP/TEP planning approaches

To describe the iterative approach, we utilize the nomenclature of
the co-optimization problem posed above as P-CO, with x
representing the generation decision variables and y representing
the transmission decision variables.
1. Letk=1
2. Choose transmission solution yx. Usually, we choose the
solution to be the existing topology with lines having infinite
capacity.
3. Solve the following GEP problem:
min f,(X)

subject to: P-CO1
g(x,y,)<0

Denote the solution as X.
4. Solve the following TEP problem.

min f,(y)
subject to: P-CO2
9(X, y)<0
Denote the solution as yk+1
5. Check for convergence; if not converged, k=k+1; return to 3.



Experience with this approach indicates that it typically converges,
though convergence is not guaranteed [3].

Unlike this traditional electric systems planning approach, where
generation and transmission investment are typically identified in
sequence (usually generation, then transmission), a co-optimized
approach identifies them simultaneously. We formulate such a
problem in the next section.

Figure 4 illustrates a typical decision problem that could be solved
by a generation/transmission co-optimization where we observe
the top figure has low capacity factor (CF) wind but located close
to the load. The middle figure shows wind modeled both close to
and remote from the load, with the total number of wind turbines
being less than in the top figure (wind energy production is the
same or higher; generation cost is less), but the transmission cost to
reach the remote wind is significant. The bottom picture shows all
wind located remotely, which further decreases the number of
wind turbines necessary to build, but there will be increased
transmission cost to handle the capacity of all the remote wind.
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or- or-

Figure 4: Co-optimization of electric generation & electric transmission



1.2 Generation, transmission, and natural gas

The second problem we want to identify is the natural gas and
electric co-optimization problem. The basic form of this problem
would be as follows:

min f,(x)+ f,(y) + f3(2)

subject to: P-CO3
g(x,y,2)=0

Here, X represents the generation decision variables, y represents
the transmission decision variables, and z represents the natural gas
pipeline decision variables. The nature of this problem is illustrated
in Figure 5.
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Figure 5: Co-optimization of electric generation, electric
transmission, and natural gas pipeline

The top figure of Figure 5 shows a design that is all natural gas
generation placed so that the lengths of pipeline and transmission
line are about the same. The middle figure of Figure 5 shows a



design that is all natural gas generation placed so that the length of
pipeline is significantly greater than the length of transmission line.
The bottom figure of Figure 5 shows a design where the natural
gas generation is reduced, the reduction compensated by wind,
with the length of natural gas pipeline being much greater than the
length of transmission to the natural gas, but additional
transmission is required in order to connect the wind. Wind
capacity factor increases with distance from the load. Co-
optimization is able to sort through all combinations of generation
(x), transmission (y), and natural gas pipelines (z) in order to
identify the least-cost solution, illustrated by the yellow point in
Figure 6.
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Figure 6: lllustration of co-optimized solution
Of course, real situations are more complex, although these simple
examples well-serve to illustrate basic concepts. One study made a
similar comparison, as indicated in Figure 7 [4]; though dated, it
shows clearly that building pipeline is significantly less expensive
than building electric transmission, an attribute that is still very
true today.



Scenario #1

Build 100 miles of new 500 kV electrical
transmission line to deliver the energy from a
1500 MW electrical generation facility located
remote from the load center. Energy is then
delivered to customers through existing
electric wireline distribution systems.

> Scenario #2

Build 100 miles of new 20” gas pipeline to fuel

Scenario #1
City (Load Cent

[
] -Ii 100
:D New 100 mile, 500 kV Transmission Line

New Generating
Facility

Scenario #2 City (Load Cent

—

a 1500 MW electrical generation facility

omﬁ_" al

New 100 mile, 20" Gas Pipeline

Existing Interstate Gas Pipeline

located near the load center. Energy is then
delivered to customers through existing
electric wireline distribution systems.

(

New Generating
Facility

Capital Cost Breakdown

Scenario #1 (cost per mile):
500 kV Wire Line Addition (1500 MW Generation)

Material, design & construction $1,300,000
Environmental and land $338,000
Upgrade at existing substation $32,500
New substation at generator $152,750
Communications equipment & fiber $130,000
Voltage stabilizing equipment (shunt capacitor) $45,500

TOTAL CAPITAL COSTS

$1,998,750

Assumptions:

Typical line segment length 50 miles

Varied terrain and ownership

New substation at generator

Upgrade (2-breaker bay addition) at existing substation
Shunt capacitor addition per 100 miles of wire line
Line loss excluded

Scenario #2 (cost per mile):
20” Pipeline (250 MMcf)

Material, design & construction $617,500
Environmental and land $148,500
Road and railroad crossings $40,000
Mainline valve $14,000
Internal inspection tool (Pig) launcher and receiver $5,000
Compression installed $179,000

TOTAL CAPITAL COSTS §1,004,000

Assumptions:

Average environmental and land conditions

Road and railroad crossings every 5 miles

Mainline valve every 15 miles

Two pig launcher and receiver sets

Two compressor stations totaling 9,400 horsepower installed
Fuel use for compression excluded

Figure 7: Comparison of 2 different transmission/pipeline designs [4]

2 Co-optimization formulation

We have developed only one co-optimization in the below notes;
we could develop a series of models in a fashion similar to that
done in introducing GEP. The different formulations will be
referred to as co-optimization expansion planning (CEP) problems,
denoted as Models CEP1, CEP2, ....

2.1 Simple CEP statement

The simplest statement of the CEP problem is a single-period,

multi-area formulation;

transmission must

(of course) be
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represented in order to consider transmission expansion. The fact
that we must represent transmission also means we cannot model
just a single area, i.e., the model must be multi-area. We must also
represent transmission with limits; otherwise, we cannot know
whether we need to build additional transmission. To obtain this,
we adapt GEP-9 of GEP.pdf and the TEP model described in

Section 2.3 of the notes TransmissionPlanningOptimization.pdf.

We call this model CEP1. Some preliminary comments for this

CEP1 follow:

1. Notation: Notation for the parts of the model originating with
GEP9 has generally remained consistent with the GEP9
notation. Exceptions include:

a. Load blocks: The GEP9 model included a variable s to
enable the use of multiple load blocks. This modeling has
been neglected here to maintain as much simplicity as
possible, so only one load block is modeled. As a result,
the duration parameters hs have all been replaced with T,
and all summations over s have been collapsed. In
particular, the constraint (7a) in GEP9 (which is an energy
constraint accounting for capacity factors across all load
blocks), becomes ineffective, as the constraint on capacity
credit (4c) will generally be more constraining. One can
see this as follows:

Constraint (4c)is0<P ;. <CC

i,j,s i,j,s
but with only 1 load block becomes

0<R, <CC Cap,; Vi, ()
Constraint (7a) is:

Z P j.shs < CFi'jCapi'ths Vi, j
S S

but becomes (with only one load block):
Because CC<CF, constraint (i) must be more constraining than (ii).

b. Transmission: The notation used in GEP9 for transmission
has been replaced by notation used in the TEP model of

Section 2.3 of the TEP notes).

Cap; Vi, J,S.
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https://home.engineering.iastate.edu/~jdm/ee552/GEP.pdf
https://home.engineering.iastate.edu/~jdm/ee552/TransmissionPlanningOptimization.pdf

. Transmission model: The form (and most notation) of the TEP
disjunctive equations came from Section 2.3 of the TEP notes
(which is similar to that given in Li [5] and Bahiense [6] instead
of the model given in the book by Wang [7]). This was done to
maximize notational simplicity (the model by Wang is explicit
In imposing non-negativity on decision variables and is more
complicated as a result; it is not necessary to explicitly impose
non-negativity on decision variables when using modern solvers
like CPLEX as it is done internally).

. Decision variables: There are two explicit decision variables:
Capi ;299 (for building technology j at node i), and z (for building
transmission candidate ).

. Branch index: We previously used (i,j) to index branches, and
we used A, to identify the set of candidate branches. We will
now use | to index branches, where I=(a,b); vbeQ, indicates a
branch |, terminated by nodes (a,b) where the node b is
contained in the set Q..

. Node sets: The set Q, is the set of nodes b connected to node a
via either an existing or a candidate branch. The set Q.° is the
set of nodes b connected to node a via an existing branch. The
set Q. is the set of nodes b connected to node a via a candidate
branch.

. Node notation: We previously used i and j to denote nodes; we
continue to use i, but we will also use a and b. We use j for
generation technologies.

. Time period: Because the model is single-period, there is no
dependence on t. This also means there is no need for the
“accumulator” used in the multi-period TEP (which we denoted
by S), and any need for discrete representation of whether a
circuit is “in” or “out” is handled by z,.

. Extensions: It would be useful to extend this modeling to
account for (a) multiple load blocks (and capacity factor); (b)
multiple time periods; (c) multiple transmission technologies;
(d) effect of distance on AC transmission loadability; (e)
transmission losses.
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Model CEP1:

m|nZZIIJCapadd+ZZFC HPT+ ) > Ky 0

a=l1,..,n I=(a,b);
g VheQy
GenlnvestmentCosts OperationalCosts N -~ )
Translnvestment
Costs
subject to
existin add s

Cap, ; =Cap";""™ +Cap;’; Vi, j )
O<P,J§CC Capi,j ‘v’l,j ©)
Cap’{'20 Vi, ] (4)

Z:Z(:c:ilj.czapi,j > (141 d; 5)

j
P -b(6,-6,)=0;

(62)
|=(a,b); beQ); a=1..n
_leax S P| S leax (6b)
l=(a,b); beQ?; a=1..n
M,(1-2,) <R -(by +h,, ) (6,-6,) < M\(1-2); -
a
|=(ab); beQ; a=1,..,n
(leax+ZAPImax)<PIS(R,max+ZIARmax) (7b)
I=(ab); beQ;; a=1,..n
> BR+d,=>P, a=1..n (8)
I=(ab)be@, J

Variable definitions follow:
e i,a,b: indexes over nodes
J: index over technologies
lij: investment cost for technology j in node i, $/puMW
Cap;;°%: capacity added for technology j in node i, puMW
Cap;i &'"9: capacity existing for technology j in node i, puMW
Capij: capacity for technology j in node i, puMW
Ox: angle of node k, radians
bi: negative of the susceptance of branch |
di: total demand of node i, puMW
FC;j: fuel cost for technology j, $/MBTU
Hj: heat-rate for technology j, MBTU/puMWhr
Pi;: Power generation level at bus i for technology j, puMW
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T: Planning horizon, hours

K| is the investment cost of line I, $

ziis an integer O or 1.

CCi; is the capacity credit for technology j in node i

FI™® is the maximum flow on circuit |

Q% Set of existing circuits connected to bus a, i=1, n

Q4" Set of candidate circuits connected to bus a, i=1, n

Qa: Set of existing and candidate circuits connected to bus a, i=1, n (union of Q,°
and 2,")

n: number of nodes in the network

An even simpler model can be obtained if we are willing to neglect
the effect of impedance in the transmission representation. In this
case, the multi-period TEP and the CEP both can be written as a
linear program (LP) (much like our GEP), where decision variables
include the transmission capacity (a continuous variable) rather
than a binary indicator of whether a line is in or out. Such a model
is called a “transportation model” or a “pipes and bubbles” model.
We modify the above formulation to provide such a model, below.

Using the equation numbers (1)-(8), identify the equations in the above model that must
be changed, those that remain the same, and those that must be eliminated to obtain a
linear co-optimization model having only continuous decision variables (i.e., no integer
decision variables) for generation capacity expansion and transmission capacity
expansion. Also, for any equations that must be changed, re-write them accordingly, and
provide rationale in regards to the change you are making. Use new nomenclature, but do
so only if necessary and with minimal changes from the old nomenclature.

Solution:
Referring to Problem CEP1, the following changes must be made:
Equation (1) must be modified to be as follows:

minZZlileapﬁ?d +ZZ FC; H R T+ 12 | (Z;(Lchapﬁ‘}d
i i a=L...,n  1=(a,b);
vbheQ,

)

GenlnvestmentCosts Operational Costs

vV
Translnvestment
Costs

Changes to (1) include:

o Tcapﬁ(}d is additional capacity added to transmission branch 1=(a,b) using

transmission technology j.
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—P™ = Teapf <P <R™ +> Tcap’
] J

e e Q; is changed to < Q, that is, instead of a set of candidate branches, we

consider additional capacity for all branches, both existing and candidate (by
“existing” we mean paths I=(a,b) that are connected by an existing branch; by
“candidate” we mean paths l=(a,b) that are not connected by an existing
branch).

e K is changed from the dollar investment for a specified candidate circuit
I=(a,b) to K, the /MW investment for circuit 1=(a,b) using transmission
technology j. In this way, the transmission investment cost term is similar to
the generation investment cost term.

Equations (2), (3), (4), and (5) remain the same: these pertain only to the generation
capacity which is already a continuous variable.

Equations (6a) and (7a) are eliminated: these are KVL across each circuit which is not
enforced under the “pipes and bubbles” model.

Equation (6b) is eliminated: this provides limits on existing transmission capacity, but
we are here combining existing with candidate transmission capacity in (7b).

Equation (7b) becomes:

] (7b)

|=(a,b); beQ,; a=1..n
Changes to (7b) include
e EXxisting capacity on branch I=(a,b) is augmented by capacity added to branch
| using transmission technology j.
* pco; ischangedto b o, as described under the changes to (1), above.

Equation (8) remains the same: this is power balance at each node which is enforced
under the “pipes and bubbles” model.

Next we present the CEP problem with time dependence (note we
do not include salvage value or end effects).
Model CEP2:

min> ¢ > L Caply + .0 Y FCH B T+ (™ > Kz @)
t Jj t J t

i i a=1,..n l:(a,b);'

GenlnvestmentCosts OperationalCosts Vet

TransInvestmentCosts

subject to
add ret P

Capi,j’t =Capi,j,t_1+Capi,j,t—Capi,j,t VI, J,t (2)
OSPi,j,t SCCi,jCapi,j,t Vi, J,t ©)
Cap’{i 20 Vi, jt 4)

2.2.CC; Cap j =1+ di V1t (5)

J
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R t b| (ea,t - eb,t ): 0;

(6a)
l=(a,b); beQd; a=1..,n vt

_ leax S P|,t S leax (Gb)
l=(a,b); beQ?; a=1..n WVt

-M,(1-5,) <R, - (bl +b|,exp)(‘9a,t ) 9b,t)£M| (1-8,); 72)

I=(b); beQ; a=1..n Vt

_(Pl,max + SI,tAPI,max) < Pl,t < (fl)max + SI,tAPI,max) vt (7b)

|=(ab); beQ; a=1,..,n
> B,+d,=>P, a=l..n Wt (8)
I=(ab)bee, j

t
Sy = Z Z, 9)
n=1

Next we present CEP2 with time dependence, but using the
transportation model.
Model CEP2a:

Changes made are referenced to Problem CEP2.

mi”Zé““ZZfi,j,tCan}’f +ZC”ZZFC”HJR,MT+ZC” Z Klijcapﬁ}’f @)
t i t i t

a=1,...n I=(a,b);
VvbeQ,

GenlnvestmentCosts OperationalCosts

TransInvestmentCosts

Changes to (1) include:
* Tcap™ is additional capacity added to transmission path I=(a,b) using

transmission technology j, at time t.
* pco; ischangedto pcq_, thatis, instead of a set of candidate branches, we

consider additional capacity for all branches, both existing and candidate (by
“existing” we mean paths I=(a,b) that are connected by an existing branch; by
“candidate” we mean paths l=(a,b) that are not connected by an existing
branch).

e K is changed from the dollar investment for a specified candidate circuit
I=(a,b) to K, the $MW investment for branch I=(a,b) using transmission
technology j. In this way, the transmission investment cost term is similar to
the generation investment cost term.

Equations (2), (3), (4), and (5) remain the same: these pertain only to the generation
capacity which is already a continuous variable.
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Equations (6a) and (7a) are eliminated: these are KVL across each circuit which is not
enforced under the “pipes and bubbles” model.

Equation (6b) is eliminated: this provides limits on existing transmission capacity, but
we are here combining existing with candidate transmission capacity in (7b).

Equation (7b) becomes:

t t
-(P.mauz zTcaps;{:jsat s[amz zTcap:;‘zj ab)
n=1 j =1 j

I=(@b); beQ,; a=1..,n Vvt
Changes to (7b) include
e Existing capacity on branch I=(a,b) is augmented by capacity added to branch
| using transmission technology j for all investments made during time t and
previous to time t.
* pco; ischangedto b q_, as described under the changes to (1), above.
Equation (8) remains the same: this is power balance at each node which is enforced
under the “pipes and bubbles” model.
Equation (9) is eliminated: this provides limits on existing transmission capacity, but
we are here combining existing with candidate transmission capacity in (7b).

In discussing TEP formulations, reference [8] first describes the
nonlinear integer TEP model (Section 2.1 below) and then the
much simpler transportation model (Section 2.2 below).
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2.1 DC model

When the power grid is represented by the DC power flow
modzl, the mathematical model for the one-stage transmis-
sion expansion planning problem can be formulated as

follows:
Minimise
V=ZC'?”FJ+“E“ ()
() %
and nermally appeur in the formulation muluplied by a cost
- a measured in §/MW).
Subject to . The conslrainj[ in eqn. 2 represents the comservation of
Sf+g+r=d {2) power in each node il we think in terms of an equivalent
i D nevwork, this constraint madels Kirchlfff's current law
™ — ) = f (KCL), The constraint m eqn. 3 1§ an expression ol UNS ..
L (Hu ! ”U) (6, -6) =0 3 I|LLa. for the equivalent ]_"2(_2 network. a :;_]'-' This is the
existence of a potential function ¢ assocated with the :
Ifyl = (”g- + ﬂ;‘;)_f i {4) Inetwork nodes is assumed, and so Kirchhoff's voltage law nonlinear
Aty taken Into account (the conservanon of model_
0<g<g (5 the equivalent DC nerwork)—these are nonlinear
-~ ints. The constraint in ean. 4 represents power flow
D<r<d {6y limits in transmission lnes and transtormers. The corn-
straints in eqns. § and 6 refer to generation (and pseudo-
Q =My s f_fr'j ('.T} generation) llmlﬂ. .
. The transmission expansion problem as formulated
n;; integer, _f;J.ﬂndﬂ’. unbounded {8 ul_)c:ve: is an integer nonlinear pn:_nhlem {(INLP). It is a
) difficult combinatorial problem which can lead to combi-
(e ker natorial explosion on the number of alternatives that have
- 10 be searched.
where cj. v ny, i, fj and fj; represent, respectively the cost
of a citcuit that can be added to right-of-way i—j, the
susceptance of that circuit, the number of dircuits added in - This model is obtained by relaxing the nonlinear constramtl  This is the
night-of-way i~j, the number of circuits in the base case, the |qn 3 of the DC model described above In this case the .
power flow, and the corresponding maximum power flow, v fpetwork is represented by a transportation maodel, and the transportation

is the total investment, § is the branch-node incidence
matrix, fis a vector with elements f; (power flows), g is a
vector with elements g (generation in bus k) whose
maximum value is g, Ay is the maximum number of circuils
that can be added in right-of-way i—f, Q is the set of all
tight-of-ways, I' is the set of indices for load buses and r is
the vector of artificial generations with elements ry (they are
used in certain formulations and to represent loss of load,

esulling expansion problem becomes an integer lincar
woblem (ILP). This problem is normally casier to solve
han the DC model although it maintains t mbinatorial
Eharacteristic of the original problem. An optimal plan

obtained with the transportation model is not necessarily
feasible for the DU maodel, since part of the constraints have
been ignored; depending on the case, additional circuits are
needed in order to satisfy the constraint in eqn. 3, which
imphes higher investment cost.

It is interesting that before reference [8] describes the disjunctive
model, it first describes a “hybrid” model which includes
impedance effects only on existing circuits but represents
candidate circuits using the “transportation” form, as indicated
below. In expanding a branch, the hybrid model represents the
original branch there, with its impedance and original capacity, and
adds a “pipe” (a branch with no impedance effects) in parallel with
it to represent any branch capacity added. This is described below;
| have added an illustration, Figure 8, to communicate the concept.
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|Thc hybrid model combines characieristics of the DO
model and the transportation model. There are vanou

ways of formulating hybrid models, although the mosy
common is that which preserves the linear features of thy
transportation model. In this model it is assumed thal
the constraint in egn. 2, KCL, 15 satisfied for all nodes of thy
network, whereas the constraint in egn. 3, which representd
Ohm’s law (and indirectly, KVL), is satisfied only by thy

existing circuits (and not necessarily by the added circuits

e hybnd model 15 obtamed by replacing the cons-
tramts in eqns. 2 and 3 of the DC model by the following
constraints:

S.f+57+tg4+r=d {9
Si—wrB— 8 =0, Wi j)e (10)
£l < Fiy. Wig) € (1

|5 € mijfigy V(i) e @ (12)

where S, 15 the branch-node incidence matrix for the
existing circuits (initial configuration), [ is the vector of
flows in the existing arcuits (with elements f;). and £ is the
vector of flows in the added circuits (with elements £}

pipe
[
Impedance —
branch lb—l
1

Figure 8: Illustration of hybrid model
configuration

2.4 Disjunctive model

A linear disjunctive model has been used in [1-3]. 1t can be
shown that under certain conditions the optimal solution
for the disjunctive model is the same as the one for the DIC
model. This model can be formulated as [ollows.

Minirise
V=ZC,;_I]¥+QZP‘; (13)
(L8] &
Subject to
Sof'+ 8 +y+r=d (14)
F =6 —8) =0, V(i) ety (15)
|78 =l — 8l = ML= pf). W )en  (16)
LA < Fynly (17}
TMESr (18)
O<g<@ (19)
0<r<d (20)
vie{o}l, (e p=12...p (21)

/3, £ and 8; unbounded

where p is the number of circuits that can be added to a
right-of-way (these are binary variables of the type Jﬁ], fUis
the vector of flows in the circuits of the initial configuration
{with elements f,‘}). &, is the node-hranch incidence matrix
of the candidate circuits (which are considered as binary
variables) f is the vector of flows in the candidate circuits
(with elements ), ) are the circuits of the initial
configuration, and M is & number of appropriate size.
The appeal of this model s that the resulting formulation
can be approached by binary optimisation techniques. On
the other hand, it has two main disadvantages: the increase
in the number of problem variables due to the use of binary
varables, and the need to determine the value of M. An
additional feature of this method is that it can be extended
to AC models: this, however, 15 not of great value m

practice, since most of the long term studies are performed
with DC models only,

We provide the formulation for the hybrid model below. Observe
that P is flow on impedance branch and P’ is flow on pipe.

Model CEP2b (hybrid model):
minzft'lzzfi,j,ﬁapf}’f

i

i

F2 LY FCH BT+ 0 )

Z Kz, (1)

=1,...n I=(ab);

GenlnvestmentCosts

subject to

Cap; ; =Cap; ;. +Cap/f} —Cap{, Vi, jt
Vi, jt

0<PR

add
i,j,t

sCCi,jCapi,j,t

Cap™~, >0 Vi, J,t

OperationalCosts

vbeQy

TranslnvestmentCosts
(2)

©)
(4)
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chci,jcapi,j,t > (1+ F)Zdi,t vt (5)
i ] i
I:)I,t —b, (Ha,t _eb,t ): 0;

(6a)
l=(a,b); beQ); a=1..,n Wt
_ leax S F)Lt S leax (6b)
l=(a,b); beQd; a=1..n, vt
{3 Sres |<my <[ 3 Sreants | (1)
n=1 n=1 j
I=(a,b); bng; a=1,..,n Yt
> B+ > PBi+d,=>P, a=l..,n Wt (8)
i

I=(ab)be? I=(a,b),pc]

There is a final model that is very simple to implement. | call it the
fixed reactance model. Here, each branch has a reactance and a
flow limit. In the optimization using this model, the flow limit can
be increased to account for increased branch capacity (and so the
flow limit is a decision variable), but the reactance remains fixed.
This of course is erroneous because expansion to achieve
additional capacity necessarily means an additional branch will be
paralleled with the existing branch and the reactance will decrease
due to the parallel combination. But to avoid the MILP formulation
of the disjunctive model, we ignore the change in reactance (and
therefore retain an LP).

Model CEP2c (fixed reactance model):
mind (Y > 1 Caply + () > FCH B T+ () >, Kz, (1)

a=1,..n I=(ab);
vheQ)

GenlnvestmentCosts OperationalCosts

TranslnvestmentCosts

subject to
Cap; ; =Cap; ;. +Cap/l, —Cap{®, Vi, jt @)
OsPi,j,t SCCi,jCapi,j,t Vi, J,t (3)
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Capiy =0 Vi jt @
>'>'cc Cap >+ d, Wt ©)

i
R t b| (ea,t - gb,t )= 0;

(63)
. 0.
I=(a,b); beQ,; a=l..,n WVt
P.ma*-[z zTcaps;*,ajsat < amau[z zTcap.é;’:;] 70
n=1 j n=1 j
I=(ab); beQ;); a=1,.,n Yt
> PB+d,=>P, a=l.,n Wt (8)
]

1=(ab)be?

Although Model CEP2c is approximate (in that, for invested
branches, the branch reactance is not consistent with the branch
capacity), it can be adjusted via an iterative scheme. Such an
iterative scheme is illustrated in Fig.

Start

Update reactance Reactance
of each expanded change <e
branch ?

Yes, 'Stop
Figure 9: A CEP2c iterative scheme for adjusting reactance

3 Current industry thinking on co-optimization

The Eastern Interconnection States Planning Council (EISPC) [9]
sponsored an effort to summarize current state-of-art and industry
practices regarding co-optimization, and a report is available [10].
The executive summary of this document is copied below.

21



Purpose

Is co-
optimization
useful for both
vertically
integrated and
for unbundled
structures?

What other
planning
alternatives
can be
considered
within co-
optimization.

EXECUTIVE SUMMARY AND RECOMMENDATIONS

ES-1. Overview

The purpose of this report is to describe and explain the benefits of using co-optimization for
power system generation and transmission planning Co-optimization models are computer-
aided decision-support tools that search among possible combinations of generafion and
transmuission investments to identify infegrated solutions that are “best” in terms of cost or other
objectives while satisfying all physical, economic, environmental, and policy constraints.

We review the state of the arf in power system expansion planning tools including existing co-
opiimization models. We also summarize dafa and computational requirements of co-
optimization models, specify design choices to be made in developing them and describe
methods for their validation. Three case studies illustrate potential applications and associated
results of co-opfimization and ifs benefits relative fo planning approaches that optimize
generafion alone or fransnussion alone. Methods to address shorf-mun resource vanability and
long-min uncertainties within co-optimization are described in some depth, given the centrality of
these topics in planning for the firure Institutional concerns regarding co-optimization are
explored, including confidentiality, public domain access, and potential roles of states.

Two central findings are as follows. First, co-optimization is useful where power utilities are
vertically integrated becamse it idenfifies less cosily solutions by considerning the fight
interactions of generation and transmussion  Second, co-optimization is also usefil within
unbundled environments because if facilifates exploration of how generation dispatch and
investment will respond to changes in transmuission capacity, access, and congestion. This helps
planners to identify grid reinforcements that encourage generation siting decisions that yield the
lowest overall cost of power production and delivery. Co-optimization also facilitates infegrated
and simultaneous assessment of all planning altematives, including supply-side options (bulk and
distributed generation and storage), demand management. and transmission. so as to identify the
most economically and environmentally efficient combinations.

Our findings tmply that co-optimization 15 likely to be hughly useful for system expansion
planning, particularly within the Eastern Interconnection (EI). This is particularly important
given the large transmission investments that are anticipated to promote interregional power
trades and renewables integration. In the near term, there 1s immense value to applving research-
grade co-optimization tools to the EI or its subsystems. Such studies would be highly beneficial
because they would (1) further illustrate the benefits of co-optinization for mdustry-sized
systems; and (2) facilitate exploration of several model design issues, including treatment of
mncertainty and deployment on high-performance, paralleled computers. In the longer termy
consideration should be given to developing commercial co-optimization applications that would

The next page illustrates the difference between vertically
integrated industry structure (as exists in the southeast US) and
unbundled industry structure (as exists where 1SO markets are), in
anticipation of a question on the page following.
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Other types of
investment
decisions...

Single
optimization
vs. iterative.

How would
cooptimization
be used in
unbundled
environments
where trans
investment and
generation
investment are
generally done
by different
organizations?

incorporate operational constraints and variability fo enhance model fidelity while conveniently

interfacing with existing and newlv developed data repositories.

ES-2. Definition

Co-optimization is the
simultaneous
optimization of two or
more different yet related

We recommend use of the following general definition for co-optimization in this document. ~ es0urces within one

optimization
formulation.

Co-optimization is the simulfameous identification gf two or more classes of
investment decisions within one optimization sirategy.

Here, “classes of investment decisions,” in the context of eleciric systems planning, almost
always include decisions to build generation and transmission. But they may include other types
of decisions as well, such as demand-side solutions, decisions to install storage, or building of
natural gas pipelines. “One opfimization strategy”™ may consist of a formmlation fo solve a single
optimization problem (e g, nunimize cost subject to constraints) or it may consist of a
fornmilation to solve an iferative senes of optimization problems (1.e.. sequential yet coordinated
generation and fransmission planning).

The above definition is tool-focused; it refers to the operation of a particular kind of
computational method. But it must be understood in the context of the planning process in which
it is used. If co-optimization is used by a vertically integrated utility, then its main result is the
identification of joinf transmission-generation expansion plans that are lower in cost than
expansion plans would be if transmission and generafion plans were developed separately.
However, co-optinization can also be used within used in wtility regions that are no longer
vertically integrated (untundled) and where planning for transmission infrastmucture 1s performed
by one entity while planning of other classes of investments (e.g.. generation) 15 performed by
others. In particular, co-optimization is likely to be highly nseful in an unbundled environment
in which transmission infrastructure planning is separated ffom generation investment. In this
case, the process in which co-optimuzation 1s used might be called “framsmission plamning
accounting for market response” of “anticipatory fransmission planning” Key resulis of co-
optinuzation computations would include not just how generation dispatch and gnid congestion
would be affected by alternative network configurations, but also ultimately how availability of
transmission could incent changes in generation mix and siting decisions. Because transmission
investments usually (but not always) have longer lead times than generation it is appropriate for
transmission planners to anficipate how alternative network configurations will affect the
aftractiveness of different locations for plant siting, and the resulting effects on costs, prices. and
EMSS100S.

Thus, to complement the above general defimfion of co-optimization we also define a second

term that reflects the nature of the manyv planning processes under which co-optimization could
be usefully applied:
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Anticipatory fransmission planning is a use of co-optimization to evaluate network
investments while considering how generation decisions, both dispatch and
investment, will respond to changes in fransmission capacity, access, and congestion.

Therefore, co-optimization can benefit the planning processes of states and Planning
Coordinators regardless of market structure or regulatory regime. That is, no matter whether the
power industry is vertically integrated or unbundled. co-optimization can be an effective tool for
states and Planning Coordimnators to befter understand variouns risks. benefits and costs when
assessing resource options, and to identify improved integrated solutions.

ES-3. Benefits of Co-optimization and Anticipatory Transmission Planning

Co-optimization is a systematic approach to address critical questions in planning. One such
question concerns the fundamental tradeoff that exists in many places between fransmission
mnvestment and quality of renewable resources. In particular, how much transmission capacity
would be needed to economucally and reliably deliver the energy produced by remote high
quality variable renewables. or is it more efficient to develop less efficient resources nearer to
load centers? As another example, is it more economicalreliable to invest in remotely located
large-scale thermal or hydro generating stations and provide long distance HWVDC/AC
transmission for power delivery, or would if instead be less costly and environmentally damaging
to invest in locally distributed and variable generation resources in highly congested regions with
limited availability of transmission right of ways?

Another such question concerns the diversity and flexibility value of linking power systems and
markets. How much thermal generation capacity would be needed to reliably operate a power
system with significant amounts of renewable energy? By more closely linking geographically
separate markets, how would transmission investment increase the diversity of resources and
thereby increase the capacity value and reduce the ancillary service requirements of the
renewable resources? How much operating and planning flexibility do additions of transmission
capacity provide, and how can that be compared to flexibility from traditional generation
sources?

A final and crucial planming question concerns interaction of transnission and generation with
emerging resources. For instance, how nmch generation and transmission capacity could be
saved at the planning stage by more aggressive demand-side management and demand response

programs?

In this report, we illustrate the use of co-optimization models to answer these gquestions by
comparing co-optimization with more fraditional generation-only or transmission-only planning
processes in a series of case studies. One group of case studies considers simple three to four
bus examples that transparently illustrate how co-opiinuzation reduces cost. Other case studies

are based on a thirteen-region representation of the TS power sector, and quantify the benefits of
co-optimization of interregional reinforcements under various scenarios conceming renswable

The next page provides slides illustrating (a) when it is useful, (b) that co-
optimized solutions must be as good as, or better than a sequence of
GEP/TEP solutions (relates to next question); and (c) a CEP mental image.
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It is useful when decisions for one infrastructure class
affect decisions for another infrastructure class.
GEP DECISIONS TEP DECISIONS
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A co-optimization of two related decisions
must be as good as, or better than, a
sequence of individual optimizations.

Better? In what sense?
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Co-optimization identifies less costly solutions,
(b) while satisfying all GEP and TEP constraints.

For each combination of investment plans, it computes
production costs over the entire period and then selects

the investment plan that minimizes total investment+O&M.

400MW NGCC at Tesla345kV in year 3
200MW Wind at Malin230kV in year 11
Retire 250MW Coal at Contra161kV in year 18
Bulld 1500MW Jones-Smith 500kV in year 13
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Is total cost < Best plan so far?
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Why is co-
optimization
better than
sequential
(GEP and then
TEP)
optimization?

Is co-
optimization
better than
iterative (GEP
and then TEP,
then GEP/TEP,
...etc);
optimization?
An example...

energy policies and technology developments. Through these examples, we have documented
how co-opiimization can lower the total cost of electricity provision through:

savings of transmission and generation investment and operating costs;

more efficient decisions concerning generation refirements and uprates;

more appropriate freatment of variable resources;

efficient integration of non-traditional resources such as demand response. customer-

owned generation. other distributed resources. and energy storage;

fuel mix benefits;

0. improved assessment of the ramifications of environmental regulation and compliance
planming; and

7. reduced risk and attendant effects on resource adequacy and costs.

da ol

L

The simple examples show how co-optimizafion can yield a more balanced and econonuc mix of
resources compared to transmission-only planning (fransmission expansion subject to a fixed
scenario of generation investment) and generation-only planning (generation investment subject
to a fixed network). Geperally, the lowest cost solution results from a combimation of
transmission and generation investments, and considering only one or the other results in
unnnecessanly higher costs and enussions, and perhaps even a defenoration in reliability. The
interactions between plant siting and transmission routing decisions can be complicated and
surpnising. Sometimes investments i transnussion defer the need for new generation capacify
investments, while in other situations, development of costly local generation is preferred fo
building cheaper or more efficient generation in remote locafions plus the fransmission necessary
to access it. These phenomena can occur on radial networks, and become even more complex on
looped grids, even for our three to four bus examples.

In our national applications, we find that, under some assumptions about renewable technology
and cost developments, full co-optimization can save up to 10% or more of total generation and
transmission costs compared fo generation-only planmuing, and 5% or more compared fo
transmission-only planming given an assumed fixed paftern of generation investment. These
savings are larger in magnitude than the transmission mvestments themselves, demonstrating the
crifical role of transmission in economically integrating renewable energy. The savings occur
because co-optimization can result m appreciably different patterns of investment than
generafion- or transmission-only planming. The results show that the most profitable locations
for renewable and nonrenewable plant investment strongly depend on where grid reinforcements
are made. Differences of 30 GW or more in regional capacity expansion are sometimes found.
Conversely, the cost-mininmzing transmission imvestments are very different if a fixed scenario
of generation expansion is assumed than if possible shifts in generation sifing in response fo
transmission additions are considered.

The examples also illustrate fwo different fypes of co-optinuzafion. The most efficient (but
compufationally challenging) fype considers generafion and fransmission investment
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simultaneously. The other iterates. first expanding generation with a fixed gnd (generation-only),
then second expanding transmission given the first generation expansion solution (fransmission-
only), then back fo generafion-only, and so forth We find that compared to generation-omly
planning. the iferative process can reduce costs quite significantly. However, afier five iferations,
this process yielded a plan for expanding interregional transmission in the US that is still $22
billion more expensive (present worth of generation and transmission costs) than the co-
optimized plan, a difference of 1.3%. By comparison the amount of transmission investment in
the Eastern Interconnection in 2012 was approximately $3 billion, an amount that is expected to
grow significantly in coming vears.

That application also illustrates a major benefit of co-optimization. Full co-optimization spent
approximately $60 billion more on transmission, but saved £150 billion (in present worth)
compared to a solution in which generation was first planned, and then transmission was planned
to deliver that generation That is, there was a 2.5 benefit/cost ratio for the incremental
transmussion investment Forfy percent of the generafion cost savings were derved from
reductions in generation capital costs from more efficient generation siting and mixes, and 60%
were variable cost savings. Thus, traditional fransmission planming processes, which do not
consider changes 1n generation siting and capifal costs, muss a potentially very important benefit
of transmission.

ES-4. General Recommendations on Model Development and Demonstration

Because of the many benefits of co-optimization that we have illustrated and quantified with our
simplified models. we recommend that FISPC inifiate efforts to develop a co-optimuzation tool
for long-term electric systems planmng. Although various research-grade co-optimization fools
already exist, none have all of the features necessary to satisfy the long-ferm needs of the EISPC.
We expect that the benefits available from such a tool would far outweigh the costs of
developing it.

As an initial step, we also recommend that one or more Planning Coordinators or States
collaborate with a research group to apply an existing co-optimization tool using detailed data
from their region to quaniify the benefits of co-optimization in a realistic setting. Such a study
would reveal more precise estimates of co-optinuzation benefits than are possible fiom our
simple three and four bus examples and US model. The study would also provide more
information on the effort required to apply co-optimization. and on the msights that could be
obtained.

ES-5. Recommendations on Tool Design

Development of a co-optimization fool that can be wsed in an actual planning setfing requires a
mumber of design decisions. These decisions often involve choosing between model fidelity
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(realism) and compufational intensity. The following summarizes the most critical of these
design decisions as well as our recommmendation in each case.

1.

We have not explored this
issue very much, but it is
important. You can have
operational years (simulating
operation but not allowing
investment) and investment
years (simulating operations
and allowing investment).
Simulation of operations for
an operational year can be V)
modeled by actually

performing a dispatch for

every operational block (and
therefore having operational
decision variables), or it can

be modeled by simply
duplicating the operational

cost in the last investment

year. In either case, an
operational year has no
investment-related decision
variables. An investment

year has both operational and 1

investment-related decision
variables.

W

Pre-processing step: We recommend a pre-processing step be included that would
prepare data for input to the co-optinuzation tool. There are a number of functions that
could be included in this pre-processing step. but the most important of them is
identification of candidates for new transmission circuits that the co-optimization tool
should consider.

Co-optimization selvers: The co-optimization tool should aveid use of nonlinear
optimization solvers and instead rely on highly efficient linear continuous opfinuzation
solvers and/or linear mixed-infeger optimization solvers. Nonlinear solvers cannot handle
as large of a problem. and take longer to execute.

Network model: There are three choices for a network model, AC-flow, DC-flow, and
transportation (“pipes-and-bubbles™) flow. Of these, we recommend vse of the DC-flow
network model as it provides good fidelity for MW flows for a modest computational
burden.

Resource and fransmission options. The co-optimization tool should allow for selection
from mmlfiple resource and fransmission technologies. Resources should include fossil-
storage. Transmission technologies should inchide both AC and DC lines, each at
mmiltiple voltage and capacity levels. AC transmission capacity should be modeled as a
function of distance befween substations having voltage conirol egquipment DC
transmussion should include technologies employing line-commmutated (thyristor-based)
converiers and technologies employing voltage-source converters. Simple demand
response programs, such as crifical peak pricing or peak-fime rebate programs. can be
practically and realistically modeled as programs that trigger an amount of demand
reduction if price exceeds a threshold.

Multiyear representation. The co-optimization fool should have the ability to represent a
given time frame (e g, 20 years) as a sequence of multiple periods (such as 2 years) such
that optimal timings can be identified for each investment.

. Policy repraesentations. There are many policies that profoundly influence power sector

investment decisions. These include environmental policies on the federal state, and
local levels that address air pollution, once-through cooling facilifty siting, and
greenhouse gasses, market design features, such as capacity markets and regulatory
preferences and incentives for particular resources; and the effects of regulatory policies
on the affractiveness of transmission investments considenng rate-of-return regulation
and, in special circumstances, merchant transmission. Because of their profound effects,
these policies should be explicitly represented in co-optinuization models.

Ouitputs: The tool should not only identify economically and environmentally attractive
near-temm investments in fransmission it should also provide information on prices and
costs, and their distribution among regions and market participants. This can be helpful in
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Modeling — DER Representation

357 bus reduced WECC model;, 99 buses in BPA region; 47 transmission-level load
buses converted to 3-seg dist feeders; increase total buses to 498, 2018-2038.

odel one N-seg feeder
at each trans load bus.

N=3 segments
" D‘ER\\) " D—Eh\\, 4 D‘ER\\)

\\ /, \\ - \\ /I

N

..... DER = EE, DR, D-PV, microT, & storage

P Y

[ Enables multi-segment loss representation & investment without increasing model size too
much. Can choose N according to computation/fidelity needs.
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understanding where generation siting would be most attractive, and who benefits from
transmission expansion. Because users and stakeholders will have many objectives. such
as lower power prices, emissions, regional job creation, and fuel supply security, another
design decision is what objectives should be optimized. A co-optimization fool could be
designed to have more than one objective function and therebv be used to identify a set
of solutions that represent a range of tradeoffs among objectives. This tradeoff
information could inform negotiations among the inferests mvolved in transmission
planning, and so multiobjective capabilities should be built into co-optimization models.

In addition to the above decisions concerning tool design, there are several other considerations
that will become increasingly important i the future, and should therefore receive consideration
both in designing new co-optimization methods and in research on the topic.

1.

Handling uncertainty: The past four decades shows that power system planning is subject
to profound long-run uncertainties in policy, technology, fuel costs, and load growth, and
that surprises are sure to be in store for power system planning in the future. It is possible
to conceive of uncertainty in ferms of parameinc uncertainty around an expected value
(local uncertainty). For instance, one might expect 1% demand growth +0.5% over the
next 10 years. Uncerfainty can also be conceived in terms of dramatic shifis that
significantly change the future (global vneertainty). for instance. we might expect natural
gas prices to rise to only $7/MBTU over the next 20 vears, or we may expect natural gas
prices to rise to $15 over the next 20 years, or a policy change may occur related to
certain resource (g.g., nuclear). If is possible to develop co-optimization tools that handle
both types of uncertainty, but at a significant increase in computational burden.

Value of transmission expansion. The co-optumization tool should be able to assess all
categories of benefits that transmission brngs. These include (a) energy market
efficiency enhancement, (b) ancillary service market efficiency enhancement; (c)
emissions reductions; (d) mncreased network integrity (or “insurance”™ value) for mmlti-
element contingencies; and (¢) enhanced competition in bulk power markets.

. Generation flexibility. Some RTOs recognize the need to explicitly incent operational

flexibility. As renewable penetration increases, this issue will grow in importance.
Therefore, co-optimization should include the ability to impose flexibility (e.g., ramping
capability) requirements on resource portfolios as a function of net load vanability.
Modeling operational reserve requirements and proper modeling of the costs of fossil-
fuel unit cycling would need to be considered.

Transmission operations: In theory, a co-optimization fool could consider operational
1ssues such as system dynamics, reconfiguration switching, right of way and voltage
support, whose implications for planning may become more important in the future.
Multi-sector modeling: The electric system influences and is influenced by the
performance of other infrastuctire systems. Among these, the natural gas pipeline
system is today perhaps the most consequential, but the passenger transportation system
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will become more influential as it becomes more electricity-dependent. Inclnding the
ability to represent interdependencies between these other infrastructure systems and the
eleciric system 1s likely to be important in the future.

6. Advancemenis in compufational efficiency: Even a conservatively-designed co-
optimization tool 1s computationally demandmg. Developing a co-optimization tool with
the ability to run on high-performance parallel computers will be very useful Adwvanced
optimization/decomposition algorithms could facilitate the consideration of long-run
uncertainties as well as a greater range of load and renewable operating conditions. One
particular aspect of co-optimization modeling that could benefit from such advancements
is the treatment of operational constraints and variability. Current models usually focus
on the “big picture” of expansion planning without mncluding a great deal of operational
details. This 1s in part necessary because of limitations in the size of models that present
solvers and computers can handle. However, as computation capabilifies improve, larger
models with more realistic operations become possible. The need for better operafions
models is also driven by the deployment of smart grid technologies such as demand
response, microgrids, and electric vehicles, which mean that the operations of the future
eleciricity power systems could be very different from today. Improved representations of
operations could also include unit commitment considerations or storage optimization.

1. Market structure:  Although the deregulation process of electricity market began long
ago, the market is still not fully deregulated. The cumrent status quo 1s that vertically
integrated regulated utilities and wnbundled deregulated markets exist side by side. The
implications of their co-existence for co-optimization, especially of interconnections
between different systems, need to be better understood.

The first issue, that of uncertainfy. receives parficular attention in this repori. Traditional
planming methods have tvpically applied simple and ad hoc methods to address power system
uncertainties. These methods have served the industry relatively well in the past However, the
industry is increasingly challenged by the needs to address a large number of new issues,
including the growth of distributed power systems, uncertainties concermning the location of new
energy resources and the retirement of older generators, integration of large amounts of variable
energy resources, more dynamuc loads. tnereasingly stringent environmental regulations dnving
changes to the generation porifolio, and long lead times fo construct major facilities. These 1ssues
have led to sigmificantly more complex and less predictable power systems and raised the
question of whether existing planning methods are adequate. In particular, existing methods
cannot quantify the economic value of flexibility and adaptability of transmission plans. As an
example, some transmission investments might leave more options open than other investments
for resource infercomnection in the fufure because the regions they access mught have a larger
variety of resources. The option value associated with such flexibility can be important in
transmission planming, but 15 not considered by present planning models. whether co-optimized
or not. It iz necessary for co-optimization model formmlations to explicitly consider mmltiple
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future scenarios, and how future decisions might anficipate or adapt to them, instead of simply
mnning analyses on many different scenarios.

ES-6. Data requirements

Co-optimization tools require more input data fo mmn than generation- of transmission-only
models alone. Building co-optimization models 1s a data-intensive task requiring sigmificant
effort to collect, maintain and share data without violating network security and organizational
confidentiality standards. However, to the extent that the data sets required by co-optimization is
more detailed, consistent, and of higher quality than data used by other models, it can also
benefit more focused analyses. In parficular, the incremental data for co-opfinmization could
potentially facilitate improved analyses of demand response, energy storage, energy efficiency,
distributed generation, variable-output resources, capacity additions, uprates, and retirements,
capacity degradafion, and fuel prices. The benefit of better data for those studies nught by itself
justify the incremental cost of data for co-optimization planning.

We recommend development of data repositonies for use with co-optinuzation tools, if such fools
are developed. These data repositories shonld include characteristics of existing and already
planned infrastructure, characteristics of infrastructure opfions from which the fool will select.
and future conditions.

In developing these data repositories, it is important fo capture geographical variability in
infrastructure data. There are such variations in (1) availability, quality, and investment cost of
renewable resources such as wind, solar, and biomass; (2) investment and fuel expenses for non-
renewable resources such as coal and natoral gas; and (3) investment costs of electric
transmussion. These vanations should be reflected in the data sef. It is precisely these vanafions
in costs over space that co-optinuzation takes advantage of in order to lower costs relative to
traditional generation- of transmission-only planning.

In addifion, co-optimization modeling nevitably involves dafa aggregafion in order fo reduce
the mode]l size and computational burden involved in regional infrastructure planning. This
implies a need for the various entities involved to share data and identify regional boundaries for
resource aggregafion (e.g.. fo account for fransfer capacities).

ES-7. Institutional Considerations

A well-designed planming process for generafion and transnussion that uses co-optimuzation
needs to identify the needs of stafe regulatory and planming bodies, balance competing objectives
of concern to stakeholders (such as cost, reliability, and environmental impact), and help allocate
scarce resources among potenfial mmvestment choices. Our analysis of the institufional issues
assoctated with co-optimization concludes that robust co-optimization-based planming methods,
reflecting the interests of local jurisdictions in the region. would likely be more effective in
relieving regional fransmission congestion and ensurng long-term resource adequacy. Such
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planning processes should provide a formal role for state governments and thus facilitate active
participation by state officials: utility regulators, energy offices. consumer advocates, and
environmental regulators, as appropriate to each state. It should also involve consumer and
citizen interests as well as market plavers to guide the planning process. These are requirements
under FERC Order 890, and co-optimization tools can facilifate informed involvement by
stakeholders in this process.

Anpther mstitutional issue is co-ordination across different markets or regulatory jurisdictions.
As the discussions over FERC Order 1000 have shown, there is strong interest in coordinating
regional planning efforts in order to facilitate integration of renewables and lower the cost of
power to consumers. Those discussions also show how difficult it is to achieve such coordination
given our federal, devolved system of government and the diversity of institutions involved in
planming. Instifutional developments under Order 1000 should be followed closely to identify
lessons that would be useful for conducting co-optimization studies. Co-optimization tools that
encompass muliiple regions will yield befter estumates of the benefits of coordination of
operations and mvestment across regions, which supports Crder 1000°s objectives.

A final issue 1s: who can interact in the planning process that utilizes co-optimization software
and associated data? In unbundled markets, it 1s the case that generation owners are restricted to
only the transmission information that is on OASIS and are limited in the commmnication they
can have with fransmission operators and planners. But vet co-optimization by definition
considers interactions between generation investment and transmission reinforcements. It can be
fairly asked: how can the need for separation be reconciled with the need to represent
inferactions and to have extensive data on both generafion and fransnussion? We believe that the
data necessary for informed co-opfinuzation can be obfamned and used by transmission processes
overseen by utilities, states, and RTCOs, but that restrictions on permissible communications will
need fo be understood and respected in those processes.

A final but very important point, made below.

Co-optimized Expansion Planning —
A Mental Picture

It is not a predictive application.

Rather, it is an exploratory application.
It enables exploration of how

+ various designs perform

» over various conditions.
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