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Co-optimization 
 

1 Introduction 

Many of you are familiar with the basic electricity market 

operation which maximizes the economic surplus of the market, 

where the surplus may be loosely thought of as the difference 

between the aggregate willingness to pay for the commodity 

(energy) and the aggregate cost of supplying that commodity. A 

simple analytic statement of this problem is below: 
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where 

• sgk is the price offered in $/puMWh from generator k 

• Pgk, a decision variable, is the generation in puMW at bus k 

• sdk is the bid made in $/puMWh from demand k 

• Pdk, a decision variable, is the demand in puMW at bus k 

• P is the N×1 vector of nodal injections in puMW: Pj=Pgj-Pdj 

• B’ is the so-called “B-prime” matrix which is the negative of 

the imaginary part of the network’s admittance matrix Y, i.e.,  

 YB Im' −=     

The B-prime matrix here must be N×N, i.e., it must have 

dimension equal to the number of buses in the network. 

• θ is the N×1 column vector of bus angles, in radians. 
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• PB is the M×1 column vector of branch flows in puMW; 

branches are ordered arbitrarily, but whatever order chosen 

must also be used in constructing D and A. 

• D is an M×M matrix having non-diagonal elements of zeros; 

the diagonal element in row k, column k contains the negative 

of the susceptance of the kth branch. 

• A is the M×N node-arc incidence matrix. It is also called the 

adjacency matrix, or the connection matrix. 

We could also write this problem with fixed demand, i.e., with the 

Pdk’s specified and therefore no longer a decision variable. In that 

case, the problem is just a cost-minimization problem. In either 

case, the problem is an optimization problem, and not a co-

optimization problem, because there is only a single resource being 

optimized – the MWh. 

 

But this problem actually over-simplifies today’s electricity market 

engines because it does not account for reserves. The simplest 

approach to account for reserves reformulates as follows: 
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where Prk is the reserve at bus k, rk is the offered price of those 

reserves, and RR is the system reserve requirement.  
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This is a case of co-optimization because there are two different 

interdependent commodities (or resources) that are being 

optimized in the same problem. These commodities are energy and 

reserves. Energy cannot supply the reserve requirement and 

reserves cannot supply the energy requirement. Yet, the amount of 

energy that an agent (generator) provides sets a constraint on the 

amount of reserves that it can simultaneously provide, and vice-

versa. 

 

As an aside, we mention that the co-optimization of the electricity 

market actually coordinates at least1 two different kinds of 

reserves: regulating reserves and contingency reserves (and the two 

combined are sometimes referred to as operating reserve). Figure 1 

[1] below illustrates. 

 
Figure 1: Cooptimization within electricity markets 

 

With this introduction, we may proceed to propose a formal 

definition for co-optimization, as follows: 

 

Co-optimization is the simultaneous optimization of two or more 

different yet related resources within one optimization formulation.  

 

 

 

 

 

 
1 Ramping reserves may be a third type in some electricity markets. 
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Co-optimization optimizes two (or more) objectives which depend 

on different but related decisions, as expressed in the following 

generalized co-optimization formulation. 

)()(min 21 yfxf +  

subject to: 

0),( yxg  

 

There are three important observations to be made of the above 

problem: 

 

1. Form of objective: The objective function consists of two (or 

more) functions, with each being dependent on a unique set 

of decision variables.  

2. Interdependence: The two (or more) groups of decision 

variables are interdependent through the constraints. 

3. Comparison to multi-objective optimization: Co-optimization 

is not the same as what is referred to as a multi-objective 

optimization. In multi-objective optimization, the objective 

functions depend on the same decision variables. Thus, a 

multi-objective optimization problem might appear as 

 1 2min ( ), ( )f x f x  

subject to: 

0)( xg  

A standard multi-objective problem has conflicting 

objectives, i.e., when x is changed so as to improve f1 (make 

f1 smaller in this case), then f2 degrades (gets larger in this 

case). Thus, the issue in multi-objective optimization is to 

select x to achieve the best tradeoff between the different 

objectives. The security-economy tradeoff problem is like 

this: we redispatch away from the most economic point to be 

secure, i.e., we choose operating condition x to minimize cost 

(f1) but then redispatch from there to lower risk (f2), 

necessarily incurring higher costs. Figure 2 illustrates [2]. 

P-CO 
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Figure 2: A Pareto-optimal tradeoff curve of electric 

grid operational costs and risk 
In contrast, a cooptimization problem does not necessarily see a 

plus and minus tradeoff like this, i.e., it is possible that an increase 

in one objective f1(x) may result in either an increase or a decrease 

in another objective f2(y). Cooptimizing generation and 

transmission is like this. Building more generation x, increases 

f1(x), and connecting that generation may also incur more 

transmission y, increasing f2(y). On the other hand, building 

generation x close to the load may require high generation cost 

f1(x) and zero transmission cost f2(x); increasing the transmission 

cost f2(y) to reach remotely located but cheap generation may in 

this case reduce the generation cost f1(x).  
 

There are two other co-optimization problems of interest which we 

briefly describe in this introduction.  

1.1 Generation and transmission 

The first problem we describe is the co-optimization of both 

generation and transmission. In the past, planning was done by first 

solving the GEP problem and then the TEP problem, after which 

the planning effort concluded. This approach can be extended to an 

iterative approach, which is an approximate way of performing co-
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optimization, and finally, it can be done most effectively using a 

single analytical optimization. These three approaches are 

illustrated in Figure 3. 

 
Figure 3: Three GEP/TEP planning approaches 

 

To describe the iterative approach, we utilize the nomenclature of 

the co-optimization problem posed above as P-CO, with x 

representing the generation decision variables and y representing 

the transmission decision variables. 

1. Let k=1 

2. Choose transmission solution yk. Usually, we choose the 

solution to be the existing topology with lines having infinite 

capacity. 

3. Solve the following GEP problem: 

)(min 1 xf  

subject to: 

( , ) 0
k

g x y   

Denote the solution as xk. 

4. Solve the following TEP problem.  

)(min 2 yf  

subject to: 

( , ) 0kg x y   

Denote the solution as yk+1 

5. Check for convergence; if not converged, k=k+1; return to 3.  

P-CO1 

P-CO2 

GEP TEP 

GEP TEP 

CEP 



 7 

Experience with this approach indicates that it typically converges, 

though convergence is not guaranteed [3]. 

 

Unlike this traditional electric systems planning approach, where 

generation and transmission investment are typically identified in 

sequence (usually generation, then transmission), a co-optimized 

approach identifies them simultaneously. We formulate such a 

problem in the next section.  

 

Figure 4 illustrates a typical decision problem that could be solved 

by a generation/transmission co-optimization where we observe 

the top figure has low capacity factor (CF) wind but located close 

to the load. The middle figure shows wind modeled both close to 

and remote from the load, with the total number of wind turbines 

being less than in the top figure (wind energy production is the 

same or higher; generation cost is less), but the transmission cost to 

reach the remote wind is significant. The bottom picture shows all 

wind located remotely, which further decreases the number of 

wind turbines necessary to build, but there will be increased 

transmission cost to handle the capacity of all the remote wind. 

 
Figure 4: Co-optimization of electric generation & electric transmission 
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1.2 Generation, transmission, and natural gas 

The second problem we want to identify is the natural gas and 

electric co-optimization problem. The basic form of this problem 

would be as follows: 

)()()(min 321 zfyfxf ++  

subject to: 

0),,( zyxg  

 

Here, x represents the generation decision variables, y represents 

the transmission decision variables, and z represents the natural gas 

pipeline decision variables. The nature of this problem is illustrated 

in Figure 5. 

 
Figure 5: Co-optimization of electric generation, electric 

transmission, and natural gas pipeline 

 

The top figure of Figure 5 shows a design that is all natural gas 

generation placed so that the lengths of pipeline and transmission 

line are about the same. The middle figure of Figure 5 shows a 

P-CO3 
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design that is all natural gas generation placed so that the length of 

pipeline is significantly greater than the length of transmission line. 

The bottom figure of Figure 5 shows a design where the natural 

gas generation is reduced, the reduction compensated by wind, 

with the length of natural gas pipeline being much greater than the 

length of transmission to the natural gas, but additional 

transmission is required in order to connect the wind. Wind 

capacity factor increases with distance from the load. Co-

optimization is able to sort through all combinations of generation 

(x), transmission (y), and natural gas pipelines (z) in order to 

identify the least-cost solution, illustrated by the yellow point in 

Figure 6. 

 

Figure 6: Illustration of co-optimized solution 

Of course, real situations are more complex, although these simple 

examples well-serve to illustrate basic concepts. One study made a 

similar comparison, as indicated in Figure 7 [4]; though dated, it 

shows clearly that building pipeline is significantly less expensive 

than building electric transmission, an attribute that is still very 

true today. 

Miles of transmission built→ 
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Figure 7: Comparison of 2 different transmission/pipeline designs [4] 

2 Co-optimization formulation 

We have developed only one co-optimization in the below notes; 

we could develop a series of models in a fashion similar to that 

done in introducing GEP. The different formulations will be 

referred to as co-optimization expansion planning (CEP) problems, 

denoted as Models CEP1, CEP2, .... 

2.1 Simple CEP statement 

The simplest statement of the CEP problem is a single-period, 

multi-area formulation; transmission must (of course) be 
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represented in order to consider transmission expansion. The fact 

that we must represent transmission also means we cannot model 

just a single area, i.e., the model must be multi-area. We must also 

represent transmission with limits; otherwise, we cannot know 

whether we need to build additional transmission. To obtain this, 

we adapt GEP-9 of GEP.pdf and the TEP model described in 

Section 2.3 of the notes TransmissionPlanningOptimization.pdf. 

We call this model CEP1. Some preliminary comments for this 

CEP1 follow: 

1. Notation: Notation for the parts of the model originating with 

GEP9 has generally remained consistent with the GEP9 

notation. Exceptions include: 

a. Load blocks: The GEP9 model included a variable s to 

enable the use of multiple load blocks. This modeling has 

been neglected here to maintain as much simplicity as 

possible, so only one load block is modeled. As a result, 

the duration parameters hs have all been replaced with T, 

and all summations over s have been collapsed. In 

particular, the constraint (7a) in GEP9 (which is an energy 

constraint accounting for capacity factors across all load 

blocks), becomes ineffective, as the constraint on capacity 

credit (4c) will generally be more constraining. One can 

see this as follows: 

Constraint (4c) is sjiCapCCP jisjisji ,,0 ,,,,,  . 

but with only 1 load block becomes 

, , ,0 ,i j i j i jP CC Cap i j   .  (i) 

Constraint (7a) is: 

jihCapCFhP
s s

sjijissji ,,,,,    

but becomes (with only one load block): 

➔ jiTCapCFTP jijiji ,,,,  ➔  jiCapCFP jijiji ,,,,   (ii) 

Because CC<CF, constraint (i) must be more constraining than (ii). 
b. Transmission: The notation used in GEP9 for transmission 

has been replaced by notation used in the TEP model of 

Section 2.3 of the TEP notes). 

https://home.engineering.iastate.edu/~jdm/ee552/GEP.pdf
https://home.engineering.iastate.edu/~jdm/ee552/TransmissionPlanningOptimization.pdf
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2. Transmission model: The form (and most notation) of the TEP 

disjunctive equations came from Section 2.3 of the TEP notes 

(which is similar to that given in Li [5] and Bahiense [6] instead 

of the model given in the book by Wang [7]). This was done to 

maximize notational simplicity (the model by Wang is explicit 

in imposing non-negativity on decision variables and is more 

complicated as a result; it is not necessary to explicitly impose 

non-negativity on decision variables when using modern solvers 

like CPLEX as it is done internally).  

3. Decision variables: There are two explicit decision variables: 

Capi,j
add (for building technology j at node i), and zl (for building 

transmission candidate l). 

4. Branch index: We previously used (i,j) to index branches, and 

we used An to identify the set of candidate branches. We will 

now use l to index branches, where l=(a,b);bΩa indicates a 

branch l, terminated by nodes (a,b) where the node b is 

contained in the set Ωa.  

5. Node sets: The set Ωa is the set of nodes b connected to node a 

via either an existing or a candidate branch. The set Ωa
0 is the 

set of nodes b connected to node a via an existing branch. The 

set Ωa
+ is the set of nodes b connected to node a via a candidate 

branch. 

6. Node notation: We previously used i and j to denote nodes; we 

continue to use i, but we will also use a and b. We use j for 

generation technologies. 

7. Time period: Because the model is single-period, there is no 

dependence on t. This also means there is no need for the 

“accumulator” used in the multi-period TEP (which we denoted 

by S), and any need for discrete representation of whether a 

circuit is “in” or “out” is handled by zl. 

8. Extensions: It would be useful to extend this modeling to 

account for (a) multiple load blocks (and capacity factor); (b) 

multiple time periods; (c) multiple transmission technologies; 

(d) effect of distance on AC transmission loadability; (e) 

transmission losses.  
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Model CEP1: 

 

   
+
a

add

i, j i, j i, j j i, j l l

i j i j a=1,…,n l=(a,b);

b Ω
GenInvestmentCosts OperationalCosts

TransInvestment
Costs

min I Cap + FC H P T + K z
 (1) 

subject to 

jiCapCapCap add
ji
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jiji ,,,, +=      (2) 

jiCapCCP jijiji ,0 ,,,        (3) 

jiCapadd
ji ,0,          (4) 

 +
i

i

i j

jiji drCapCC )1(,,
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( )

nabbal

bP

a

ball

,...,1;);,(

;0

0 ==

=−− 
    (6a) 

nabbal

PPP
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lll

,...,1;);,( 0

maxmax

==

−
    (6b) 

( )( ) + 



l l l l l,exp a b l l

+

a

-M (1- z ) P - b b θ - θ M (1- z );

l =(a,b); b Ω ; a=1,...,n
    (7a) 

( ) ( )− +   +



l,max l l,max l l,max l l,max

+

a

P z ΔP P P z ΔP

l =(a,b); b Ω ; a=1,...,n
     (7b) 



+ = 
a

l a a, j

l=(a,b),b Ω j

P d P a= 1,...,n        (8) 

Variable definitions follow: 

• i,a,b: indexes over nodes 

• j: index over technologies 

• Ii,j: investment cost for technology j in node i, $/puMW 

• Capj,j
add: capacity added for technology j in node i, puMW 

• Capji,
existing: capacity existing for technology j in node i, puMW 

• Capi,j: capacity for technology j in node i, puMW 

• θk: angle of node k, radians 

• bl: negative of the susceptance of branch l 

• di: total demand of node i, puMW 

• FCj: fuel cost for technology j, $/MBTU 

• Hj: heat-rate for technology j, MBTU/puMWhr 

• Pi,j: Power generation level at bus i for technology j, puMW 
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• T: Planning horizon, hours 

• Kl is the investment cost of line l, $ 

• zl is an integer 0 or 1.  

• CCi,j is the capacity credit for technology j in node i 

• Fl
max is the maximum flow on circuit l 

• Ωa
0: Set of existing circuits connected to bus a, i=1, n 

• Ωa
+: Set of candidate circuits connected to bus a, i=1, n 

• Ωa: Set of existing and candidate circuits connected to bus a, i=1, n (union of Ωa
0 

and Ωa
+) 

• n: number of nodes in the network 

 

An even simpler model can be obtained if we are willing to neglect 

the effect of impedance in the transmission representation. In this 

case, the multi-period TEP and the CEP both can be written as a 

linear program (LP) (much like our GEP), where decision variables 

include the transmission capacity (a continuous variable) rather 

than a binary indicator of whether a line is in or out. Such a model 

is called a “transportation model” or a “pipes and bubbles” model. 

We modify the above formulation to provide such a model, below. 
 

Using the equation numbers (1)-(8), identify the equations in the above model that must 

be changed, those that remain the same, and those that must be eliminated to obtain a 

linear co-optimization model having only continuous decision variables (i.e., no integer 

decision variables) for generation capacity expansion and transmission capacity 

expansion. Also, for any equations that must be changed, re-write them accordingly, and 

provide rationale in regards to the change you are making. Use new nomenclature, but do 

so only if necessary and with minimal changes from the old nomenclature.  

 

Solution:  

Referring to Problem CEP1, the following changes must be made: 

Equation (1) must be modified to be as follows: 

  
     

Costs
tmentTransInves

b

bal

add
jljl

na

lCostsOperationa

i

ji

j

jji

entCostsGenInvestm

i j

add
jiji

a

TcapKTPHFCCapI 


==

++
);,(

,,

,,1

,,,,min

 (1) 

Changes to (1) include: 

• add
jlTcap ,

 is additional capacity added to transmission branch l=(a,b) using 

transmission technology j. 
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• +


a
b  is changed to 

a
b  , that is, instead of a set of candidate branches, we 

consider additional capacity for all branches, both existing and candidate (by 

“existing” we mean paths l=(a,b) that are connected by an existing branch; by 

“candidate” we mean paths l=(a,b) that are not connected by an existing 

branch).  

• Kl is changed from the dollar investment for a specified candidate circuit 

l=(a,b) to K,l,j, the $/MW investment for circuit l=(a,b) using transmission 

technology j. In this way, the transmission investment cost term is similar to 

the generation investment cost term. 

Equations (2), (3), (4), and (5) remain the same: these pertain only to the generation  

capacity which is already a continuous variable. 

Equations (6a) and (7a) are eliminated: these are KVL across each circuit which is not  

enforced under the “pipes and bubbles” model. 

Equation (6b) is eliminated: this provides limits on existing transmission capacity, but  

 we are here combining existing with candidate transmission capacity in (7b). 

Equation (7b) becomes: 

nabbal

TcapPPTcapP

a

j

add
jlll

j

add
jll

,...,1;);,(

,
max

,
max

==

+−− 
    (7b) 

Changes to (7b) include 

• Existing capacity on branch l=(a,b) is augmented by capacity added to branch 

l using transmission technology j.  

• +


a
b  is changed to 

a
b  , as described under the changes to (1), above. 

Equation (8) remains the same: this is power balance at each node which is enforced  

under the “pipes and bubbles” model. 

 

Next we present the CEP problem with time dependence (note we 

do not include salvage value or end effects). 

Model CEP2: 

 

      
+
a

t-1 add t-1 t-1

i, j,t i, j,t i, j j i, j,t l,t l,t

t i j t i j t a=1,…,n l=(a,b);

b Ω
GenInvestmentCosts OperationalCosts

TransInvestmentCosts

min ζ I Cap + ζ FC H P T + ζ K z  (1) 

subject to 

tjiCapCapCapCap ret
tji

add
tjitjitji ,,,,,,1,,,, −+= −

   (2) 

tjiCapCCP tjijitji ,,0 ,,,,,       (3) 

tjiCapadd
tji ,,0,,         (4) 

tdrCapCC
i

ti

i j

tjiji +  ,,,, )1(      (5) 
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( )

tnabbal

bP

a

tbtaltl

==

=−−

,...,1;);,(

;0

0

,,, 
   (6a) 

 

tnabbal

PPP

a

ltll

==

−

,,...,1;);,( 0

max
,

max

   (6b) 

 

( )( ) 

 

l l,t l,t l l,exp a,t b,t l l,t

+

a

-M (1- S ) P - b +b θ - θ M (1- S );

l =(a,b); b Ω ; a=1,...,n, t
   (7a) 

( ) ( )                 − +   + 



l,max l,t l,max l,t l,max l,t l,max

+

a

P S ΔP P P S ΔP t

l =(a,b); b Ω ; a=1,...,n
   (7b) 



+ =  
a

l,t a,t a, j,t

l=(a,b),b Ω j

P d P a= 1,...,n t      (8) 


t

l,t l,n

n=1

S = z          (9) 

 

Next we present CEP2 with time dependence, but using the 

transportation model.  

Model CEP2a: 
Changes made are referenced to Problem CEP2. 

 

      
a

t-1 add t-1 t-1 add

i, j,t i, j,t i, j j i, j,t l, j l, j,t

t i j t i j t a=1,…,n l=(a,b);

b Ω
GenInvestmentCosts OperationalCosts

TransInvestmentCosts

min ζ I Cap + ζ FC H P T + ζ K Tcap
  (1) 

Changes to (1) include: 

• add

l, j,tTcap  is additional capacity added to transmission path l=(a,b) using 

transmission technology j, at time t. 

• +


a
b  is changed to 

a
b  , that is, instead of a set of candidate branches, we 

consider additional capacity for all branches, both existing and candidate (by 

“existing” we mean paths l=(a,b) that are connected by an existing branch; by 

“candidate” we mean paths l=(a,b) that are not connected by an existing 

branch).  

• Kl is changed from the dollar investment for a specified candidate circuit 

l=(a,b) to K,l,j, the $/MW investment for branch l=(a,b) using transmission 

technology j. In this way, the transmission investment cost term is similar to 

the generation investment cost term. 

Equations (2), (3), (4), and (5) remain the same: these pertain only to the generation  

capacity which is already a continuous variable. 
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Equations (6a) and (7a) are eliminated: these are KVL across each circuit which is not  

enforced under the “pipes and bubbles” model. 

Equation (6b) is eliminated: this provides limits on existing transmission capacity, but  

 we are here combining existing with candidate transmission capacity in (7b). 

Equation (7b) becomes: 

      

   
+     

   

 

   
t t

max add max add

l l, j,n l,t l l, j,n

n=1 j n=1 j

a

- P Tcap P P + Tcap

l =(a,b); b Ω ; a=1,...,n t

    (7b) 

Changes to (7b) include 

• Existing capacity on branch l=(a,b) is augmented by capacity added to branch 

l using transmission technology j for all investments made during time t and 

previous to time t.  

• +


a
b  is changed to 

a
b  , as described under the changes to (1), above. 

Equation (8) remains the same: this is power balance at each node which is enforced  

under the “pipes and bubbles” model. 

Equation (9) is eliminated: this provides limits on existing transmission capacity, but  

 we are here combining existing with candidate transmission capacity in (7b). 

In discussing TEP formulations, reference [8] first describes the 

nonlinear integer TEP model (Section 2.1 below) and then the 

much simpler transportation model (Section 2.2 below). 
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It is interesting that before reference [8] describes the disjunctive 

model, it first describes a “hybrid” model which includes 

impedance effects only on existing circuits but represents 

candidate circuits using the “transportation” form, as indicated 

below. In expanding a branch, the hybrid model represents the 

original branch there, with its impedance and original capacity, and 

adds a “pipe” (a branch with no impedance effects) in parallel with 

it to represent any branch capacity added. This is described below; 

I have added an illustration, Figure 8, to communicate the concept. 

This is the 

transportation 

model, but it 

retains integer 

choices of 

transmission rather 

than continuous 

choices. 

This is the 

nonlinear 

model. 
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Figure 8: Illustration of hybrid model 

configuration 
 

 

We provide the formulation for the hybrid model below. Observe 

that Pl is flow on impedance branch and P’l is flow on pipe. 

Model CEP2b (hybrid model): 

 

      
+
a

t-1 add t-1 t-1

i, j,t i, j,t i, j j i, j,t l,t l,t

t i j t i j t a=1,…,n l=(a,b);

b Ω
GenInvestmentCosts OperationalCosts

TransInvestmentCosts

min ζ I Cap + ζ FC H P T + ζ K z  (1) 

subject to 

tjiCapCapCapCap ret
tji

add
tjitjitji ,,,,,,1,,,, −+= −

   (2) 

tjiCapCCP tjijitji ,,0 ,,,,,       (3) 

tjiCapadd
tji ,,0,,         (4) 

b1 

pipel 

Impedance 

branch 
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tdrCapCC
i

ti

i j

tjiji +  ,,,, )1(      (5) 

( )

tnabbal

bP

a

tbtaltl

==

=−−

,...,1;);,(

;0

0

,,, 
   (6a) 

 

tnabbal

PPP

a

ltll

==

−

,,...,1;);,( 0

max
,

max

   (6b) 

 

      

   
    

   

 

   
t t

add add

l, j,n l,t l, j,n

n=1 j n=1 j

0

a

- Tcap P Tcap

l = (a,b); b Ω ; a=1,...,n t

     (7b) 

 

 

 =   
0 0
a a

l,t l,t a,t a, j,t

jl=(a,b),b Ω l=(a,b),b Ω

P + P + d P a = 1,...,n t    (8) 

 

There is a final model that is very simple to implement. I call it the 

fixed reactance model. Here, each branch has a reactance and a 

flow limit. In the optimization using this model, the flow limit can 

be increased to account for increased branch capacity (and so the 

flow limit is a decision variable), but the reactance remains fixed. 

This of course is erroneous because expansion to achieve 

additional capacity necessarily means an additional branch will be 

paralleled with the existing branch and the reactance will decrease 

due to the parallel combination. But to avoid the MILP formulation 

of the disjunctive model, we ignore the change in reactance (and 

therefore retain an LP).  

 

Model CEP2c (fixed reactance model): 

 

      
+
a

t-1 add t-1 t-1

i, j,t i, j,t i, j j i, j,t l,t l,t

t i j t i j t a=1,…,n l=(a,b);

b Ω
GenInvestmentCosts OperationalCosts

TransInvestmentCosts

min ζ I Cap + ζ FC H P T + ζ K z  (1) 

subject to 

tjiCapCapCapCap ret
tji

add
tjitjitji ,,,,,,1,,,, −+= −

   (2) 

tjiCapCCP tjijitji ,,0 ,,,,,       (3) 
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tjiCapadd
tji ,,0,,         (4) 

tdrCapCC
i

ti

i j

tjiji +  ,,,, )1(      (5) 

( )

tnabbal

bP

a

tbtaltl

==

=−−

,...,1;);,(

;0

0

,,, 
   (6a) 

 

      

   
  +   

   

 

   
t t

max add max add

l l, j,n l,t l l, j,n

n=1 j n=1 j

0

a

P - Tcap P P Tcap

l =(a,b); b Ω ; a=1,...,n t

    (7c) 

 



=  
0
a

l,t a,t a, j,t

jl=(a,b),b Ω

P + d P a = 1,...,n t      (8) 

 

Although Model CEP2c is approximate (in that, for invested 

branches, the branch reactance is not consistent with the branch 

capacity), it can be adjusted via an iterative scheme. Such an 

iterative scheme is illustrated in Fig. 

 

 
Figure 9: A CEP2c iterative scheme for adjusting reactance 

3 Current industry thinking on co-optimization 

The Eastern Interconnection States Planning Council (EISPC) [9] 

sponsored an effort to summarize current state-of-art and industry 

practices regarding co-optimization, and a report is available [10]. 

The executive summary of this document is copied below. 
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The next page illustrates the difference between vertically 

integrated industry structure (as exists in the southeast US) and 

unbundled industry structure (as exists where ISO markets are), in 

anticipation of a question on the page following. 

Is co-

optimization 

useful for both 

vertically 

integrated and 

for unbundled 

structures? 

Purpose 

What other 

planning 

alternatives 

can be 

considered 

within co-

optimization. 
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Other types of 

investment 

decisions... 

 

Single 

optimization 

vs. iterative. 

How would 

cooptimization 

be used in 

unbundled 

environments 

where trans 

investment and 

generation 

investment are 

generally done 

by different 

organizations? 

Jim- thinking about 
your slides again... 
you're talking about 
optimization but how 
do you handle that 
when the generation 
and transmission parts 
of one company can't 
talk to each other?  

The answer is what 
any transmission 
planner today must 
give – co-optimization 
is forecasting the 
generation expansion 
and then building 
transmission 
accordingly. 
If you know nothing, 
your forecast is to 
identify what is most 
economic. If you know 
something (e.g., MISO 
generation queue), 
you build it into the 
model with 
appropriate 
constraints. 
 

Co-optimization is the 
simultaneous 

optimization of two or 

more different yet related 
resources within one 

optimization 

formulation. 
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The next page provides slides illustrating (a) when it is useful, (b) that co-

optimized solutions must be as good as, or better than a sequence of 

GEP/TEP solutions (relates to next question); and (c) a CEP mental image. 
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(a)  

(b)  

(c)  
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Why is co-

optimization 

better than 

sequential 

(GEP and then 

TEP) 

optimization? 

Is co-

optimization 

better than 

iterative (GEP 

and then TEP, 

then GEP/TEP, 

…etc); 

optimization? 

An example… 
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We have not explored this 

issue very much, but it is 

important. You can have 

operational years (simulating 
operation but not allowing 

investment) and investment 

years (simulating operations 
and allowing investment). 

Simulation of operations for 

an operational year can be 
modeled by actually 

performing a dispatch for 

every operational block (and 
therefore having operational 

decision variables), or it can 

be modeled by simply 
duplicating the operational 

cost in the last investment 

year. In either case, an 
operational year has no 

investment-related decision 

variables. An investment 
year has both operational and 

investment-related decision 
variables.  

Distributed energy 

resources (DER) 
should include (1) 

rooftop solar for 

industrial, 
commercial, and 

residential buildings; 

(2) community-based 
solar; (3) energy 

efficiency programs; 

(4) demand response 
programs; (5) 

distributed storage; 
(6) microturbines. See 

figure on the next 

page, which came 
from Shikha 

Sharma’s PhD 
dissertation. 
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Superconducting 

HVDC transmission 
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A final but very important point, made below. 
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