
 1

Decomposition Methods
Preliminary comments

This set of notes is structured as follows.

1.0 Introduction

2.0 Connection with optimization: problem structure

3.0 Motivation for decomposition: solution speed

4.0 Benders decomposition

5.0 Benders simplifications

6.0 Application of Benders to other problem types

7.0 Generalized Benders for EGEAS

8.0 Application of Benders to stochastic programming

9.0 Two related problem structures

10.0 A GEP formulation resulting in a DW structure

11.0 The Dantzig-Wolfe decomposition structure

12.0 Other ways of addressing uncertainty in planning

We will not have time to cover all sections, and so we make the

following introductory remarks to help you consider whether you

want to review the sections we will not cover.

• You need optimization background to understand decomposition.

• Decomposition is highly applicable in power system planning

problems.

• Sections 1-3 gives a good intuitive introduction to the topic that is

intended to be fairly easy to follow, independent of background.

• Section 4 illustrates one decomposition method, Benders, via a

very simple problem, with intention to show decomposition

basics from an analytic perspective.

• Sections 1-4 takes about half of this document. The second half,

sections 5-12, addresses various issues, some deeply and others

lightly; those of you considering a research topic in this area will

do well to carefully read these sections and the references

provided in them.

Updated: 3/25/2021

 2

1.0 Introduction

Consider the XYZ corporation that has 3 departments, each of

which have a certain function necessary to the overall productivity

of the corporation. The corporation has capability to make 50

different products (e.g., power transformers of different voltage

ratios and different capacities), but at any particular month, it makes

some of them and does not make others. The CEO decides which

products to make. The CEO’s decision is an integer decision on each

of the 50 products. Of course, the CEO’s decision depends, in part,

on the productivity of the departments and their capability to make a

profit given the decision of which products to make.

Each department knows its own particular business very well, and

each has developed sophisticated mathematical programs

(optimization problems) which provide the best (most profitable)

way to use their resources given identification of which products to

make.

The organization works like this. The CEO makes a tentative

decision on which of the 100 products to make, and when s/he needs

them, based on his/her own mathematical program which assumes

certain profits from each department based on that decision. S/he

then passes that decision to the 3 departments. Each of the

departments use that information to determine how it is going to

operate in order to maximize profitability. For example, departments

learn that the CEO desires:

• Two 100MVA 69/161 kV units,

• Four 50MVA 13.8/69 kV units,

• One 325MVA 230/500 kV unit

• …etc

Then, the departments that make windings, cores, bushings, cooling

systems, etc., make their decisions on how to allocate their resources

(time and materials) to satisfy at minimum cost what the CEO

requires.

 3

Then each department passes their information (cost of satisfying

the CEO’s request) back to the CEO. Once the CEO gets all the

information back from the departments, s/he will observe that some

departments have very large costs and some have very small costs,

and that a refined selection of products might be wise. So s/he

modifies constraints of the CEO-level optimization and re-runs it to

select the products, likely resulting in a modified choice of products.

This process of CEO-departmental interactions will repeat. At some

point, the optimization problem solved by the CEO will not change

from one iteration to the next. At this point, the CEO will believe

the current selection of products is best.

This is an example of a multidivisional problem [1, pg. 219]. Such

problems involve coordinating the decisions of separate divisions, or

departments, of a large organization, when the divisions operate

autonomously (but all of which make decisions that depend on the

CEO’s decisions). Solution of such problems often may be

facilitated by separating them into a single master problem and

subproblems where the master corresponds to the problem addressed

by the CEO and the subproblems correspond to the problems

addressed by the various departments.

However, the master-subproblem relationship may be otherwise. It

may also involve decisions on the part of the CEO to control (by

directly modifying) each department’s resources. By “resources,”

we mean amount of time and materials, represented by the right-

hand-side of the constraints. Such a scheme is referred to as a

resource-directed approach.

Alternatively, the master-subproblem relationship may involve

decisions on the part of the CEO to indirectly modify resources by

charging each department a price for the amount of resources that

are used. The CEO then modifies prices, and departments adjust

accordingly. Such a scheme is called a price-directed approach.

ASIDE: There are
many such problems

where the master

problem involves
choice of integer

variables and

subproblems
involve choice of

continuous

variables. Such
problems conform

to the form of a

mixed-integer-
programming (MIP)

problem, which is a

kind of problem we
often have interest.

 4

Optimization approaches which reflect these types of structures are

referred to as decomposition methods.

2.0 Connection with optimization: problem structure [2]

Linear programming optimization problems are like this:

Minimize f(x)=c1x1+c2x2+…+cnxn

Subject to a1x≤b1

 a2x≤b2 (1)

 …

 amx≤bm

We may place all elements ci into a column-vector c, all of the row-

vectors ai into a matrix A, and all elements bi into a column vector b,

so that our optimization problem is now:

Minimize cT x

Subject to A x ≤ b (2)

Problems that have special structures in the constraint matrices A are

typically more amenable to decomposition methods. Almost all of

these structures involve the constraint matrix A being block-angular.

A block angular constraint matrix is illustrated in Figure 1. In this

matrix, the yellow-cross-hatched regions represent sub-matrices that

contain non-zero elements. The remaining sub-matrices, not yellow-

cross-hatched, contain all zeros. We may think of each yellow-

cross-hatched region as a department. The decision variables x1 are

important only to department 1; the decision variables x2 are

important only to department 2; and the decision variables x3 are

important only to department 3. In this particular structure, we have

no need of a CEO at all. All departments are completely

independent!

 5

x1

x2

x3

≤

b1

b2

b3

Figure 1: Block-angular structure

In the original description, the CEO choses values for certain

variables that affect each department (two 100MVA 69/161 kV

units, four 50MVA 13.8/69 kV units, one 325MVA 230/500 kV

unit, … etc.). This situation would have different departments linked

by these variables. For example, one department would know that

the different transformers have different cooling needs that can be

satisfied with different numbers and types of fans. Depending on the

numbers and types selected, the necessary materials and the

necessary labor hours are different. This department has 20 workers

whose time can be allocated in various ways among the different

tasks necessary to build all of the fans; the department may also hire

more workers if necessary.

The structure of the constraint matrix for this situation is shown in

Figure 2. The CEO’s decisions are integer decisions on the variables

contained in x4. Variables in x1 through x3 are decisions that each of

departments 1-3, respectively, would need to make.

 6

x1

x2

x3

≤

b1

b2

b3

x4

Figure 2: Block-angular structure with linking variables

Alternatively, Figure 3 represents a structure where the decisions

linked at the CEO level are such that the CEO must watch out for

the entire organization’s consumption of resources (e.g., money and

labor hours, constrained by c0). In this case, the departments are still

independent, i.e., they are concerned only with decisions on

variables for which no other department is concerned, BUT… the

CEO is concerned with constraints that span across the variables for

all departments to consume total resources. And so we refer to this

structure as block-angular with linking constraints.

 λ1

λ2

λ3

≤

c1

c2

c3

c0

Figure 3: Block-angular structure with linking constraints

 7

3.0 Motivation for decomposition methods: solution speed

To motivate decomposition methods, we consider introducing

security constraints to what should be, for power engineers, a

familiar problem: the optimal power flow (OPF).

The OPF may be posed as problem P0.

P0

0),(

00),(

),(

max
0

0

000

 ..

=

==

kguxg

kuxh

uxfMin

kkk

kkts

where hk(xk,u0)=0 represents the power flow equations and

gk(xk,u0)≤gk
max represents the line-flow constraints. The index k=0

indicates this problem is posed for only the “normal condition,” i.e.,

the condition with no contingencies.

Denote the number of constraints for this problem as N.

Assumption: Let’s assume that running time T of the algorithm we

use to solve the above problem is proportional to the square of the

number of constraints1, i.e., N2. For simplicity, we assume the

constant of proportionality is 1, so that T=N2.

Now let’s consider the security-constrained OPF (SCOPF). Its

problem statement is given as problem Pc:

1 This is a very reasonable assumption for linear programs (LPs) because for LPs, the number of constraints

determines the corner points; it is the number of corner points considered within the solution that determines

the speed at which the LPs can solve.

 8

Pc

ckguxg

ckuxh

uxfMin

kkk

kkts

,...,2,1,0),(

,...,2,1,00),(

),(

max
0

0

000

 ..

=

==

Notice that there are c contingencies to be addressed in the SCOPF,

and that there are a complete new set of constraints for each of these

c contingencies. Each set of contingency-related constraints is

similar to the original set of constraints (those for problem P0),

except it corresponds to the system with an element removed, and it

has a different right-hand-side corresponding to an “emergency”

flow limit (k=1,…,c) instead of a “normal” flow limit (k=0).

So the SCOPF must deal with the original N constraints, and also

another set of N constraints for every contingency. Therefore, the

total number of constraints for Problem PC is N+cN=(c+1)N.

Under our assumption that running time is proportional to the square

of the number of constraints, then the running time will be

proportional to [(c+1)N]2=(c+1)2N2=(c+1)2T.

What does this mean?

It means that the running time of the SCOPF is (c+1)2 times the

running time of the OPF. So if it takes OPF 1 minute to run, and we

want to run SCOPF with 100 contingencies, it will take us 1012

minutes, or 10,201 minutes to run the SCOPF. This is 170 hours,

about 1 week!!!!

Many systems need to address 1000 contingencies. This would take

about 2 years!

To address this, we will change the computational procedure of the

original problem, as indicated in Fig. 4a, to the computational

procedure illustrated in Fig. 4b.

 9

Solve SCOPF

k=0, 1, 2, …, c

(normal and all contingency conditions)

0 0 0

0

max

0

(,)

(,) 0 0,1, 2, ...,

 (,) 0,1, 2, ...,

. . k k

k k k

Min f x u

h x u k c

g x u g k c

s t = =

 =

Figure 4: Solution of full SCOPF

Solve OPF

k=0

(normal condition)

Solve OPF

k=1

(contingency 1)

Solve OPF

k=2

(contingency 2)

Solve OPF

k=3

(contingency 3)
… Solve OPF

k=c

(contingency c)

Figure 5: Decomposition solution strategy

The solution strategy first solves the k=0 OPF (master problem) and

then takes contingency 1 and re-solves the OPF, then contingency 2

and resolves the OPF, and so on (these are subproblems). For any

contingency-OPFs which require a redispatch (relative to the k=0

OPF), an appropriate constraint is generated, and at the end of the

cycle these constraints are gathered and applied to the k=0 OPF.

Then the k=0 OPF is resolved, and the cycle starts again. Experience

has it that such an approach usually requires only 2-3 cycles.

Denote the number of cycles as m.

Each of the individual problems has only N constraints and therefore

requires only T minutes.

There are (c+1) individual problems for every cycle.

There are m cycles.

 10

So the amount of running time is m(c+1)T.

If c=100 and m=3, T=1 minute, this approach requires 303 minutes.

That would be about 5 hours (instead of 1 week).

If c=1000 and m=3, T=1 minute, this approach requires about 50

hours (instead of 2 years).

What if it takes 10 cycles instead of 3?

➔If c=1000 and m=10, T=1 minute, this approach requires 167

hours (1 week, instead of 2 years).

What if it takes 100 cycles instead of 3?

➔If c=1000 and m=100, T=1 minute, this approach requires 1668

hours (10 weeks, instead of 2 years).

In addition, this approach is easily parallelizable, i.e., each

individual OPF problem can be sent to its own CPU. This will save

even more time. Figure 6 compares computing time for a “toy”

system. The comparison is between a full SCOPF, a decomposed

SCOPF (DSCOPF), and a decomposed SCOPF where the individual

OPF problems have been sent to separate CPUs.

Figure 6

4.0 Benders decomposition

J. F. Benders [3] proposed solving a mixed-integer programming

problem by partitioning the problem into two parts – an integer part

 11

and a continuous part. It uses the branch-and-bound method on the

integer part and linear programming on the continuous part.

The approach is well-characterized by the linking-variable problem

illustrated in Figure 2 where here the linking variables are the

integer variables. The figure is repeated here for convenience.

x1

x2

x3

≤

b1

b2

b3

x4

In the words of A. Geoffrion [4], “J.F. Benders devised a clever

approach for exploiting the structure of mathematical programming

problems with complicating variables (variables which, when

temporarily fixed, render the remaining optimization problem

considerably more tractable).”

Note in the below problem statements, all variables except z1 and z2

can be vectors. The problem can be generally specified as follows:

integer

0,

..

max

21

211

w

wx

bwAxA

eDw

ts

wcxcz TT



+



+=

An example illustrating the matrices of the second constraint might

be as follows:

 12

1 2

2 4 0 0 6

3 2 0 0 1
; A

0 0 2 1 3

0 0 5 3 1

A

   
   
   = =
   
   
   

Thus, the composite matrix would appear as follows, which appears

as block-angular with the last variable (w, in this case, a scalar) as

the linking variable:

12

2 4 0 0 6

3 2 0 0 1

0 0 2 1 3

0 0 5 3 1

A

 
 
 =
 
 
 

Define the master problem and primal subproblem as

integer

0,

..

max

21

211

w

wx

bwAxA

eDw

ts

wcxcz TT



+



+=

➔

integer

0

..

max

:

*

221

w

w

eDw

ts

zwcz T





+=

Master

0

*

..

max

:

21

12



−

=

x

wAbxA

ts

xcz T

subproblem Primal

We make use of duality in what follows. Duality refers to the fact

that every linear program (LP), referred to as the primal problem,

has associated with it a dual problem, an equivalent LP, that is

related to the primal in certain distinct ways, as identified below.

Some comments on duality for linear programs2:
1. If primal objective is to max (min), then dual objective is to min

(max).

2. Number of dual decision variables is number of primal constraints.

Number of dual constraints is number of primal decision variables.

3. Coefficients of decision variables in dual objective are right-

hand-sides of primal constraints.

2 If you have not taken IE 534, Linear Programming, I encourage you to do so. It is an excellent course.

 13

  
Problem Primal

21

21

2

1

21

0,0

1823

12 2

4 s.t.

53max

P Problem



+





+=

xx

xx

x

x

xxF

➔

  
Problem Dual

321

32

31

321

0,0,0

522

33

subject to

18124min

D Problem



+

+

++=







G

4. Coefficients of decision variables in primal objective are right-

hand-sides of dual constraints.

  
Problem Primal

21

21

2

1

21

0,0

1823

12 2

4 s.t.

53max

P Problem



+





+=

xx

xx

x

x

xxF

➔

  
Problem Dual

321

32

31

321

0,0,0

522

33

subject to

18124min

D Problem



+

+

++=







G

5. Coefficients of one variable across multiple primal constraints are

coefficients of multiple variables in one dual constraint.

  
Problem Primal

21

21

2

1

21

0,0

1823

12 2

4 s.t.

53max

P Problem



+





+=

xx

xx

x

x

xxF

➔

1 2 3

1 2 3

1 2 3

1 2 3

Dual Problem

Problem D

min 4 12 18

subject to

0 3 3

0 2 2 5

0, 0, 0

G   

  

  

  

= + +

+ + 

+ + 

  

6. If primal constraints are ≤ (≥), dual constraints are ≥ (≤).

Let’s think about what the above comments 1-5 mean for our LP

“general form” problem statements (1) and (2) on pg. 4, repeated

here for convenience:

Likewise, coefficients of

one variable across multiple

dual constraints are

coefficients of multiple

variables in one primal

constraint.

All of this means that if the

primal constraint matrix is

A, the dual constraint

matrix is AT.

 14

Minimize f(x)=c1x1+c2x2+…+cnxn

Subject to a1x≤b1

 a2x≤b2

 …

 amx≤bm

which is equivalent to:

Minimize cT x

Subject to A x ≤ b

• Comment 2 means that if the primal has n decision variables and

m constraints, then the dual will have m decision variables and n

constraints.

• Comment 3 means that the dual objective will be bTλ.

• Comment 4 means that the dual constraints will have right-hand

sides of c.

• Comment 5 means that the dual constraint matrix will be AT.

Therefore, the dual problem will be:

Maximize g(λ)=b1λ1+b2 λ 2+…+bmλm

Subject to ac1
T

 λ≥c1

 ac2
T λ≥c2

 …

 acn
T λ≥cn

where the notation ack
T refers to the transpose of the column (the

“c”-subscript denotes “column”) k in the matrix A. In compact

notation, we have:

Maximize bT λ

Subject to AT λ ≥ c

Key to understanding the usefulness of the dual is the strong duality

property, which says that if x* is the optimal solution to the primal

and λ* is the optimal solution to the dual, then

cTx*=bTλ* (5)

From this, we can write the dual of our primal subproblem.

The weak duality property says that if x* is a feasible solution to the primal and λ* is a feasible solution to

the dual, then cTx*≤bTλ*. This assumes the primal is a maximization problem.

➔This says that the objective of the dual LP is an upper bound on the objective of the primal LP.

(The sense of the inequality reverses if the primal is a minimization problem, in which case, the objective

of the dual LP is a lower bound on the objective of the primal LP).

 15

0

*

..

max

:

21

12



−

=

x

wAbxA

ts

xcz T

subproblem Primal

➔

()

0

..

*min

:

11

22





−=







cA

ts

wAbz

T

T

subproblem Dual

Now consider the master problem and dual subproblem together:

integer

0

..

max

:

*

221

w

w

eDw

ts

zwcz T





+=

Master

()

0

..

*min

:

11

22





−=







cA

ts

wAbz

T

T

subproblem Dual

We make 7 comments about how to solve the original problem

using this master-dual subproblem decomposition.

1. Interdependence: The master depends on the outcome to the

subproblem via generated constraints; the subproblem depends on

the master optimal solution w*. Therefore, the solution to each

problem depends on the solution obtained in the other problem.

2. Iterative procedure: We will solve the overall problem by

iterating between the master and the subproblem. The master will

be used to generate a solution w*, given a value (or a guess) for

z2*. Then the subproblem will be used to get a new value of z2*

and λ* using the solution w* obtained in the master. This will tell

us one very important thing: if we need to resolve the master, we

should constrain z2* to be no larger than (b-A2w*)Tλ*, i.e.,

z2*≤(b-A2w*)Tλ* in order to ensure that we satisfy the last

solution of the subproblem; this directly reduces the master

problem objective function and thus, the added constraint is

called an “optimality constraint”.

My notation generally

uses z2* in the master

problem. This is

misleading. z2* is a

decision variable in the

master problem.

Otherwise, use of the

“*” notation indicates

the variable is optimal,

from either the master

or the dual.

 16

3. Upper bound:

a. Initial solution: Start the solution procedure by solving the

master problem with a guess for an upper bound on z2*. Since

the dual subproblem is going to minimize (lower) z2, let’s be

safe and guess a large value of the upper bound on z2* for this

initial master problem solution. Since this value of z2* is

chosen large, we can be sure that the first solution to the

master, z1*, will be above the actual (overall problem optimal)

solution, and so we will consider this solution z1* to be an

upper bound on the actual solution.

b. Successive solutions: As the iterations proceed, we will add

constraints to the master problem (adding constraints never

improves, or in this case, increases, the optimum), generated

by the subproblem, so that the master problem solution z1*,

will continuously decrease towards the actual (overall problem

optimal) solution.

Thus, the value of z1*, obtained from the master problem, serves

as an upper bound on the actual (overall problem optimal)

solution.

4. Lower bound: The dual problem results in a new value of z2*, and

it can then be added to c2
Tw* (where w* was obtained from the

last master problem solution) to provide another estimate of z1*.

Since the dual problem minimizes z2, without the master problem

constraints, the term c2
Tw* (from master) +z2* (from dual) will

be a lower bound on z1*.

5. Feasibility: An LP primal may result in its solution being

optimal, infeasible, or unbounded. These occurrences have

implications on what can happen in the dual. And the converse is

true: occurrences in the dual have implications regarding what

can happen in the primal. Table 1 below summarizes the

relationships.

 17

Table 1: Possible combinations of dual and primal solutions

From Table 1, we observe that if the dual problem results in an

unbounded solution, then it means the primal problem must be

infeasible (note: an infeasible primal implies an unbounded or

infeasible dual). In Benders, when we solve the dual and obtain

unboundedness, it means the primal (which is contained in the

master problem) is infeasible (and so the master is infeasible),

and we must resolve the master problem with more restrictive

constraints on w to force the primal to be feasible. The associated

constraints on w are called feasibility cuts.

6. Algorithm: In what follows, we specify Q as the set of constraints

for the master program. It will change via the addition of

feasibility and optimality cuts as the algorithm proceeds. Initially,

Q={wk ≤ large number, for all k, z2*≤M, M large}.

 18

Master problem:

kw

MMz

kQw

ts

zwcz

k

k

T







+=

 integer

large is ,

 in as dconstraine

..

max

*

2

*

221

Sub-problem (dual):

k

cA

ts

wAbz

k

T

T





−=

,0

..

*)(min

11

22







There are 3 steps to Benders decomposition.

1. Solve the master problem using Branch and Bound (or any other

integer programming method). Designate the solution as w*.

2. Using the value of w* found in step 1, solve the sub-problem (the

dual) which gives z2* and λ*. There are two possibilities:

a. If the solution is unbounded (implying the primal is

infeasible), adjoin the most constraining feasibility

constraint from (b-A2w)Tλ≥0 to Q, and go to step 1. The

constraint (b-A2w)Tλ≥0 imposes feasibility on the primal

because it prevents unboundedness in the dual by imposing

non-negativity on the coefficients of each λk. We illustrate

this challenging concept in an example below.

b. Otherwise, designate the solution as λ* and go to step 3.

3. Compare z1 found in step 1 to * *

2 2

Tc w z+ where w* is found in step

1; **)(* 22 TwAbz −= is found in step 2.There are two possibilities:

a. If they are equal (or within ε of each other), then the

solution (w*, λ*) corresponding to the subproblem dual

solution, is optimal and the primal variables x* are found as

the dual variables3 within the subproblem.

3 Dual variables are the coefficients of the objective function in the final iteration of the simplex

method and are provided with the LP solution by a solver like CPLEX. Here, our use of the word

 19

b. If they are not equal, adjoin an optimality constraint to Q

given by **)(* 22 TwAbz − and go to step 1.

Step 3 is a check on Benders optimal rule, stated below.

Figure 7 illustrates the algorithm in block diagram form.

It is useful to study Figure 7 while referring to the statement of

Benders optimal rule just above it.

Figure 7: Illustration of Benders Decomposition

“dual” refers to what we previously referred to as the primal. The dual variables x must have values

that result in the two objective functions being equal at the optimum: cTx=(b-A2w*)Tλ*.

Step 1,

Master Problem

(gives upper bound):

max z1=c2
Tw+z2

st Dw≤e

w≥0, w integer

constraints Q

Step 2, Subproblem:

(gives lower bound)

min z2=(b-A2w
*)λ

st A1
Tλ≥c1

λ≥0

w*

Step 3,

Benders opt rule

c2
Tw*+z2*=z1*

Full problem

solved
Adjoin to Q an optimality

constraint:

2 2* () *Tz b A w  −

Solved,

passes z2*

Infeasible

Unbounded

Full problem

is unbounded

or infeasible

Adjoin to Q the most

constraining feasibility

constraint:

(b-A2w)Tλ≥0

Passes

w*,z1*

?

YES NO

Benders optimal rule: If (z1*, w*) is the optimal solution to the master

problem, and (z2*, λ*) is the optimal solution to dual subproblem, and if

2

Upper boundLower bound

*

2 2 1

from master from masterz * from subproblem
problem problem

* (*) *T Tc w b A w z+ − =
,

then (z1*, w*, λ*) is the optimal solution for the complete problem.

 20

We will work an example using the formalized nomenclature of the

previous summarized steps. But before we do, we introduce the

optimization solver CPLEX.

Brief tutorial for using CPLEX.

CPLEX version 12.10.0.0 resides on ISU servers. To access it, you

need to logon to an appropriate server (see

http://it.engineering.iastate.edu/remote/ for a list of servers with CPLEX). To

do that, you need a telnet and ftp facility. You can find instructions

on our course website for getting/using the appropriate telnet & ftp

facilities (see sec 2 of http://home.eng.iastate.edu/~jdm/ee552/Intro_CPLEX.pdf).

After getting the telnet and ftp facilities set up on your machine, the

next thing to do is to construct a file containing the problem. To

construct this file, you can use the program called “notepad” under

the “accessories” selection of the start button in Windows. Once you

open notepad, you can immediately save to your local directory

under the filename “filename.lp.” You can choose “filename” to be

whatever you want, but you will need the extension “lp.” To obtain

the extension “lp” when you save, do “save as” and then choose “all

files.” Otherwise, it will assign the suffix “.txt” to your file. Here is

what I typed into the file I called “example.lp”…

maximize

 12 x1 + 12 x2

subject to

 2 x1 + 2 x2 >= 4

 3 x1 + x2 >= 3

x1 >= 0

x2 >= 0

end

Once you get the above file onto a server having access to CPLEX,

you may simply type

http://it.engineering.iastate.edu/remote/
http://home.eng.iastate.edu/~jdm/ee552/Intro_CPLEX.pdf

 21

cplex125

CPLEX> read example.lp
CPLEX> primopt
“Primopt” solves the problem using the primal simplex optimizer.

“mipopt” solves mixed integer programs using branch & cut.
More CPLEX info may be found in the tutorial, see above URL.

Consider the following problem P0 [5]:

integer

,0,,

20

1232

1232 :subject to

534 max

P

21

21

21

211

0

w

wxx

w

wxx

wxx

wxxz





++

++

++=

Clearly P0 is a mixed integer problem. There are two ways to think

about this problem.

First way: Let’s redefine the objective function as

21 5 zwz +=

where

212 34 xxz +=

so that problem P1P below is equivalent to problem P0 above:

integer

,0

 20 :subject to

 0,

3122

1232 subject to

 34 max

5 max

P 21

21

21

212

1

1P

w

w

w

xx

wxx

wxx

xxz

wz



























−+

−+

+=

+=

 22

This way is similar to the way J. Bloom described his two-stage

generation planning problem in [6], which we summarize at the end

of these notes.

Second way: Here, we will simply cast the problem into the general

form outlined in our three-step procedure.

Comparing this problem (right) to our general formulation (left),

 General Formulation This problem

integer

0,

..

max

21

211

w

wx

bwAxA

ts

wcxcz TT



+

+=

1 1 2

1 2

1 2

0

1 2

max 4 3 5

subject to: 2 3 12

 2 3 12
P

 20

 , , 0,

z x x w

x x w

x x w

w

x x w

= + +

+ + 

+ + 





 integerw

we observe that









=








=








=

=







=

12

12
 ,

3

1
 ,

12

32

5 ,
3

4

21

21

bAA

cc

In the next pages, we will go through the first iteration, which is

colored green and results in a feasibility cut, and the second

iteration, which is colored grey and results in an optimality cut.

 23

Step 1: The master problem is

kw

MMzkwQ

ts

zwcz

k

k

T





+=

 integerand 0

large is , , dconstraine :

..

max

*

2

*

221

or

integerand 0

 , 20:

..

max

*

2

*

221





+=

w

MzwQ

ts

zwcz T

 ➔

integerand 0

 ,20:

..

5max

*

2

*

21





+=

w

MzwQ

ts

zwz

The solution to this problem is trivial: since the objective function is

being maximized, we make w and z2* as large as possible, resulting

in w*=20, z2*=M, and z1=5*20+M=100+M.

Step 2: Using the value of w found in the master, get the dual:

0

..

*)(min

11

22





−=







cA

ts

wAbz

T

T

 ➔

0,

3

4

13

22

..

*
3

1

12

12
min

21

2

1

2

1

2


























































−








=











ts

wz

T

Substituting, from step 1, w*=20, the subproblem becomes:

0,

3

4

13

22

..

48820
3

1

12

12
min

21

2

1

21

2

1

2





























−−=




























−








=












ts

z

T

 24

Because the λk’s are required to be non-negative, all terms in the

objective function are negative. Noting the λk’s are constrained from

below by the inequalities, we may make them as large as we like,

making the objective function infinitely negative, implying the

objective function is unbounded since we are minimizing.

This occurs because the coefficients in the objective function

are negative.

➔The coefficients in the objective function are negative

because the master problem yielded a poor choice of w

(in our case, a value of w that is too large).

➔The master problem yielded a poor choice of w

because it was not sufficiently constrained,

We can think of this another way which conforms to Comment #5

made on feasibility (see pg. 16). We know that unboundedness in a

dual necessarily implies infeasibility in the primal. In this case, the

primal is the problem inside the brackets of Problem P1P. To make

this point clear, substitute w=20 into the primal problem resulting in

2 1 2

1 2

1 2

1 2

max 4 3

subject to 2 3 12

 2 12 3

 , 0

z x x

x x w

x x w

x x

= +

+  −

+  −



➔

2 1 2

1 2

1 2

1 2

max 4 3

subject to 2 3 8

 2 48

 , 0

z x x

x x

x x

x x

= +

+  −

+  −



Since the right-hand-sides of the inequality constraints are negative,

and since the decision variables x1 and x2 require non-negativity,

then we observe that there is no choice of x1 and x2 that will satisfy

the inequality constraints. The primal is very definitely infeasible.

If the primal problem, i.e., the problem inside the brackets of P1P, is

infeasible, then the whole problem P1P is infeasible.

We need to correct this situation, by taking step 2b, which means we

will add a “feasibility constraint” to the master problem. This

feasibility constraint is contained in (b-A2w)Tλ≥0, or

 25

0
3

1

12

12

2

1






























−












T

w

or

0)312()12(21 −+−  ww

We now can see clearly regarding why (b-A2w)Tλ≥0 is the constraint

necessary to ensure feasibility in the primal, and that is because it

will avoid unboundedness in the dual. To guarantee that

0)312()12(21 −+−  ww

without concern for what values of λk are chosen, we must make

0)312(,0)12(−− ww

resulting in

ww  4,12

Alternatively, from a primal point of view, the terms (12-w) and

(12-3w) appear on the right-hand-side of the inequalities. Ensuring

their non-negativity provides that the primal may be feasible.

Clearly, w must be chosen to satisfy w≤4. This constraint is added to

Q, and we repeat step 1.

Step 1:

integer and0

 ,4 ,20:

..

5max

*

2

*

21





+=

w

MzwwQ

ts

zwz

The solution is clearly w=4, z2*=M, with z1*=5(4)+M=20+M.

 26

Step 2: Using the value of w=4 found in the master, get the dual.

0

..

*)(min

11

22





−=







cA

ts

wAbz

T

T

 ➔

0,

3

4

13

22

..

*
3

1

12

12
min

21

2

1

2

1

2


























































−








=











ts

wz

T

Substituting, from step 1, w*=4, the subproblem becomes:

0,

3

4

13

22

..

84
3

1

12

12
min

21

2

1

1

2

1

2





























=




























−








=












ts

z

T

We can use CPLEX LP solver (or any other LP solver) to solve the

above, obtaining the solution λ1*=0, λ2*=3, with objective function

value z2*=0. Intuitively, one observes that minimization of the

objective subject to nonnegativity constraint on λ1 requires λ1=0;

then λ2 can be anything as long as it satisfies

3

242

2

22









Therefore an optimal solution is λ1*=0, λ2*=3. (Although this is a

solution, it is a special kind of solution referred to as degenerate

because there are many values of λ2 that are equally good solutions.)

Since we have a bounded dual solution (and therefore optimal), our

primal is feasible, and we may proceed to step 3 to test for

optimality using Benders optimal rule.

 27

Step 3: Compare z1* found in step 1 to ** 22 zwcT + where

**)(* 22 TwAbz −= is found in step 2.

In step 1, solution of the master problem resulted in z1*=20+M.

In step 2, solution of the subproblem resulted in z2*=0.

In both problems, c2=5, and we found (master) or used (sub) w*=4.

Benders optimal rule is 
problem

master from

*

1

?

subproblem from *z

2

problem
master from

2 **)(*

2

zwAbwc TT =−+    

Substitution yields:
  

problem
master from

?

subproblem from *z
problem

master from

20 045
2

M+=+•

The fact that they are not equal indicates that our solution is not

optimal, since it does not satisfy Benders optimal rule. These two

problems, the master and the subproblem, are really part of a single

problem, and therefore for the single problem to be solved, the

solutions to the master and subproblems must be consistent. That is,

when we maximize z1= ** 22 zwcT + in the master, resulting in a

value of z2*, we need to find this value of z2* to be the same as the

solution that the subproblem gives for z2*. If we do that (since c2w*

is the same for both), the objective function from the master

problem, z1*, will be the same as the sum of {c2
Tw*+z2*} where z2*

is the objective function from the subproblem.

If we find that z2* differs in the master and subproblem, as we have

found here, then we impose a constraint in the master based on the

answer obtained in the subproblem. The fact that this constraint is

imposed to satisfy Benders optimal rule means it is imposed to

obtain optimality; this makes it an optimality constraint, or in the

language of Benders, an optimality cut.

We may think of

the left-hand-side

as the augmented

subproblem

objective, and the

right-hand-side as

the master prob

objective. We are

asking whether

these two are

consistent.

Alternatively, we

are asking if z2*

found in the

master problem is

the same as the

objective

subproblem

objective.

 28

We obtain the optimality cut from 2 2* () *Tz b A w  − . With









=

12

12
b , 








=

3

1
2A , 








=









3

0

2

1





  wwwwz

T

936
3

0
 31212

3

0

3

1

12

12
*

2 −=







−−=





























−










Now we return to step 1, but before we do, we distinguish between a

feasibility cut and an optimality cut:

• Feasibility cut: Takes place as a result of finding an unbounded

dual subproblem, which, by Table 1, implies an infeasible primal

subproblem. It means that for the value of w found in the

master problem, there is no possible solution in the primal

subproblem. We address this by adding a feasibility cut (a

constraint on w) to the master problem, where that cut is obtained

from dual subproblem to avoid its unboundedness, or,

alternatively, to avoid the primal subproblem infeasibility.

(b-A2w)Tλ≥0.

• Optimality cut: Takes place as a result of finding that Benders

optimal rule is not satisfied, i.e., that

 of instead **)(*

problem
master from

*
1

subproblem from *z

2

problem
master from

2

2

zwAbwc TT −+    



problem
master from

*
1

subproblem from *z

2

problem
master from

2

2

**)(* zwAbwc TT =−+    

It means that the value of z2* computed in the master problem

(and contained in z1*) is larger than the value of z2* computed in

the subproblem. This must be the case (when Benders optimal

rule is not satisfied) since z1* is always an upper bound for the

solution (see comment 3 regarding “Upper bounds” on pg. 16).

We address this by adding an optimality cut (a constraint on z2*

in terms of w) to the master problem, to force z2* in the master

problem to be smaller, where that cut is obtained from Benders

optimal rule reflecting the maximum which the subproblem

allows for z2*. The optimality cut is:

)(22 TwAbz −

 29

Observe that 2()Tb A w− plays a crucial role in generating both

feasibility and optimality cuts. Through this term,

• the feasibility cut, obtained when the dual subproblem is

unbounded, imposes additional constraints to limit w;

• the optimality cut, obtained when Benders optimal rule is not

satisfied, imposes additional constraints to limit z2
* in terms of w.

One last comment is necessary here before we proceed with solving

the example. It is also possible that we may find an infeasible

subproblem, as shown in Figure 7. Reference to Table 1 indicates

that an infeasible dual implies the primal may be either unbounded

or infeasible.

If the primal is infeasible, then the situation may at first appear

similar to our step 2 situation generated by an unbounded dual,

where we were able to avoid the dual unboundedness (and thus the

primal infeasibility) by restricting w to impose non-negativity on the

dual objective coefficients. In other words (focusing on the dual):

• In the case of an unbounded dual, a dual feasible space exists and

modifying the dual objective function (by restricting w) can avoid

the unboundedness.

• But in the case of an infeasible dual, however, there is no feasible

space, and modifying w only affects the dual objective function

coefficients (the dual constraints are independent of w). The dual

space remains infeasible no matter what we do to w, and thus the

primal remains either infeasible or unbounded, and so the original

problem P1P also remains either infeasible or unbounded.

Step 1: Adjoin the optimality cut to Q, resulting in the following

master problem:

()

integer ,0

936 M,z ,4 ,20 : :subject to

 z5 max

*

2

*

2

*

21

ww

wzww Q

wz



−

+=

 30

This all-integer program can be solved using a branch and bound

algorithm (both CPLEX and Matlab have one), but the solution can

be identified using enumeration, since w can only be 0, 1, 2, 3, or 4.

For example, letting w=0, we have

()
 36 M,z : :subject to

 z max

*

2

*

2

*

21



=

zQ

z

The solution is recognized immediately, as z2*=36, z1*=36.

Likewise, letting w=1, we have

()
27 M,z : :subject to

 z5 max

*

2

*

2

*

21



+=

zQ

z

The solution is recognized immediately, as z2*=27, z1*=32.

Continuing on, we find the complete set of solutions are

w=0, z2*=36, z1=36

w=2, z2*=27, z1=32

w=2, z2*=18, z1=28

w=3, z2*=9, z1=24

w=4, z2*=0, z1=20

Since the first one results in maximizing z1, our solution is

w*=0, z2*=36, z1*=36.

Step 2: Using the value of w found in the master, get the dual:

0

..

*)(min

11

22





−=







cA

ts

wAbz

T

T

 ➔

0,

3

4

13

22

..

*
3

1

12

12
min

21

2

1

2

1

2


























































−








=











ts

wz

T

Substituting, from step 1, w*=0, the subproblem becomes:

 31

0,

3

4

13

22

..

12120
3

1

12

12
min

21

2

1

21

2

1

2





























+=




























−








=












ts

z

T

We can use CPLEX LP solver (or any other LP solver) to solve the

above, obtaining the solution λ1*=2, λ2*=0, with objective function

value z2*=24. Since we have a bounded dual solution, our primal is

feasible, and we may proceed to step 3.

Step 3: Compare z1 found in step 1 to ** 22 zwcT + where

**)(* 22 TwAbz −= is found in step 2.

In step 1, solution of the master problem resulted in z1*=36

In step 2, solution of the subproblem resulted in z2*=24.

In both problems, c2=5, and we found (master) or used (sub) w*=0.

Benders optimal rule is 
problem

master from

*

1

?

subproblem from *z

2

problem
master from

2 **)(*

2

zwAbwc TT =−+    

Substitution yields:
  

problem
master from

?

subproblem from *z
problem

master from

36 2405
2

=+•

Benders optimal rule is not satisfied, we need to obtain the

optimality cut from *)(* 22 TwAbz − . With









=

12

12
b , 








=

3

1
2A , 








=









0

2

2

1





 32

  wwwwz

T

224
0

2
 31212

0

2

3

1

12

12
*

2 −=







−−=





























−










Now we return to step 1.

Step 1: Adjoin the optimality cut to Q, resulting in the following

master problem:

()

integer ,0

224 ,936 M,z ,4 ,20 : :subject to

 z5 max

*

2

*

2

*

2

*

21

ww

wzwzww Q

wz



−−

+=

This all-integer program can be solved using a branch and bound

algorithm (both CPLEX and Matlab have one), but the solution can

be identified using enumeration, since w can only be 0, 1, 2, 3, or 4.

For example, letting w=0, we have

()
 24 ,36 M,z : :subject to

 z max

*

2

*

2

*

2

*

21



=

zzQ

z

The solution is recognized immediately, as z2*=24, z1*=24.

Likewise, letting w=1, we have

()
22 ,27 M,z : :subject to

 z5 max

*

2

*

2

*

2

*

21



+=

zzQ

z

The solution is recognized immediately, as z2*=22, z1*=27.

Continuing on, we find the complete set of solutions is:

w=0, z2*=24, z1=24

w=1, z2*=22, z1=27

w=2, z2*=18, z1=28

w=3, z2*=9, z1=24

w=4, z2*=0, z1=20

And so the third one results in maximizing z1, so our solution is

w*=2, z2*=18, z1*=28.

Step 2: Using the value of w found in the master, get the dual:

 33

0

..

*)(min

11

22





−=







cA

ts

wAbz

T

T

 ➔

0,

3

4

13

22

..

*
3

1

12

12
min

21

2

1

2

1

2


























































−








=











ts

wz

T

Substituting, from step 1, w*=2, the subproblem becomes:

0,

3

4

13

22

..

6102
3

1

12

12
min

21

2

1

21

2

1

2





























+=




























−








=












ts

z

T

We can use CPLEX LP solver (or any other LP solver) to solve the

above, obtaining the solution λ1*=0.5, λ2*=1.5, with objective

function value z2*=14. Since we have a bounded dual solution, our

primal is feasible, and we may proceed to step 3.

Step 3: Compare z1 found in step 1 to ** 22 zwcT + where

**)(* 22 TwAbz −= is found in step 2.

In step 1, solution of the master problem resulted in z1*=28

In step 2, solution of the subproblem resulted in z2*=14.

In both problems, c2=5, and we found (master) or used (sub) w*=2.

Benders optimal rule is 
problem

master from

*

1

?

subproblem from *z

2

problem
master from

2 **)(*

2

zwAbwc TT =−+    

 34

Substitution yields:
  

problem
master from

?

subproblem from *z
problem

master from

28 1425
2

=+•

Benders optimal rule is not satisfied, we need to obtain the

optimality cut from *)(* 22 TwAbz − . With









=

12

12
b , 








=

3

1
2A , 








=









5.1

5.0

2

1





  wwwwz

T

524
5.1

5.0
 31212

5.1

5.0

3

1

12

12
*

2 −=







−−=





























−










Now we return to step 1.

Step 1: Adjoin the optimality cut to Q, resulting in the following

master problem:

()

integer ,0

524 ,224 ,936 M,z ,4 ,20 : :subject to

 z5 max

*

2

*

2

*

2

*

2

*

21

ww

wzwzwzww Q

wz



−−−

+=

This all-integer program can be solved using a branch and bound

algorithm (both CPLEX and Matlab have one), but the solution can

be identified using enumeration, since w can only be 0, 1, 2, 3, or 4.

Enumerating the solutions to this problem results in

w=0: z2*=24, z1*=24

w=1: z2*=19, z1*=24

w=2: z2*=14, z1*=24

w=3: z2*=9, z1*=24

w=4: z2*=0, z1*=20

We see that w=0, 1, 2, and 3 are equally good solutions

Steps 2 and 3: for each of these solutions, using the value of w

found in the master, get the dual. Then check Benders rule. The

general form of the dual is below.

 35

0

..

*)(min

11

22





−=







cA

ts

wAbz

T

T

 ➔

0,

3

4

13

22

..

*
3

1

12

12
min

21

2

1

2

1

2


























































−








=











ts

wz

T

Benders optimal rule is 
problem

master from

*

1

?

subproblem from *z

2

problem
master from

2 **)(*

2

zwAbwc TT =−+    

w*=0, the subproblem becomes:

0,

3

4

13

22

..

2120
3

1

12

12
min

21

2

1

21

2

1

2





























+=




























−








=












ts

z

T

Solution from CPLEX is λ1=2, λ2=0, with objective function value

z2*=24.

Benders rule:
  

problem
master from

?

subproblem from *z
problem

master from

24 2405
2

=+•

This solution is optimal. Dual variables obtained from CPLEX are

x1=6, x2=0. (These variables are dual variables in the dual problem,

therefore they are the variables in our original primal problem).

 36

w*=1, the subproblem becomes:

0,

3

4

13

22

..

9111
3

1

12

12
min

21

2

1

21

2

1

2





























+=




























−








=












ts

z

T

Solution from CPLEX is λ1=0.5, λ2=1.5, with objective function

value z2*=19.

Benders rule:
  

problem
master from

?

subproblem from *z
problem

master from

24 1915
2

=+•

This solution is optimal. Dual variables obtained from CPLEX are

x1=4, x2=1.

w*=2, the subproblem becomes:

0,

3

4

13

22

..

6102
3

1

12

12
min

21

2

1

21

2

1

2





























+=




























−








=












ts

z

T

Solution from CPLEX is λ1=0.5, λ2=1.5, with objective function

value z2*=14.

Benders rule:
  

problem
master from

?

subproblem from *z
problem

master from

24 1425
2

=+•

This solution is optimal. Dual variables obtained from CPLEX are

x1=2, x2=2.

 37

w*=3, the subproblem becomes:

0,

3

4

13

22

..

393
3

1

12

12
min

21

2

1

21

2

1

2





























+=




























−








=












ts

z

T

Solution from CPLEX is λ1=0, λ2=3, with objective function value

z2*=9.

Benders rule:
  

problem
master from

?

subproblem from *z
problem

master from

24 935
2

=+•

This solution is optimal. Dual variables obtained from CPLEX are

x1=0, x2=3.

Problem summary:

Recall our original problem:

integer

,0,,

20

1232

1232 :subject to

534 max

P

21

21

21

211

0

w

wxx

w

wxx

wxx

wxxz





++

++

++=

Optimal solutions to this problem result in an objective function

value of z1=24 and are:

• w=0, x1=6, x2=0

• w=1, x1=4, x2=1

• w=2, x1=2, x2=2

• w=3, x1=0, x2=3

 38

Some comments about this problem:

1. It is coincidence that the values of x1 and x2 for the optimal

solution also turn out to be integers.

2. The fact that there are multiple solutions is typical of MIP

problems. MIP problems are non-convex.

5.0 Benders simplifications

In the previous section, we studied problems having the following

structure:

integer

0,

..

max

21

211

w

wx

bwAxA

eDw

ts

wcxcz TT



+



+=

and we defined the master problem and primal subproblem as

integer

0

..

max

:

*

221

w

w

eDw

ts

zwcz T





+=

Master

0

*

..

max

:

21

12



−

=

x

wAbxA

ts

xcz T

subproblem Primal

However, what if our original problem appears as below, which is

the same as the original problem except that it does not contain an

“x” in the objective function, although the “x” still remains in one of

the constraints.

 39

integer

0,

..

max

21

21

w

wx

bwAxA

eDw

ts

wcz T



+



=

In this case, the master problem and the primal subproblem become:

integer

0

..

max

:

21

w

w

eDw

ts

wcz T





=

Master

0

*

..

???max

:

21

2



−

=

x

wAbxA

ts

z

subproblem Primal

One sees clearly here that the primal subproblem has no z2 to

maximize! One way to address this issue is to introduce a vector of

non-negative slack variables s having one element for each

constraint. We will minimize the sum of these slack variables, so

that a non-zero value of this sum indicates the subproblem is

infeasible. That is, we replace our primal subproblem with a

feasibility check subproblem, as follows:

integer

0

..

max

:

21

w

w

eDw

ts

wcz T





=

Master

0,0

*

..

min

:

21



−−

=

sx

wAbsxA

ts

sOnesv T

subproblem check yFeasibilit

Here, Ones is a column vector of 1’s, so that v=OnesTs is the

summation of all elements in the column vector s. When v=0, each

 40

constraint in A1x-s≤b-A2w* is satisfied so that A1x≤b-A2w*, which

means the constraints to the original problem are in fact satisfied.

In this case, one observes that if v=0, then the problem is solved

since Benders optimality rule will always be satisfied.


problem

master from

*

1

subproblem from *z

2

problem
master from

2

2

**)(* zwAbwc TT =−+    

Here, z2 is always zero, and the other two terms come from the

master problem, therefore if the problem is feasible, it is optimal,

and no step 3 is necessary.

One question does arise, however, and that is what should be the

feasibility cuts returned to the master problem if the feasibility

check subproblem results in v>0? The answer to this is stated in [7]

and shown in [8] to be

v + λ A2(w* − w) < 0

This kind of problem is actually very common. Figure 5, using a

SCOPF to motivate decomposition methods for enhancing

computational efficiency, is of this type. This is very similar to the

so-called simultaneous feasibility test (SFT) of industry.

The SFT (Simultaneous Feasibility Test) is widely used in SCED

and SCUC [9, 10, 11]. SFT is a contingency analysis process. The

objective of SFT is to determine violations in all post-contingency

states and to produce generic constraints to feed into economic

dispatch or unit commitment, where a generic constraint is a

transmission constraint formulated using linear sensitivity

coefficients/factors.

The ED or UC is first solved without considering network

constraints and security constraints. The results are sent to perform

the security assessment in a typical power flow. If there is an

 41

existing violation, the new constraints are generated using the

sensitivity coefficients/ factors and are added to the original problem

to solve repetitively until no violation exists. The common flowchart

is shown in Figure 8.

Figure 8

This section has focused on the very common case where the

general Benders approach degenerates to a feasibility test problem

only, i.e., the optimality test does not need to be done. There are at

least two other “degenerate” forms of Benders:

• No feasibility problem: In some situations, the optimality

problem will be always feasible, and so the feasibility problem is

unnecessary.

• Dual-role feasibility and optimality problem: In some

applications, the feasibility and optimality problem can be the

same problem.

Reference [7] provides examples of these degenerate forms of

Benders decomposition.

6.0 Application of Benders to other Problem Types

This section is best communicated by quoting from Geoffrion [4]

(highlight added), considered the originator of Generalized Benders.

ED, UC, or FTR

SFT

Violated?

Finish

Generic

Constraints

 42

“J.F. Benders devised a clever approach for exploiting the structure

of mathematical programming problems with complicating variables

(variables which, when temporarily fixed, render the remaining

optimization problem considerably more tractable). For the class of

problems specifically considered by Benders, fixing the values of

the complicating variables reduces the given problem to an ordinary

linear program, parameterized, of course, by the value of the

complicating variables vector. The algorithm he proposed for

finding the optimal value of this vector employs a cutting-plane

approach for building up adequate representations of (i) the extremal

value of the linear program as a function of the parameterizing

vector and (ii) the set of values of the parameterizing vector for

which the linear program is feasible. Linear programming duality

theory was employed to derive the natural families of cuts

characterizing these representations, and the parameterized linear

program itself is used to generate what are usually deepest cuts for

building up the representations.

In this paper, Benders' approach is generalized to a broader class of

programs in which the parametrized subproblem need no longer be a

linear program. Nonlinear convex duality theory is employed to

derive the natural families of cuts corresponding to those in Benders'

case. The conditions under which such a generalization is possible

and appropriate are examined in detail.”

The spirit of the above quotations is captured by the below modified

formulation of our problem.

The problem can be generally specified as follows:

integer

0,

)(

..

)(max

2

21

w

wx

bwAxF

eDw

ts

wcxfz T



+



+=

Define the master problem and primal subproblem as

 43

integer

0

..

max

:

*

221

w

w

eDw

ts

zwcz T





+=

Master

0

*)(

..

)(max

:

2

2



−

=

x

wAbxF

ts

xfz

subproblem Primal

The Benders process must be generalized to solve the above

problem since the subproblem is a nonlinear program (NLP) rather

than a linear program (LP). Geoffrion shows how to do this [4].

In the above problem, w is integer, the master is therefore a linear

integer program (LIP); the complete problem is therefore an integer

NLP. If Benders can solve this problem, then it will also solve the

problem when w is continuous, so that the master is LP and

subproblem is NLP. If this is the case, then Benders will also solve

the problem where both master and subproblem are LP, which is a

very common approach to solving very-large-scale linear programs.

Table 2 summarizes the various problems Benders is known to be

able to solve.

Table 2

 Master

ILP LP

Subproblem
LP √ √

NLP √ √

One might ask whether Benders can handle a nonlinear integer

program in the master, but it is generally unnecessary to do so since

such problems can usually be decomposed to an ILP master with a

NLP subproblem.

 44

7.0 Generalized Benders for EGEAS

The description of EGEAS provided here is adapted from [12].

The EGEAS computer model was developed by researchers at MIT

under funding from the Electric Power Research Institute (EPRI).

EGEAS can be run in both the expansion optimization and the

production simulation modes. Uncertainty analysis, based on

automatic sensitivity analysis and data collapsing via description of

function estimation, is also available. A complete description of the

model can be found in [13].

The production simulation option consists of production

cost/reliability evaluation for a specified generating system

configuration during one or more years. Probabilistic production

cost/reliability simulation is performed using a load duration curve

based model. Customer load and generating unit availability are

modeled as random variables to reflect demand fluctuations and

generation forced outages. Two algorithmic implementations are

available: an analytic representation of the load duration curve

(cumulants) and a piecewise linear numerical representation.

EGEAS has three main solution options: Screening curves, dynamic

programming, and generalized Benders (GB) decomposition. We

discuss here the latter.

GB is a non-linear optimization technique incorporating detailed

probabilistic production costing.

• It is based on an iterative interaction of a simplex algorithm

master problem with a probabilistic production costing

simulation subproblem.

• After a sufficient number of iterations, non-linear production

costs and reliability relationship are approximated with as

small an error bound as desired by the user.

 45

• It is computationally more efficient than the dynamic

programming EGEAS option but produces optimal expansion

plans consisting of fractional unit capacity additions.

• It resolves correctly among planning alternative unit sizes, and

it models multiple units correctly in terms of expected energy

generated and reliability impacts.

• System reliability constraints are modeled according to the

probabilistic criterion of expected unserved energy.

• It is suitable for analyses involving thermal, limited energy and

storage units, non-dispatchable technology generation, and

certain load management activities.

• A unique capability of the GB option is the estimation of

incremental costs to the utility associated with meeting

allowed unserved energy reliability targets. This capability

replaces reliability constraints by an incremental cost of

unserved energy to consumers.

• Finally, the GB option has not been developed in its present

form to model interconnections or subyearly period production

costing/reliability considerations.

• End effects are handled by an extension period model.

The formulation of the GB generating capacity expansion planning

problem in EGEAS follows, adapted from [14].

 46

• X = vector of plant capacities, Xj Megawatts (MW) (decision

variable);

• j = unique index for each plant;

• C = vector of plant present-value capacity costs, Cj $/MW;

• Yt = vector of plant utilization levels in period t, Yit MW

(decision variable);

• i= merit order position of plant in period t;

• EFt(Yt) = present-value expected operating cost function in

period t;

• EGt(Yt) = expected unserved energy function in period t;

• εt = desired reliability level in period t, measured in expected

MWhr of demand not served;

• δt = matrix which selects and sorts plants, indexed by j, into merit

order, indexed by i, in period t;

• T = number of periods (years) in planning horizon.

In this formulation it is assumed that the capacities of all plants are

decision variables in order to simplify the notation; however,

existing plants of given capacity can be incorporated.

The objective function (1) consists of two components, the capacity

costs of the plants and the expected operating costs of the system

over the planning horizon.

The constraint (2) represents the reliability standard of the system.

The constraint (3) requires that no plant be operated over its

capacity.

 47

Associated with this capacity planning problem there is, for each

period t in the planning horizon, an operating subproblem which

results from fixing the plant capacities X at trial values.

There is one such subproblem for each period t in the planning

horizon; the load duration functions, the operating cost coefficients,

and the merit order all depend on the period. The index t has been

suppressed below for clarity of notation.

The general subproblem has the following form:

• i = index of plant in merit order;

• I= number of plants;

• Yi = utilization level of ith plant, MW (decision variable)

(component of vector Y);

• Xi capacity of ith plant, MW (regarded as fixed in the operating

problem) (component of the vector δtX);

• Fi = operating cost of ith plant, $/MWhr;

• pi = 1 - qi= availability of ith plant; qi = FOR of ith plant;

• Gi = equivalent load duration function faced by ith plant;

• Ui = cumulative utilization of first i plants in merit order (Ui-1 is

the loading point of the ith plant).

The plant loading points are defined by

 48

Equation (4) is a sum over each units production cost, where

individual unit production cost was designated in the course notes

on production costing as Cj(Ej)=bjEj, where Ej is

 dFTAE

j

j

e

x

x

j

Djj 
−

−=

1

)()1(

and
)1(−j

De
F is the equivalent load duration curve seen by the jth unit,

and


=

=
j

i

ij Cx
1

, 
−

=

− =
1

1

1

j

i

ij Cx

state the same thing as eq. (7).

This model assumes linearity of the capacity costs with size and of

the operating costs with output. In reality, capacity costs for

constructing power plants generally exhibit economies of scale and

plant operations have decreasing marginal costs at low output levels

and increasing marginal costs as output approaches capacity.

The capacity expansion planning problem (1)-(3) can be written in

equivalent form as a two-stage optimization

where the optimization within the inner brackets is just the operating

subproblem (4)-(6). The set Ω consists of all capacity vectors X

which allow a feasible solution in each of the subproblems.

In addition to [14], Bloom published a number of other papers

addressing his work on applying Benders decomposition to the

expansion planning problem. These include

 49

• Reference [15]: This paper describes methods of including power

plants with limited energy (e.g., hydro) and storage plants in the

production costing convolution algorithm we have studied, for

use in a Benders decomposition formulation of the expansion

planning problem where the production costing problem is the

subproblem, and there is one for each period of the planning

horizon.

• Reference [16]:

• Reference [17]:

In addition to the work reported on using Benders in EGEAS, there

are many other works related to application of Benders

decomposition to electric power planning problems. A representative

sample of them include [18, 19, 20, 21, 22, 23,…].

8.0 Application of Benders to Stochastic Programming

For good, but brief overviews of Stochastic Programming, see [24]

and [25].

In our example problem, we considered only a single subproblem, as

shown below.

integer

0,

..

max

21

211

w

wx

bwAxA

eDw

ts

wcxcz TT



+



+=

To prepare for our generalization, we rewrite the above in a slightly

different form, using slightly different notation:

 50

integer

0,

..

max

1

1111

111

w

wx

bxAwB

eDw

ts

xdwcZ TT



+



+=

Now we are in position to extend our problem statement so that it

includes more than a single subproblem, as indicated in the structure

provided below.

0,

..

....max

2222

1111

22111



+



+

+



++++=

wx

bxAwB

bxAwB

bxAwB

eDw

ts

xdxdxdwcZ

k

nnnm

n
T
n

TTT



In this case, the master problem is

0

..

)(max
1

1





+= 
=

w

eDw

ts

xzwcZ
n

i

ii
T

where zi provide values of the maximization subproblems given by:

 51

0

..

 max



−

=

i

iiii

i

T

ii

x

wBbxA

ts

xdz

Note that the constraint matrix for the complete problem appears as:





































































nnnn b

b

b

e

x

x

x

w

AB

AB

AB

D


2

1

2

1

22

11

The constraint matrix shown above, if one only considers D, B1, and

A1, has an L-shape, as indicated below.





































































nnnn b

b

b

e

x

x

x

w

AB

AB

AB

D


2

1

2

1

22

11

Consequently, methods to solve these kinds of problems, when they

are formulated as stochastic programs, are called L-shaped methods.

But what is, exactly, a stochastic program [24]?

• A stochastic program is an optimization approach to solving

decision problems under uncertainty where we make some

choices for “now” (the current period) represented by w, in order

to minimize our present costs.

• After making these choices, event i happens, so that we take

recourse4, represented by xi, in order to minimize our costs under

each event i that could occur in the next period.

4 Recourse is the act of turning or applying to a person or thing for aid.

 52

• Our decision must be made a-priori, however, and so we do not

know which event will take place, but we do know that each

event i will have probability pi.

• Our goal, then, is to minimize the cost of the decision for “now”

(the current period) plus the expected cost of the later recourse

decisions (made in the next period).

An application of this problem for power systems is the security-

constrained optimal power flow (SCOPF) with corrective action.

• In this problem, we dispatch generation to minimize costs for the

network topology that exists in this 15 minute period. Each unit

generation level is a choice, and the complete decision is captured

by the vector w. The dispatch costs are represented by cTw.

• These “normal” conditions are constrained by the power flow

equations and by the branch flow and unit constraints, all of

which are captured by Dw≤e.

• Any one of i=1,…,n contingencies may occur in the next 15

minute period. Given that we are operating at w during this

period, each contingency i requires that we take corrective action

(modify the dispatch, drop load, or reconfigure the network)

specified by xi.

• The cost of the corrective action for contingency i is di
Txi, so that

the expected costs over all possible contingencies is Σpidi
Txi.

• Each contingency scenario is constrained by the post-contingency

power flow equations, and by the branch flow and unit

constraints, represented by Biw+Aixi≤bi. The dependency on w

(the pre-contingency dispatch) occurs as a result of unit ramp rate

limitations, to constrain each unit’s redispatch to an amount that

can be achieved within a given time frame, i.e., for each unit, the

vector w would contain P0 (pre-contingency dispatch), the vector

x would contain ∆P+ (increases) and ∆P- (decreases), so that the

equations

P0 + ∆P+ ≤ b+, -P0 + ∆P- ≤ b-

would be represented in Biw+Aixi≤bi.

 53

A 2-stage recourse problem is formulated below:

0,

..

min

2222

1111

1

1



+



+

+



+= 
=

wx

bxAwB

bxAwB

bxAwB

eDw

ts

xdpwcz

nnnm

i

n

i

T

ii

T



where pi is the (scalar) probability of event i, and di is the vector of

costs associated with taking recourse action xi. Each constraint

equation Biw+Aixi≤bi limits the recourse actions that can be taken in

response to event i, and depends on the decisions w made for the

current period.

Formulation of this problem for solution by Benders (the L-shaped

method) results in the master problem as

0

..

min
1

1





+= 
=

w

eDw

ts

zwcz
n

i

i

T

where zi is minimized in the subproblem given by:

0

..

 min



−

=

i

iiii

i

T

iii

x

wBbxA

ts

xdpz

Note that the first-period decision, w, does not depend on which

second-period scenario actually occurs (but does depend on a

 54

probabilistic weighting of the various possible futures). This is

called the non-anticipativity property. The future is uncertain and so

today's decision cannot take advantage of knowledge of the future.

Recourse models can be extended to handle multistage problems,

• where a decision is made “now” (in the current period),

• we wait for some uncertainty to be resolved,

• and then we make another decision based on what happened.

The objective is to minimize the expected costs of all decisions

taken. This problem can be appropriately thought of as the coverage

of a decision tree, as shown in Fig. 7, where each “level” of the tree

corresponds to another stochastic program.

Fig. 7

 55

Multistage stochastic programs have been applied to handle

uncertainty in planning problems before. This is a reasonable

approach; however, one should be aware that computational

requirements increase with number of time periods and number of

scenarios (contingencies in our example) per time period. Reference

[26] by J. Beasley provides a good but brief overview of multistage

stochastic programming. Reference [27], notes for an entire course,

provides a comprehensive treatment of stochastic programming

including material on multistage stochastic programming. Dr. Sarah

Ryan of ISU’s IMSE department teaches a course on this topic,

described below.
I E 633X. Stochastic Programming. (3-0) Cr. 3. S. Prereq: I E 513 or STAT 447, I E 534
or equivalent. Mathematical programming with uncertain parameters; modeling risk
within optimization; multi-stage recourse and probabilistically constrained modes;
solution and approximation algorithms including dual decomposition and
progressive hedging; and applications to planning, allocation and design problems.

9.0 Two related problem structures

We found the general form of the stochastic program to be

0,

..

....max

2222

1111

22111



+



+

+



++++=

wx

bxAwB

bxAwB

bxAwB

eDw

ts

xdxdxdwcz

k

nnnm

n

T

n

TTT



so that the constraint matrix appears as

 56





































































nnnn b

b

b

e

x

x

x

w

AB

AB

AB

D


2

1

2

1

22

11

If we move the w vector to the bottom of the decision vector, the

constraint matrix appears as





































































e

b

b

b

w

x

x

x

D

BA

BA

BA

nnnn


2

1

2

1

22

11

Notice that this is the structure that we introduced in Fig. 3 at the

beginning of these notes, repeated here for convenience. We

referred to this structure as “block angular with linking variables.”

Now we will call it the Benders structure.

x1

x2

x3

≤

b1

b2

b3

x4

Fig. 3

This means that coupling exists between what would otherwise be

independent optimization problems, and that coupling occurs via the

variables, in this case w.

 57

For example, in the SCOPF with corrective action, the almost-

independent optimization problems are the n optimization problems

related to the n contingencies. The dependency occurs via the

dispatch determined for the existing (no-contingency) condition.

The first example at the beginning of these notes shows this

structure. In this example, the CEO decided which of 100 products

would be made by the company, and then each department has to

optimize its resources accordingly. The CEO’s decisions are 1-0

decisions on the 100 variables contained in x4. The variables in x1

through x3 would be the decisions that each of departments 1-3

would need to make.

Recall from our discussion of duality that one way that primal and

dual problems are related is that

- coefficients of one variable across multiple primal constraints

- are coefficients of multiple variables in one dual constraint,

as illustrated below.

  
Problem Primal

21

21

2

1

21

0,0

1823

12 2

4 s.t.

53max

P Problem



+





+=

xx

xx

x

x

xxF

➔

  
Problem Dual

321

32

31

321

0,0,0

522

33

subject to

18124min

D Problem



+

+

++=







G

This can be more succinctly stated by saying that the dual constraint

matrix is the transpose of the primal constraint matrix. You should

be able to see, then, that the structure of the dual problem to a

problem with the Benders structure looks like Fig. 2, repeated here

for convenience.

 58

 λ1

λ2

λ3

≤

c1

c2

c3

c0

Fig. 2

This structure differs from that of the Benders structure (where the

subproblems were linked by variables) in that now, the subproblems

are linked by constraints. This problem is actually solved most

effectively by another algorithm called Dantzig-Wolfe (DW)

decomposition. We refer to the above structure as the DW structure.

It is illustrated in the next section using a GEP problem.

10.0 A GEP formulation resulting in a DW structure

Consider the following network for which a generation expansion

planning (GEP) problem will be solved.

Fig. 8

This GEP problem has the following features:

1. There are four buses, buses 1 and 2 have only generation, and

buses 3 and 4 have only load.

2. There are two periods, t=1, 2.

Bus 1 Bus 2 Bus 3 Bus 4

Line 1 Line 2 Line 3

p2 p1

d3 d4

 59

3. There are two existing generating units, k=1, 2, having

capacities at time t=0 of C10 and C20, respectively.

4. Expansion can only occur at the two generation units, in either

periods 1 or 2. Thus, the decision variables for investment are

xkt and represent the additional capacity added to unit k at time

t. The specific investment-related decision variables are then

x11, x21, x12, and x22.

5. The operation-related decision variables are the generation

levels at each unit k at time t, pkt. The specific generation level

variables are then p11, p21, p12, and p22.

6. The operation-related load parameters are d31, d41, d32, and d42.

7. The operation-related bus angles are θ11, θ21, θ31, θ41, θ12, θ22,

θ32, and θ42.

8. The DC power flow matrix relating bus angles to bus

injections for period 1 is B1 and for period 2 is B2. (In this

problem formulation, there is no transmission investment, and

we will not consider outages, therefore these matrices will be

the same). For our 4-bus system, these matrices are dimension

4x4 with elements bijt.

9. There are three lines; they are flow-constrained to flows PL1

for period 1 and to flows PL2 for period 2. Flows are computed

as a function of angles using DAθ, where D is the square

diagonal matrix of susceptances and A is the node-arc

incidence matrix. Again, because there is no transmission

investment, D1 and D2 are identical, and A1 and A2 are

identical. With 3 lines and 4 buses, the matrix DA is 3x4, with

elements denoted by sjkt (line j, bus k, period t).

10. We have the following equations for our system:

Period 1 generation constraints: p1-x1 ≤ C0

Period 2 generation constraints: p2-x1-x2≤ C0

Period 1 DC power flow eqts: p1-B1θ1=0

 Period 1 Line flow constraints: D1A1θ1 ≤ PB1

Period 2 DC power flow eqts: p2-B2θ2=0

 Period 2 Line flow constraints: D2A2θ2 ≤ PB2

 60

We have written the above equations to conform to how

we want to order them in our constraint matrix.

11. Define α1 and α2 as the discount factors for periods 1 and

2, respectively, and c1 and c2 as the cost coefficients associated

with units 1 and 2 generation, respectively.

Given the above points 1-11, we write our optimization problem as
operational costs operational costsinvestment costs investment costs

1 11 21 1 11 1 21 2 12 22 1 12 1 22

period 1 costs period 2 costs

min x x c p c p x x c p c p 
    

   + + + + + + +
   
   


 


  

Subject to5

111 121 131 141

211 221 231 241

311 321 331 341

411 421 431 441

111 121 131

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

b b b b

b b b b

b b b b

b b b b

s s s

−

−

− −

− −

−

−

141

211 221 231 241

311 321 331 341

112 122 132 142

212 222 232 242

312 322 332 342

412 422 432 442

112 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

s

s s s s

s s s s

b b b b

b b b b

b b b b

b b b b

s s

−

−

11

21

11

21

11

21

31

41

12

22

12

22

12

22

22 132 142 32

212 222 232 242 42

312 322 332 342

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

x

x

p

p

x

x

p

p

s s

s s s s

s s s s

















 
 

  
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
 

10

20

10

20

31

41

11

21

31

32

42

12

22

32

0

0

0

0

L

L

L

L

L

L

C

C

C

C

d

d

P

P

P

d

d

P

P

P

 
 
 
 
 
 

  
  
  
  −  
 − 
    
  =
  
  
  
  
  
  −  
 − 
  
  
  

 
 

Comparing to Fig. 2, we observe the DW structure in the above

constraint matrix. The yellow area at the top identifies the linking

constraints, and the yellow submatrices below indicate two different

subproblems corresponding to the operating conditions in the two

different periods.

There are several observations/questions/thoughts to consider now:

5 The constraint equation uses both “≤” and “=” to indicate both types of constraints exist. The constraints

with “=” (e.g., the DC power flow equations p=Bθ) can be expressed as p≤Bθ and p≥Bθ; doing so increases

the size of each subproblem block in the constraint matrix, but it does not change the structure of the

constraint matrix.

 61

1. Observation: The subproblems in the above DW structure are

associated with the network equations in different periods.

2. Observation: The fact that the above problem decomposes by

period is encouraging with respect to increasing the fidelity of

the production cost representation.

3. Question: Bloom used Benders to solve his problem, and so

we assume he obtained a Benders structure. Is it important,

relative to obtaining a Benders structure, that Bloom did not

account for the network? That is, if we include the network,

does that influence our ability to obtain a Benders structure?

4. Question: Is the DW decomposition method efficient?

Consider the following comment from [28]:

“Thus, although (DW) has a smaller number of

constraints, its number of variables can be huge since the

number of extreme points and extreme rays of a

polyhedron can be very large. To use this idea to

effectively solve large scale LP problems, we need to

avoid considering all extreme points and extreme rays of

Cx ≥ d. This is when the idea of column generation comes

into play, i.e., we start by including only a few number of

extreme points and extreme rays in the problem and we

add more on the fly in a as needed basis.”

There is another reference, [29], that raises questions about

using either DW or Benders for decomposed, parallelized

solutions of large linear programs (in contrast to large MIPs).

For example, he writes, “At present Dantzig-Wolfe and

Benders methods in the original versions are rarely used for

solving large scale continuous linear programming problems.

The reason is their too slow convergence.”

5. Observation: The DW decomposition procedure is described in

Section 11.0. It is good to review Section 11.0 to begin to get

familiar with DW, trying to think of reasons it might not work

very well. Following review of Section 11.0, if it still looks

promising, we should identify it as a promising method and list

it among other possibly promising methods. At this point, it

 62

might be good to start to review individual references about

DW, e.g., [2, 5, 46] and others.

6. Thought: Consider the following additional approaches:

a. Nested decomposition: Use a nested decomposition

algorithm [30] and solving it iteratively in a forward and

backward manner using forward and backward passes. In

essence, the forward pass iteratively solves over each

time period to yield an upper bound for each period over

the full problem, and the backward pass provides a lower

bound by generating cuts from relaxed sub-problems.

The convergence criteria is determined by a pre-defined

tolerance in terms of the difference between the upper

and lower bounds.

b. CPLEX’s barrier algorithm: One statement from [31] is

interesting: “The CPLEX barrier optimizer is

appropriate and often advantageous for large problems,

for example, those with more than 100,000 rows or

columns. It is not always the best choice, though, for

sparse models with more than 100,000 rows. It is

effective on problems with staircase structures or banded

structures in the constraint matrix. It is also effective on

problems with a small number of nonzeros per column

(perhaps no more than a dozen nonzero values per

column). In short, denseness or sparsity are not the

deciding issues when you are deciding whether to use the

barrier optimizer. In fact, its performance is most

dependent on these characteristics:

• the number of floating-point operations required to

compute the Cholesky factor;

• the presence of dense columns, that is, columns

with a relatively high number of nonzero entries.”

But what about parallelization? CPLEX offers the

parallel barrier optimizer. A good treatment of CPLEX

algorithms is in [32]. Some insights on using CPLEX for

large LPs can be found in [33]. Some related questions:

 63

• Does use of GAMS offer the full capabilities of the

parallel barrier algorithm?

• Is AIMMS better at using the CPLEX parallel

barrier algorithm than GAMS?

• Does GORUBI have a better parallel barrier

algorithm than CPLEX?

• Does Pyomo have a better parallel barrier algorithm

than CPLEX?

c. Problem structure: There may be a natural decomposition

based on our particular adaptive expansion planning

problem. For example, can we parallelize the operating

problems for each future (i.e., scenario)?

d. Lagrangian relaxation (LR): LR is also an effective

approach for problems that have the DR structure (i.e.,

problems that have block structure with complicating

constraints). References [34, 35] provide good tutorial

treatment of LR. Paraphrasing from [34]:

➔In LR, the complicating constraints are removed from

the constraint equations and then dualized, i.e., added to

the objective function, with a penalty term (the Lagrange

multiplier) proportional to the amount of violation of the

dualized constraints. It is a relaxation of the original

problem because (a) the removal of some constraints

relaxes the original feasible space; (b) the solution to the

LR problem will bound the original problem (from above

if maximizing and from below if minimizing) because the

addition of the complicating constraints will always

cause the objective function to increase (if maximizing)

or decrease (if minimizing).

e. Progressive hedging: Reference [36] indicates that “PH,

sometimes referred to as a horizontal decomposition

method because it decomposes stochastic programs by

scenarios rather than by time stages, possesses

theoretical convergence properties when all decision

 64

variables are continuous.” Reference [37] indicates,

“The progressive hedging algorithm (PHA) has emerged

as an effective method for solving multi-stage stochastic

programs, particularly those with discrete decision

variables in every stage. The PHA mitigates the

computational difficulty associated with large problem

instances by decomposing the extensive form according

to scenario, and iteratively solving penalized versions of

the sub-problems to gradually enforce implementability.”

f. Hybrid decomposition methods (HDM): HDM use a

combination of Benders, DW, LR, and/or some other

decomposition methods. For example, so-called cross-

decomposition uses Benders and LR [38, 39, 40].

7. Question: How would our decision change if we implemented

the production costing approach with a higher degree of

fidelity? Relatedly, what level of fidelity is required in the

expansion planning production cost model to adequately

represent storage? These are important questions because of

the need to include flexibility services6 within expansion

planning. A very good basic review of UC is contained in [41],

and a high-fidelity model for storage for production cost is

given in [42]. There have been several good papers written

recently on this topic, e.g., [43, 44, 45]. In gaining

understanding of how to include production cost modeling

fidelity within expansion planning, it is useful to review these

papers, paying attention to the papers they reference for

possible additional resources to study.

6 We define flexibility services as (1) transient frequency response (0-20 seconds following loss of

generation); (2) frequency regulation (continuous steady-state frequency control at ~4 second intervals); (3)

contingency reserve provision (capacity reserves having the ability to compensate for loss of generation

within 10-30 minutes); (4) load following or ramping reserve provision (capacity reserves having the ability

to compensate for 30-min to 4 hour daily changes in new load); and (5) planning reserve provision (capacity

reserves to satisfy the annual peak).

 65

The above thinking revolves around a view of optimization design

which is captured by Fig. 9 below. The solution speed is not

determined by any one design feature but rather by their

combination.

Fig. 9: Influences on compute time

11.0 The Dantzig-Wolfe Decomposition Procedure

Most of the material from this section is adapted from [5].

We attempt to solve the following problem P.

P

0,,,

)4(

)3(

)2(

)1(

)0(subject to

max

21

2222

1111

00202101000

2211



=

=

=

=++++

+++=

h

hhhh

hh

h
T
h

TT

xxx

bxA

bxA

bxA

bxAxAxAxA

xcxcxcz









where

• cj and xj have dimension nj×1

• Aij has dimension mi×nj

• bi has dimension mi×1

• This problem has 
=

h

i

im
0

constraints and 
=

h

i

in
0

variables.

Note:

 66

• Constraints 1, 2, 3, …,h can be thought of as constraints on

individual departments.

• Constraint 0 can be thought of as a constraint on total corporate

(organizational) resources (sum across all departments).

Definition 1: For a linear program (LP), an extreme point is a

“corner point” and represents a possible solution to the LP. The

solution to any feasible linear program is always an extreme point.

Figure 10 below illustrates 10 extreme points for some linear

program.

1

2

3

2

4

2

5

2
6

2

7

2

8

2

9

10

20

30

40

50

60

70

80

90

100

5
10

2

Fig. 10

Observation 1: Each individual subproblem represented by

iiii

i

T

i

bxA

xcz

=

=

 subject to

max

has its own set of extreme points. We refer to these extreme points

as the subproblem i extreme points, denoted by

i

k

i pkx ,,1, = where pi is the number of extreme points for

subproblem i.

 67

Observation 2: Corresponding to each extreme point solution k

ix ,
the amount of corporate resources used is k

ii xA0 , an m0×1 vector.

Observation 3: The contribution to the objective function of the

extreme point solution is k

i

T

i xc , a scalar.

Definition 2: A convex combination of extreme points is a point


=

ip

k

k

i

k

i yx
1

, where 1
1

=
=

ip

k

k

iy , so that k

iy is the fraction of extreme point

k

ix in the convex combination. Figure 11 below shows a white dot in

the interior of the region illustrating a convex combination of the

two extreme points numbered 4 and 9.

1

2

3
2

4
2

5
2

6
2

7

2

8
2

9

10

20

30

40

50

60

70

80

90

100

5
10
2

Fig. 11

Fact 1: Any convex combination of extreme points must be feasible

to the problem. This should be self-evident from Fig. 11 and can be

understood from the fact that the convex combination is a “weighted

average” of the extreme points and therefore must lie “between”

them (for two extreme points) or “interior to” them (for multiple

extreme points).

 68

Fact 2: Any point in the feasible region may be identified by

appropriately choosing the k

iy .

Observation 4a: Since the convex combination of extreme points is a

weighted average of those extreme points, then the total resource

usage by that convex combination will also be a weighted average

of the resource usage of the extreme points, i.e., ()
=

ip

k

k

i

k

ii yxA
1

0 . The

total resources for the complete problem is the summation over all

of the subproblems, ()
= =

h

i

p

k

k

i

k

ii

i

yxA
1 1

0 .

Observation 4b: Since the convex combination of extreme points is

a weighted average of those extreme points, then the contribution to

the objective function contribution by that convex combination will

also be a weighted average of the objective function contribution of

the extreme points, i.e., ()
=

ip

k

k

i

k

i

T

i yxc
1

. The total objective function can

be expressed as the summation over all subproblems, ()
= =

h

i

p

k

k

i

k

i

T

i

i

yxc
1 1

.

Based on Observations 4a and 4b, we may now transform our

optimization problem P as a search over all possible combinations of

points within the feasible regions of the subproblems to maximize

the total objective function, subject to the constraint that the k

iy must

sum to 1.0 and must be nonnegative, i.e.,

P-T

()

()

i

k

i

p

k

k

i

h

i

p

k

k

i

k

ii

h

i

p

k

k

i

k

i

T

i

pkhiy

hhiy

mbyxAxA

yxcz

i

i

i

,,1,,,1,0

sconstraint ,,1,1

sconstraint subject to

max

1

00

1 1

0000

1 1





==

==

=+

=







=

= =

= =

 69

Note that this new problem P-T (P-transformed) has m0+h

constraints, in contrast to problem P which has 
=

h

i

im
0

constraints.

Therefore it has far fewer constraints. However, whereas problem P

has only 
=

h

i

in
0

variables, this new problem has as many variables as it

has total number of extreme points across the h subproblems, 
=

h

i

ip
0

,

and so it has a much larger number of variables.

The DW decomposition method solves the new problem without

explicitly considering all of the variables.

Understanding the DW method requires having a background in

linear programming so that one is familiar with the revised simplex

algorithm. We do not have time to cover this algorithm in this class,

but it is standard in any linear programming class to do so.

Instead, we provide an economic interpretation to the DW method.

In the first constraint of problem P-T, b0 can be thought of as

representing shared resources among the various subproblems

i=1,…,h.

Let the first m0 dual variables of problem P-T be contained in the

m0×1 vector  . Each of these dual variables provide the change in

the objective as the corresponding right-hand-side (a resource) is

changed.

➔ That is, if b0k is changed by b0k+∆, then the optimal value of the

objective is modified by adding k .

➔ Likewise, if the ith subproblem (department) increases its use of

resource b0k by ∆ (instead of increasing the amount of the resource

by ∆), then we can consider that that subproblem (department) has

incurred a “charge” of k . This “charge” worsens its contribution

 70

to the complete problem P-T objective, and accounting for all shared

resources b0k, k=1, m0, the contribution to the objective is

ii

T

i

T

i xAxc 0− where ii xA0 is the amount of shared resources consumed

by the ith subproblem (department).

One may think of these dual variables contained in  as the “prices”

that each subproblem (department) must pay for use of the

corresponding shared resources.

Assuming each subproblem i=1,…,h represents a different

department in the CEO’s organization, the DW-method may be

interpreted in the following way, paraphrased from [2]:

- If each department i worked independently of the others,

then each would simply minimize its part of the objective

function, i.e., i

T

i xc .

- However, the departments are not independent but are

linked by the constraints of using resources shared on a

global level.

- The right-hand sides b0k, k=1,…,m0, are the total amounts of

resources to be distributed among the various departments.

- The DW method consists of having the CEO make each

department pay a unit price, πk, for use of each resource k.

- Thus, the departments react by including the prices of the

resources in its own objective function. In other words,

o Each department will look for new activity levels xi

which minimize ii

T

i

T

i xAxc 0− .

o Each department performs this search by solving the

following problem:

kx

bxA

xAxc

ik

iii

ii

T

i

T

i



=

−

 0

 subject to

 max

i

0

- The departments make proposals of activity levels xi back to

the CEO, and the CEO then determines the optimal weights
k

iy for the proposals by solving problem P-T, getting a new

 71

set of prices  , and the process repeats until all proposals

remain the same.

Reference [2], p. 346, and [46], pp. 349-350, provide good

articulations of the above DW economic interpretation.

12.0 Other ways of addressing uncertainty in planning

Stochastic programming is an elegant mathematical tool for

addressing uncertainty in planning, but it is computationally

burdensome. Other ways include Monte Carlo simulation and robust

optimization.

A few slides presented by engineers from the Midwest ISO are

interesting.

 72

 73

 74

 75

REFERENCES

[1] F. Hillier and G. Lieberman, “Introduction to Operations Research,” 4th

edition, Holden-Day, Oakland California, 1986.

[2] M. Minoux, “Mathematical Programming: Theory and Algorithms,”

Wiley, 1986.

[3] J. Benders, “Partitioning procedures for solving mixed variables

programming problems,” Numerische Mathematics, 4, 238-252, 1962.

[4] A. M. Geoffrion, “Generalized benders decomposition”, Journal of

Optimization Theory and Applications, vol. 10, no. 4, pp. 237–260, Oct. 1972.

[5] S. Zionts, “Linear and Integer Programming,” Prentice-Hall, 1974.

[6] J. Bloom, “Solving an Electricity Generating Capacity Expansion Planning

Problem by Generalized Benders' Decomposition,” Operations Research, Vol.

31, No. 1, January-February 1983.

[7] Y. Li, “Decision making under uncertainty in power system using Benders

decomposition,” PhD Dissertation, Iowa State University, December 2008.

[8] S. Granville, M. V. F. Pereira, G. B. Dantzig, B. Avi-Itzhak, M. Avriel, A.

Monticelli, and L. M. V. G. Pinto, “Mathematical decomposition techniques

for power system”, Tech. Rep. 2473-6, EPRI, 1988.

[9] D. Streiffert, R. Philbrick, and A. Ott, “A mixed integer programming

solution for market clearing and reliability analysis”, Power Engineering

Society General Meeting, 2005. IEEE, pp. 2724–2731 Vol. 3, June 2005.

[10] PJM Interconnection, “On line training materials”,

www.pjm.com/services/training/training.html.

[11] ISO New England, “On line training materials”,

www.isone.com/support/training/courses/index.html.

[12] International Atomic Energy Agency, “EXPANSION PLANNING FOR

ELECTRICAL GENERATING SYSTEMS: A Guidebook,” 1984.

[13] ELECTRIC POWER RESEARCH INSTITUTE, Electric Generation

Expansion Analysis Systems — Vol. 1: Solution Techniques, Computing

Methods, and Results, Rep. EPRI EL-256K1982).

[14] J. Bloom, “Solving an Electricity Generating Capacity Expansion

Planning Problem by Generalized Benders' Decomposition,” Operations

Research, Vol. 31, No. 1, January-February 1983.

[15] J. Bloom and L. Charny, “Long Range Generation Planning With

Limited Energy And Storage Plants, Part I: Production Costing,” IEEE

Transactions on Power Apparatus and Systems, Vol. -PAS-102, No. 9,

September 1983, pp 2861-2870.

http://www.isone.com/support/training/courses/index.html

 76

[16] J. Bloom and M. Caramanis, “Long-Range Generation Planning Using

Generalized Benders' Decomposition: Implementation and Experience,”

Operations Research, Vol. 32, No. 2, March-April, 1984.

[17] J. Bloom, “Long-Range Generation Planning Using Decomposition and

Probabilistic Simulation,” IEEE Transactions on Power Apparatus and

Systems, Vol. PAS-101, No. 4 April 1982.

[18] M. Caramanis, J. Stremel, and L. Charny, “Modeling Generating Unit

Size and Economies of Scale in Capacity Expansion with an Efficient, Real,

Number Representation of Capacity Additions,” IEEE Transactions on Power

Apparatus and Systems, Volume: PAS-103, Issue: 3, 1984, pp. 506 – 515.

[19] S. Siddiqi and M. Baughman,”Value-based transmission planning and the

effects of network models,” IEEE Transactions on Power Systems, Vol. 10,

Issue 4, 1995, pp. 1835 – 1842.

[20] S. McCusker, B. Hobbs,and J. Yuandong, “Distributed utility planning

using probabilistic production costing and generalized benders

decomposition,” IEEE Transactions on Power Systems, Volume: 17 , Issue: 2,

2002 , pp. 497 – 505.

[21] O. Tor, A. Guven, and M. Shahidehpour, “Congestion-Driven

Transmission Planning Considering the Impact of Generator Expansion,”

IEEE Transactions on Power Systems, Volume: 23 , Issue: 2, 2008 , pp. 781 –

789.

[22] S. Binato, M. Pereira, and S. Granville, “A New Benders Decomposition

Approach to Solve Power Transmission Network Design Problems,” IEEE

Transactions on Power Systems, Vol. 16 , Issue 2, 2001, pp. 235 – 240.

[23] R. Romero and A. Monticelli, “A hierarchical decomposition approach

for transmission network expansion planning,” IEEE Transactions on Power

Systems, Volume: 9 , Issue: 1, 1994 , pp. 373 – 380.

[24] www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/stochastic/.

[25] http://users.iems.northwestern.edu/~jrbirge/html/dholmes/StoProIntro.html.

[26] http://people.brunel.ac.uk/~mastjjb/jeb/or/sp.html

[27] http://homepages.cae.wisc.edu/~linderot/classes/ie495/

[28] R. Rocha, “Decomposition algorithms,” chapter 4 in “Petroleum supply

planning: models, reformulations and algorithms,” Ph. D. dissertation,

Pontificia Universidade Catolica do Rio de Janeiro, May, 2010, available at

https://www.maxwell.vrac.puc-rio.br/29077/29077_5.PDF (any of the other

seven chapters available by replacing “5.pdf” with “k.pdf” where k is the

chapter number).

[29] A. Karbowski, “Decomposition and parallelization of linear

programming algorithms,” In: Szewczyk R., Zieliński C., Kaliczyńska M.

http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/stochastic/
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/StoProIntro.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/sp.html
http://homepages.cae.wisc.edu/~linderot/classes/ie495/
https://www.maxwell.vrac.puc-rio.br/29077/29077_5.PDF

 77

(eds) Progress in Automation, Robotics and Measuring Techniques. ICA

2015. Advances in Intelligent Systems and Computing, vol 350. Springer,

Cham. Available at https://link.springer.com/content/pdf/10.1007%2F978-3-

319-15796-2_12.pdf.

[30] Lara C.L., Mallapragada, D., Papageorgiou, D., Venkatesh, A., &

Grossmann I.E., Deterministic Electric Power Infrastructure Planning:

Mixed‐integer Linear Programming Model and Nested Decomposition,

European Journal of Operational Research, Vol. 271, Issue 3, 2018.

[31] “Introducing the barrier optimizer,” Notes on CPLEX Optimizer for z/OS

12.7.0, available at

www.ibm.com/support/knowledgecenter/en/SS9UKU_12.7.0/com.ibm.cplex.

zos.help/CPLEX/UsrMan/topics/cont_optim/barrier/02_barrier_intro.html.

[32] R. Lima, “IBM ILOG CPLEX: What is inside of the box?” presentation

slides, at http://egon.cheme.cmu.edu/ewo/docs/rlima_cplex_ewo_dec2010.pdf

[33] E. Klotz and A. Newman, “Practical guidelines for solving difficult linear

programs,” 2012, available at

https://pdfs.semanticscholar.org/b01f/ad44c20c372fdda95cbfb980c0d37302de

07.pdf.

[34] I. Grossman and B. Tarhan, “Tutorial on Lagrangean Decomposition:

Theory and Applications,” presentation slides, available at

http://egon.cheme.cmu.edu/ewo/docs/EWOLagrangeanGrossmann.pdf.

[35] M. Guignard, “Lagrangean Relaxation,” Sociedad de Estadistica e

Investigacion Operativa, Top (2003) Vol. 11, No. 2, pp. 151-228, available at

https://link.springer.com/article/10.1007/BF02579036.

[36] J. Watson and D. Woodruff, “Progressive hedging innovations for a

class of stochastic mixed-integer resource allocation problems,” Comput

Manag Sci (2011) 8:355-370.

[37] D. Gade, G. Hackebeil, S. Ryan, J. Watson, R. Wets, and D. Woodruff,

“Obtaining lower bounds from the progressive hedging algorithm for

stochastic mixed-integer programs,” available at

www.math.ucdavis.edu/~rjbw/mypage/Stochastic_Optimization_files/GHRW

WW13_lwr_1.pdf.

[38] K. Holmberg, “On the use of valid inequalities in Benders and cross

decomposition,” working paper, revised May 1991 and Jan 1995, available

from JDM.

[39] Tony J. van Roy, “A Cross Decomposition Algorithm for Capacitated

Facility Location,” Operations Research, Vol. 34, No. 1 (Jan. - Feb., 1986),

pp. 145-163, Published by: INFORMS URL: www.jstor.org/stable/170679.

https://link.springer.com/content/pdf/10.1007%2F978-3-319-15796-2_12.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-15796-2_12.pdf
http://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.7.0/com.ibm.cplex.zos.help/CPLEX/UsrMan/topics/cont_optim/barrier/02_barrier_intro.html
http://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.7.0/com.ibm.cplex.zos.help/CPLEX/UsrMan/topics/cont_optim/barrier/02_barrier_intro.html
http://egon.cheme.cmu.edu/ewo/docs/rlima_cplex_ewo_dec2010.pdf
https://pdfs.semanticscholar.org/b01f/ad44c20c372fdda95cbfb980c0d37302de07.pdf
https://pdfs.semanticscholar.org/b01f/ad44c20c372fdda95cbfb980c0d37302de07.pdf
http://egon.cheme.cmu.edu/ewo/docs/EWOLagrangeanGrossmann.pdf
https://link.springer.com/article/10.1007/BF02579036
http://www.math.ucdavis.edu/~rjbw/mypage/Stochastic_Optimization_files/GHRWWW13_lwr_1.pdf
http://www.math.ucdavis.edu/~rjbw/mypage/Stochastic_Optimization_files/GHRWWW13_lwr_1.pdf
http://www.jstor.org/stable/170679

 78

[40] N. Deeb and S. Shahidehpour, “Cross decomposition for multi-area

optimal reactive power planning,” IEEE Transactions on Power Systems, Vol.

8, No. 4, Nov., 1993.

[41] “Unit commitment,” A summary report by CIGRE Task Force 38.01.01,

August, 1998.

[42] T. Das, V. Krishnan, and J. McCalley, “High-Fidelity Dispatch Model of

Storage Technologies for Production Costing Studies,” IEEE Transactions on

Sustainable Energy, Vol. 5, Is 4, 2014, pp. 1242-1252.

[43] C. Nweke, F. Leanez, G. Drayton, and M. Kolhe, “Benefits of

chronological optimization in capacity planning for electricity markets,” IEEE

International Conference on Power System Technology, 2012.

[44] B. Hua, R. Baldick, and J. Wang, “Representing operational flexibility in

generation expansion planning through convex relaxation of unit

commitment,” IEEE Trans. on Power Systems, Vol. 33, No. 2, March, 2018.

[45] Q, Xu, S. Li, and B. Hobbs, “Generation and storage expansion co-

optimization with consideration of unit commitment,” International

Conference on Probabilistic Methods Applied to Power Systems (PMAPS),

2018.

[46] M. Bazaraa, J. Jarvis, and H. Sherali, “Linear Programming and Network

Flows,” second edition, Wiley, 1990.

