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Decomposition Methods 
Preliminary comments 

This set of notes is structured as follows.  

1.0 Introduction 

2.0 Connection with optimization: problem structure 

3.0 Motivation for decomposition: solution speed 

4.0 Benders decomposition 

5.0 Benders simplifications 

6.0 Application of Benders to other problem types 

7.0 Generalized Benders for EGEAS 

8.0 Application of Benders to stochastic programming 

9.0 Two related problem structures 

10.0 A GEP formulation resulting in a DW structure 

11.0 The Dantzig-Wolfe decomposition structure 

12.0 Other ways of addressing uncertainty in planning 

 

We will not have time to cover all sections, and so we make the 

following introductory remarks to help you consider whether you 

want to review the sections we will not cover. 

• You need optimization background to understand decomposition. 

• Decomposition is highly applicable in power system planning 

problems. 

• Sections 1-3 gives a good intuitive introduction to the topic that is 

intended to be fairly easy to follow, independent of background. 

• Section 4 illustrates one decomposition method, Benders, via a 

very simple problem, with intention to show decomposition 

basics from an analytic perspective. 

• Sections 1-4 takes about half of this document. The second half, 

sections 5-12, addresses various issues, some deeply and others 

lightly; those of you considering a research topic in this area will 

do well to carefully read these sections and the references 

provided in them. 

 

 

Updated: 3/25/2021 
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1.0 Introduction 

Consider the XYZ corporation that has 3 departments, each of 

which have a certain function necessary to the overall productivity 

of the corporation. The corporation has capability to make 50 

different products (e.g., power transformers of different voltage 

ratios and different capacities), but at any particular month, it makes 

some of them and does not make others. The CEO decides which 

products to make. The CEO’s decision is an integer decision on each 

of the 50 products. Of course, the CEO’s decision depends, in part, 

on the productivity of the departments and their capability to make a 

profit given the decision of which products to make. 

 

Each department knows its own particular business very well, and 

each has developed sophisticated mathematical programs 

(optimization problems) which provide the best (most profitable) 

way to use their resources given identification of which products to 

make.  

 

The organization works like this. The CEO makes a tentative 

decision on which of the 100 products to make, and when s/he needs 

them, based on his/her own mathematical program which assumes 

certain profits from each department based on that decision. S/he 

then passes that decision to the 3 departments. Each of the 

departments use that information to determine how it is going to 

operate in order to maximize profitability. For example, departments 

learn that the CEO desires: 

• Two 100MVA 69/161 kV units, 

• Four 50MVA 13.8/69 kV units, 

• One 325MVA 230/500 kV unit 

• …etc 

Then, the departments that make windings, cores, bushings, cooling 

systems, etc., make their decisions on how to allocate their resources 

(time and materials) to satisfy at minimum cost what the CEO 

requires. 
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Then each department passes their information (cost of satisfying 

the CEO’s request) back to the CEO. Once the CEO gets all the 

information back from the departments, s/he will observe that some 

departments have very large costs and some have very small costs, 

and that a refined selection of products might be wise. So s/he 

modifies constraints of the CEO-level optimization and re-runs it to 

select the products, likely resulting in a modified choice of products. 

This process of CEO-departmental interactions will repeat. At some 

point, the optimization problem solved by the CEO will not change 

from one iteration to the next. At this point, the CEO will believe 

the current selection of products is best. 

 

This is an example of a multidivisional problem [1, pg. 219]. Such 

problems involve coordinating the decisions of separate divisions, or 

departments, of a large organization, when the divisions operate 

autonomously (but all of which make decisions that depend on the 

CEO’s decisions). Solution of such problems often may be 

facilitated by separating them into a single master problem and 

subproblems where the master corresponds to the problem addressed 

by the CEO and the subproblems correspond to the problems 

addressed by the various departments.  

 

However, the master-subproblem relationship may be otherwise. It 

may also involve decisions on the part of the CEO to control (by 

directly modifying) each department’s resources. By “resources,” 

we mean amount of time and materials, represented by the right-

hand-side of the constraints. Such a scheme is referred to as a 

resource-directed approach. 

 

Alternatively, the master-subproblem relationship may involve 

decisions on the part of the CEO to indirectly modify resources by 

charging each department a price for the amount of resources that 

are used. The CEO then modifies prices, and departments adjust 

accordingly. Such a scheme is called a price-directed approach. 

ASIDE: There are 
many such problems 

where the master 

problem involves 
choice of integer 

variables and 

subproblems 
involve choice of 

continuous 

variables. Such 
problems conform 

to the form of a 

mixed-integer-
programming (MIP) 

problem, which is a 

kind of problem we 
often have interest. 
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Optimization approaches which reflect these types of structures are 

referred to as decomposition methods.  

 

2.0 Connection with optimization: problem structure [2] 

Linear programming optimization problems are like this: 

Minimize f(x)=c1x1+c2x2+…+cnxn 

Subject to  a1x≤b1  

  a2x≤b2    (1) 

  … 

  amx≤bm 

 

We may place all elements ci into a column-vector c, all of the row-

vectors ai into a matrix A, and all elements bi into a column vector b, 

so that our optimization problem is now: 

Minimize cT x 

Subject to  A x ≤ b    (2) 

 

Problems that have special structures in the constraint matrices A are 

typically more amenable to decomposition methods. Almost all of 

these structures involve the constraint matrix A being block-angular. 

A block angular constraint matrix is illustrated in Figure 1. In this 

matrix, the yellow-cross-hatched regions represent sub-matrices that 

contain non-zero elements. The remaining sub-matrices, not yellow-

cross-hatched, contain all zeros. We may think of each yellow-

cross-hatched region as a department. The decision variables x1 are 

important only to department 1; the decision variables x2 are 

important only to department 2; and the decision variables x3 are 

important only to department 3. In this particular structure, we have 

no need of a CEO at all. All departments are completely 

independent! 
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Figure 1: Block-angular structure 

 

In the original description, the CEO choses values for certain 

variables that affect each department (two 100MVA 69/161 kV 

units, four 50MVA 13.8/69 kV units, one 325MVA 230/500 kV 

unit, … etc.). This situation would have different departments linked 

by these variables. For example, one department would know that 

the different transformers have different cooling needs that can be 

satisfied with different numbers and types of fans. Depending on the 

numbers and types selected, the necessary materials and the 

necessary labor hours are different. This department has 20 workers 

whose time can be allocated in various ways among the different 

tasks necessary to build all of the fans; the department may also hire 

more workers if necessary. 

 

The structure of the constraint matrix for this situation is shown in 

Figure 2. The CEO’s decisions are integer decisions on the variables 

contained in x4. Variables in x1 through x3 are decisions that each of 

departments 1-3, respectively, would need to make. 
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Figure 2: Block-angular structure with linking variables 

Alternatively, Figure 3 represents a structure where the decisions 

linked at the CEO level are such that the CEO must watch out for 

the entire organization’s consumption of resources (e.g., money and 

labor hours, constrained by c0). In this case, the departments are still 

independent, i.e., they are concerned only with decisions on 

variables for which no other department is concerned, BUT… the 

CEO is concerned with constraints that span across the variables for 

all departments to consume total resources. And so we refer to this 

structure as block-angular with linking constraints.  
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Figure 3: Block-angular structure with linking constraints 
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3.0 Motivation for decomposition methods: solution speed 

To motivate decomposition methods, we consider introducing 

security constraints to what should be, for power engineers, a 

familiar problem: the optimal power flow (OPF).  

 

The OPF may be posed as problem P0. 

P0  

0),(           

00),(

),(

max
0

0

000

      ..

=

==
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uxfMin
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where hk(xk,u0)=0 represents the power flow equations and 

gk(xk,u0)≤gk
max represents the line-flow constraints. The index k=0 

indicates this problem is posed for only the “normal condition,” i.e., 

the condition with no contingencies. 

 

Denote the number of constraints for this problem as N. 

 

Assumption: Let’s assume that running time T of the algorithm we 

use to solve the above problem is proportional to the square of the 

number of constraints1, i.e., N2. For simplicity, we assume the 

constant of proportionality is 1, so that T=N2. 

 

Now let’s consider the security-constrained OPF (SCOPF). Its 

problem statement is given as problem Pc: 

 
1 This is a very reasonable assumption for linear programs (LPs) because for LPs, the number of constraints 

determines the corner points; it is the number of corner points considered within the solution that determines 

the speed at which the LPs can solve. 
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Notice that there are c contingencies to be addressed in the SCOPF, 

and that there are a complete new set of constraints for each of these 

c contingencies. Each set of contingency-related constraints is 

similar to the original set of constraints (those for problem P0), 

except it corresponds to the system with an element removed, and it 

has a different right-hand-side corresponding to an “emergency” 

flow limit (k=1,…,c) instead of a “normal” flow limit (k=0). 

 

So the SCOPF must deal with the original N constraints, and also 

another set of N constraints for every contingency. Therefore, the 

total number of constraints for Problem PC is N+cN=(c+1)N. 

 

Under our assumption that running time is proportional to the square 

of the number of constraints, then the running time will be 

proportional to [(c+1)N]2=(c+1)2N2=(c+1)2T.  

 

What does this mean?  

It means that the running time of the SCOPF is (c+1)2 times the 

running time of the OPF. So if it takes OPF 1 minute to run, and we 

want to run SCOPF with 100 contingencies, it will take us 1012 

minutes, or 10,201 minutes to run the SCOPF. This is 170 hours, 

about 1 week!!!! 

 

Many systems need to address 1000 contingencies. This would take 

about 2 years! 

 

To address this, we will change the computational procedure of the 

original problem, as indicated in Fig. 4a, to the computational 

procedure illustrated in Fig. 4b. 
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Solve SCOPF 

k=0, 1, 2, …, c  

(normal and all contingency conditions) 

 

0 0 0

0

max
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Figure 4: Solution of full SCOPF 

 

 

Solve OPF 

k=0 

(normal condition) 

Solve OPF 

k=1 

(contingency 1) 

Solve OPF 

k=2 

(contingency 2) 

Solve OPF 

k=3 

(contingency 3) 
… Solve OPF 

k=c 

(contingency c) 

 
Figure 5: Decomposition solution strategy 

 

The solution strategy first solves the k=0 OPF (master problem) and 

then takes contingency 1 and re-solves the OPF, then contingency 2 

and resolves the OPF, and so on (these are subproblems). For any 

contingency-OPFs which require a redispatch (relative to the k=0 

OPF), an appropriate constraint is generated, and at the end of the 

cycle these constraints are gathered and applied to the k=0 OPF. 

Then the k=0 OPF is resolved, and the cycle starts again. Experience 

has it that such an approach usually requires only 2-3 cycles.  

 

Denote the number of cycles as m.  

 

Each of the individual problems has only N constraints and therefore 

requires only T minutes. 

 

There are (c+1) individual problems for every cycle. 

 

There are m cycles. 
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So the amount of running time is m(c+1)T. 

 

If c=100 and m=3, T=1 minute, this approach requires 303 minutes. 

That would be about 5 hours (instead of 1 week).  

 

If c=1000 and m=3, T=1 minute, this approach requires about 50 

hours (instead of 2 years). 

 

What if it takes 10 cycles instead of 3? 

➔If c=1000 and m=10, T=1 minute, this approach requires 167 

hours (1 week, instead of 2 years). 

 

What if it takes 100 cycles instead of 3? 

➔If c=1000 and m=100, T=1 minute, this approach requires 1668 

hours (10 weeks, instead of 2 years). 

 

In addition, this approach is easily parallelizable, i.e., each 

individual OPF problem can be sent to its own CPU. This will save 

even more time. Figure 6 compares computing time for a “toy” 

system. The comparison is between a full SCOPF, a decomposed 

SCOPF (DSCOPF), and a decomposed SCOPF where the individual 

OPF problems have been sent to separate CPUs. 

 
Figure 6 

4.0 Benders decomposition 

J. F. Benders [3] proposed solving a mixed-integer programming 

problem by partitioning the problem into two parts – an integer part 
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and a continuous part. It uses the branch-and-bound method on the 

integer part and linear programming on the continuous part.  

 

The approach is well-characterized by the linking-variable problem 

illustrated in Figure 2 where here the linking variables are the 

integer variables. The figure is repeated here for convenience. 

 

 

 

 

 

  

 

  
x1 

x2 

x3 

≤ 

b1 

b2 

b3 

 

 

 

x4 

 
In the words of A. Geoffrion [4], “J.F. Benders devised a clever 

approach for exploiting the structure of mathematical programming 

problems with complicating variables (variables which, when 

temporarily fixed, render the remaining optimization problem 

considerably more tractable).” 

Note in the below problem statements, all variables except z1 and z2 

can be vectors. The problem can be generally specified as follows: 

integer

0,

..

max

21

211

w

wx

bwAxA

eDw

ts

wcxcz TT



+



+=

 

An example illustrating the matrices of the second constraint might 

be as follows: 
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1 2

2 4 0 0 6

3 2 0 0 1
;    A

0 0 2 1 3

0 0 5 3 1

A

   
   
   = =
   
   
   

 

Thus, the composite matrix would appear as follows, which appears 

as block-angular with the last variable (w, in this case, a scalar) as 

the linking variable: 

12

2 4 0 0 6

3 2 0 0 1

0 0 2 1 3

0 0 5 3 1

A

 
 
 =
 
 
 

 

Define the master problem and primal subproblem as 

integer

0,

..

max

21

211

w

wx

bwAxA

eDw

ts

wcxcz TT



+



+=

➔ 

integer

0

..

max

:

*

221

w

w

eDw

ts

zwcz T





+=

Master

  

0

*

..

max

:

21

12



−

=

x

wAbxA

ts

xcz T

subproblem Primal

 

We make use of duality in what follows. Duality refers to the fact 

that every linear program (LP), referred to as the primal problem, 

has associated with it a dual problem, an equivalent LP, that is 

related to the primal in certain distinct ways, as identified below.  

 

Some comments on duality for linear programs2:  
1. If primal objective is to max (min), then dual objective is to min 

(max). 

2. Number of dual decision variables is number of primal constraints.  

Number of dual constraints is number of primal decision variables. 

3. Coefficients of decision variables in dual objective are right-

hand-sides of primal constraints. 

 
2 If you have not taken IE 534, Linear Programming, I encourage you to do so. It is an excellent course. 
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  
Problem Primal
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

+





+=

xx

xx

x

x

xxF

➔

  
Problem Dual
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4. Coefficients of decision variables in primal objective are right-

hand-sides of dual constraints. 

  
Problem Primal
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➔

  
Problem Dual
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321

0,0,0
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
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5. Coefficients of one variable across multiple primal constraints are 

coefficients of multiple variables in one dual constraint. 

  
Problem Primal
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2

1
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0,0        
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4              s.t.
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P Problem



+




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x

x
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➔

1 2 3

1 2 3

1 2 3

1 2 3

Dual Problem

Problem D

min 4 12 18
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0 3 3

0 2 2 5

0, 0, 0

G   

  

  

  

= + +

+ + 

+ + 

  

 

 
6. If primal constraints are ≤ (≥), dual constraints are ≥ (≤). 

 

Let’s think about what the above comments 1-5 mean for our LP 

“general form” problem statements (1) and (2) on pg. 4, repeated 

here for convenience: 

 

Likewise, coefficients of 

one variable across multiple 

dual constraints are 

coefficients of multiple 

variables in one primal 

constraint. 

 

All of this means that if the 

primal constraint matrix is 

A, the dual constraint 

matrix is AT. 
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Minimize f(x)=c1x1+c2x2+…+cnxn 

Subject to  a1x≤b1  

  a2x≤b2 

  … 

  amx≤bm 

which is equivalent to: 

Minimize cT x 

Subject to  A x ≤ b 

• Comment 2 means that if the primal has n decision variables and 

m constraints, then the dual will have m decision variables and n 

constraints. 

• Comment 3 means that the dual objective will be bTλ. 

• Comment 4 means that the dual constraints will have right-hand 

sides of c.  

• Comment 5 means that the dual constraint matrix will be AT. 

Therefore, the dual problem will be: 

Maximize g(λ)=b1λ1+b2 λ 2+…+bmλm 

Subject to  ac1
T

 λ≥c1  

  ac2
T λ≥c2 

  … 

  acn
T λ≥cn 

where the notation ack
T refers to the transpose of the column (the 

“c”-subscript denotes “column”) k in the matrix A. In compact 

notation, we have: 

Maximize bT λ 

Subject to  AT λ ≥ c 

 

Key to understanding the usefulness of the dual is the strong duality 

property, which says that if x* is the optimal solution to the primal 

and λ* is the optimal solution to the dual, then  

cTx*=bTλ*   (5) 

 

From this, we can write the dual of our primal subproblem.  

The weak duality property says that if x* is a feasible solution to the primal and λ* is a feasible solution to 

the dual, then cTx*≤bTλ*. This assumes the primal is a maximization problem.  

➔This says that the objective of the dual LP is an upper bound on the objective of the primal LP. 

(The sense of the inequality reverses if the primal is a minimization problem, in which case, the objective 

of the dual LP is a lower bound on the objective of the primal LP).  
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0
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
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ts
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Now consider the master problem and dual subproblem together: 

integer

0

..

max

:

*

221

w

w

eDw

ts

zwcz T





+=

Master

 

( )

0

..

*min

:

11

22





−=







cA

ts

wAbz

T

T

subproblem Dual

 

We make 7 comments about how to solve the original problem 

using this master-dual subproblem decomposition. 

1. Interdependence: The master depends on the outcome to the 

subproblem via generated constraints; the subproblem depends on 

the master optimal solution w*. Therefore, the solution to each 

problem depends on the solution obtained in the other problem. 

2. Iterative procedure: We will solve the overall problem by 

iterating between the master and the subproblem. The master will 

be used to generate a solution w*, given a value (or a guess) for 

z2*. Then the subproblem will be used to get a new value of z2* 

and λ* using the solution w* obtained in the master. This will tell 

us one very important thing: if we need to resolve the master, we 

should constrain z2* to be no larger than (b-A2w*)Tλ*, i.e.,  

z2*≤(b-A2w*)Tλ* in order to ensure that we satisfy the last 

solution of the subproblem; this directly reduces the master 

problem objective function and thus, the added constraint is 

called an “optimality constraint”. 

 

My notation generally 

uses z2* in the master 

problem. This is 

misleading. z2* is a 

decision variable in the 

master problem. 

Otherwise, use of the 

“*” notation indicates 

the variable is optimal, 

from either the master 

or the dual. 
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3. Upper bound:  

a. Initial solution: Start the solution procedure by solving the 

master problem with a guess for an upper bound on z2*. Since 

the dual subproblem is going to minimize (lower) z2, let’s be 

safe and guess a large value of the upper bound on z2* for this 

initial master problem solution. Since this value of z2* is 

chosen large, we can be sure that the first solution to the 

master, z1*, will be above the actual (overall problem optimal) 

solution, and so we will consider this solution z1* to be an 

upper bound on the actual solution.  

b. Successive solutions: As the iterations proceed, we will add 

constraints to the master problem (adding constraints never 

improves, or in this case, increases, the optimum), generated 

by the subproblem, so that the master problem solution z1*, 

will continuously decrease towards the actual (overall problem 

optimal) solution. 

Thus, the value of z1*, obtained from the master problem, serves 

as an upper bound on the actual (overall problem optimal) 

solution. 

4. Lower bound: The dual problem results in a new value of z2*, and 

it can then be added to c2
Tw* (where w* was obtained from the 

last master problem solution) to provide another estimate of z1*. 

Since the dual problem minimizes z2, without the master problem 

constraints, the term c2
Tw* (from master) +z2* (from dual) will 

be a lower bound on z1*. 

5. Feasibility: An LP primal may result in its solution being 

optimal, infeasible, or unbounded. These occurrences have 

implications on what can happen in the dual. And the converse is 

true: occurrences in the dual have implications regarding what 

can happen in the primal. Table 1 below summarizes the 

relationships. 
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Table 1: Possible combinations of dual and primal solutions 

 
 

From Table 1, we observe that if the dual problem results in an 

unbounded solution, then it means the primal problem must be 

infeasible (note: an infeasible primal implies an unbounded or 

infeasible dual). In Benders, when we solve the dual and obtain 

unboundedness, it means the primal (which is contained in the 

master problem) is infeasible (and so the master is infeasible), 

and we must resolve the master problem with more restrictive 

constraints on w to force the primal to be feasible. The associated 

constraints on w are called feasibility cuts. 

6. Algorithm: In what follows, we specify Q as the set of constraints 

for the master program. It will change via the addition of 

feasibility and optimality cuts as the algorithm proceeds. Initially, 

Q={wk ≤ large number, for all k, z2*≤M, M large}. 
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Master problem: 

kw

MMz

kQw

ts

zwcz

k

k

T







+=

  integer

large is    ,

  in  as dconstraine   

..

max

*

2

*

221

 

Sub-problem (dual): 

k

cA

ts

wAbz

k

T

T





−=

,0

..

*)(min

11

22







 

There are 3 steps to Benders decomposition. 

1. Solve the master problem using Branch and Bound (or any other 

integer programming method). Designate the solution as w*. 

2. Using the value of w* found in step 1, solve the sub-problem (the 

dual) which gives z2* and λ*. There are two possibilities: 

a.  If the solution is unbounded (implying the primal is 

infeasible), adjoin the most constraining feasibility 

constraint from (b-A2w)Tλ≥0 to Q, and go to step 1. The 

constraint (b-A2w)Tλ≥0 imposes feasibility on the primal 

because it prevents unboundedness in the dual by imposing 

non-negativity on the coefficients of each λk. We illustrate 

this challenging concept in an example below. 

b. Otherwise, designate the solution as λ* and go to step 3. 

3. Compare z1 found in step 1 to * *

2 2

Tc w z+ where w* is found in step 

1; **)(* 22 TwAbz −= is found in step 2.There are two possibilities: 

a. If they are equal (or within ε of each other), then the 

solution (w*, λ*) corresponding to the subproblem dual 

solution, is optimal and the primal variables x* are found as 

the dual variables3 within the subproblem.  

 
3 Dual variables are the coefficients of the objective function in the final iteration of the simplex 

method and are provided with the LP solution by a solver like CPLEX. Here, our use of the word 
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b. If they are not equal, adjoin an optimality constraint to Q 

given by **)(* 22 TwAbz − and go to step 1. 

Step 3 is a check on Benders optimal rule, stated below. 

Figure 7 illustrates the algorithm in block diagram form. 

It is useful to study Figure 7 while referring to the statement of 

Benders optimal rule just above it. 

 

 
Figure 7: Illustration of Benders Decomposition 

 
“dual” refers to what we previously referred to as the primal. The dual variables x must have values 

that result in the two objective functions being equal at the optimum: cTx=(b-A2w*)Tλ*. 
 

Step 1,  

Master Problem 

(gives upper bound): 

max z1=c2
Tw+z2 

st Dw≤e 

w≥0, w integer 

constraints Q 

Step 2, Subproblem: 

(gives lower bound) 

min z2=(b-A2w
*)λ 

st A1
Tλ≥c1 

λ≥0  

w* 

Step 3,  

Benders opt rule 

c2
Tw*+z2*=z1* 

Full problem 

solved 
Adjoin to Q an optimality 

constraint: 

2 2* ( ) *Tz b A w  −  

Solved, 

passes z2* 

Infeasible 

Unbounded 

Full problem 

is unbounded 

or infeasible 

Adjoin to Q the most 

constraining feasibility 

constraint: 

(b-A2w)Tλ≥0 

Passes 

w*,z1* 

? 

YES NO 

Benders optimal rule: If (z1*, w*) is the optimal solution to the master 

problem, and (z2*, λ*) is the optimal solution to dual subproblem, and if  

2

Upper boundLower bound

*

2 2 1

from master from masterz * from subproblem
problem problem

* ( *) *T Tc w b A w z+ − =
, 

then (z1*, w*, λ*) is the optimal solution for the complete problem. 
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We will work an example using the formalized nomenclature of the 

previous summarized steps. But before we do, we introduce the 

optimization solver CPLEX.  

 

 

Brief tutorial for using CPLEX. 

CPLEX version 12.10.0.0 resides on ISU servers. To access it, you 

need to logon to an appropriate server (see 

http://it.engineering.iastate.edu/remote/ for a list of servers with CPLEX). To 

do that, you need a telnet and ftp facility. You can find instructions 

on our course website for getting/using the appropriate telnet & ftp 

facilities (see sec 2 of http://home.eng.iastate.edu/~jdm/ee552/Intro_CPLEX.pdf). 

 

After getting the telnet and ftp facilities set up on your machine, the 

next thing to do is to construct a file containing the problem. To 

construct this file, you can use the program called “notepad” under 

the “accessories” selection of the start button in Windows. Once you 

open notepad, you can immediately save to your local directory 

under the filename “filename.lp.” You can choose “filename” to be 

whatever you want, but you will need the extension “lp.” To obtain 

the extension “lp” when you save, do “save as” and then choose “all 

files.” Otherwise, it will assign the suffix “.txt” to your file. Here is 

what I typed into the file I called “example.lp”… 

maximize  

 12 x1 + 12 x2 

subject to 

 2 x1 + 2 x2 >= 4 

 3 x1 +   x2 >= 3  

x1 >= 0 

x2 >= 0 

end 

Once you get the above file onto a server having access to CPLEX, 

you may simply type 

http://it.engineering.iastate.edu/remote/
http://home.eng.iastate.edu/~jdm/ee552/Intro_CPLEX.pdf


 21 

cplex125 

CPLEX> read example.lp 
CPLEX> primopt 
“Primopt” solves the problem using the primal simplex optimizer. 

“mipopt” solves mixed integer programs using branch & cut. 
More CPLEX info may be found in the tutorial, see above URL.  

Consider the following problem P0 [5]: 

integer                              

,0,,                            

20                                             

1232                           

1232          :subject to

534            max

P

21

21

21

211

0

w

wxx

w

wxx

wxx

wxxz





++

++

++=

 

Clearly P0 is a mixed integer problem. There are two ways to think 

about this problem. 

 

First way: Let’s redefine the objective function as 

21 5 zwz +=  

where 

212 34 xxz +=  

so that problem P1P below is equivalent to problem P0 above: 

integer                        

,0                      

    20      :subject to

    0,                  

3122                  

1232    subject to

  34           max

5            max

P 21

21

21

212

1

1P

w

w

w

xx

wxx

wxx

xxz

wz



























−+

−+

+=

+=
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This way is similar to the way J. Bloom described his two-stage 

generation planning problem in [6], which we summarize at the end 

of these notes. 

 

Second way: Here, we will simply cast the problem into the general 

form outlined in our three-step procedure.  

 

Comparing this problem (right) to our general formulation (left),  

    General Formulation   This problem 

   

integer

0,

..

max

21

211

w

wx

bwAxA

ts

wcxcz TT



+

+=

        

1 1 2

1 2

1 2

0

1 2

max             4 3 5

subject to:          2 3 12

                           2 3 12
P

                                             20

                            , , 0,

           

z x x w

x x w

x x w

w

x x w

= + +

+ + 

+ + 





                   integerw

 

we observe that  









=








=








=

=







=

12

12
  ,

3

1
  ,

12

32

5  ,
3

4

21

21

bAA

cc

 

 

In the next pages, we will go through the first iteration, which is 

colored green and results in a feasibility cut, and the second 

iteration, which is colored grey and results in an optimality cut. 

 

 

 

 

 

 

 



 23 

Step 1: The master problem is  

kw

MMzkwQ

ts

zwcz

k

k

T





+=

  integerand   0

large is    ,   , dconstraine     :

..

max

*

2

*

221

 

or 

integerand  0

  , 20:

..

max

*

2

*

221





+=

w

MzwQ

ts

zwcz T

  ➔ 

integerand   0

  ,20:

..

5max

*

2

*

21





+=

w

MzwQ

ts

zwz

 

The solution to this problem is trivial: since the objective function is 

being maximized, we make w and z2* as large as possible, resulting 

in w*=20, z2*=M, and z1=5*20+M=100+M. 

Step 2: Using the value of w found in the master, get the dual: 

0
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*)(min
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22




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




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Substituting, from step 1, w*=20, the subproblem becomes: 

0,

3

4

13

22

..

48820
3

1
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Because the λk’s are required to be non-negative, all terms in the 

objective function are negative. Noting the λk’s are constrained from 

below by the inequalities, we may make them as large as we like, 

making the objective function infinitely negative, implying the 

objective function is unbounded since we are minimizing.  

This occurs because the coefficients in the objective function 

are negative.  

➔The coefficients in the objective function are negative 

because the master problem yielded a poor choice of w 

(in our case, a value of w that is too large).  

➔The master problem yielded a poor choice of w 

because it was not sufficiently constrained, 

 

We can think of this another way which conforms to Comment #5 

made on feasibility (see pg. 16). We know that unboundedness in a 

dual necessarily implies infeasibility in the primal. In this case, the 

primal is the problem inside the brackets of Problem P1P. To make 

this point clear, substitute w=20 into the primal problem resulting in 

2 1 2

1 2

1 2

1 2

max            4 3   

subject to    2 3 12

                  2 12 3

                  , 0

z x x

x x w

x x w

x x

= +

+  −

+  −



➔ 

2 1 2

1 2

1 2

1 2

max            4 3   

subject to    2 3 8

                  2 48

                  , 0

z x x

x x

x x

x x

= +

+  −

+  −



 

Since the right-hand-sides of the inequality constraints are negative, 

and since the decision variables x1 and x2 require non-negativity, 

then we observe that there is no choice of x1 and x2 that will satisfy 

the inequality constraints. The primal is very definitely infeasible.  

 

If the primal problem, i.e., the problem inside the brackets of P1P, is 

infeasible, then the whole problem P1P is infeasible. 

 

We need to correct this situation, by taking step 2b, which means we 

will add a “feasibility constraint” to the master problem. This 

feasibility constraint is contained in (b-A2w)Tλ≥0, or 
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0
3

1
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
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
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


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
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




T

w
 

or 

0)312()12( 21 −+−  ww  

We now can see clearly regarding why (b-A2w)Tλ≥0 is the constraint 

necessary to ensure feasibility in the primal, and that is because it 

will avoid unboundedness in the dual. To guarantee that 

0)312()12( 21 −+−  ww  

without concern for what values of λk are chosen, we must make 

0)312(,0)12( −− ww  

resulting in 

ww  4,12  

Alternatively, from a primal point of view, the terms (12-w) and 

(12-3w) appear on the right-hand-side of the inequalities. Ensuring 

their non-negativity provides that the primal may be feasible.  

 

Clearly, w must be chosen to satisfy w≤4. This constraint is added to 

Q, and we repeat step 1. 

 

Step 1:  

integer and0

  ,4   ,20:

..

5max

*

2

*

21





+=

w

MzwwQ

ts

zwz

 

The solution is clearly w=4, z2*=M, with z1*=5(4)+M=20+M. 
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Step 2: Using the value of w=4 found in the master, get the dual.  
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Substituting, from step 1, w*=4, the subproblem becomes: 
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We can use CPLEX LP solver (or any other LP solver) to solve the 

above, obtaining the solution λ1*=0, λ2*=3, with objective function 

value z2*=0. Intuitively, one observes that minimization of the 

objective subject to nonnegativity constraint on λ1 requires λ1=0; 

then λ2 can be anything as long as it satisfies  

  
3

242

2

22








 

Therefore an optimal solution is λ1*=0, λ2*=3. (Although this is a 

solution, it is a special kind of solution referred to as degenerate 

because there are many values of λ2 that are equally good solutions.) 

Since we have a bounded dual solution (and therefore optimal), our 

primal is feasible, and we may proceed to step 3 to test for 

optimality using Benders optimal rule. 
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Step 3: Compare z1* found in step 1 to ** 22 zwcT +  where 

**)(* 22 TwAbz −=  is found in step 2. 

 

In step 1, solution of the master problem resulted in z1*=20+M.  

 

In step 2, solution of the subproblem resulted in z2*=0. 

In both problems, c2=5, and we found (master) or used (sub) w*=4. 

Benders optimal rule is     
problem

master from

*

1

?

subproblem from *z

2

problem
master from

2    **)(*

2

zwAbwc TT =−+    
 

Substitution yields:         
  

problem
master from

?

subproblem from *z
problem

master from

20      045
2

M+=+•
 

The fact that they are not equal indicates that our solution is not 

optimal, since it does not satisfy Benders optimal rule. These two 

problems, the master and the subproblem, are really part of a single 

problem, and therefore for the single problem to be solved, the 

solutions to the master and subproblems must be consistent. That is, 

when we maximize z1= ** 22 zwcT +  in the master, resulting in a 

value of z2*, we need to find this value of z2* to be the same as the 

solution that the subproblem gives for z2*. If we do that (since c2w* 

is the same for both), the objective function from the master 

problem, z1*, will be the same as the sum of {c2
Tw*+z2*} where z2* 

is the objective function from the subproblem. 

 

If we find that z2* differs in the master and subproblem, as we have 

found here, then we impose a constraint in the master based on the 

answer obtained in the subproblem. The fact that this constraint is 

imposed to satisfy Benders optimal rule means it is imposed to 

obtain optimality; this makes it an optimality constraint, or in the 

language of Benders, an optimality cut. 

 

We may think of 

the left-hand-side 

as the augmented 

subproblem 

objective, and the 

right-hand-side as 

the master prob 

objective. We are 

asking whether 

these two are 

consistent. 

Alternatively, we 

are asking if z2* 

found in the 

master problem is 

the same as the 

objective 

subproblem 

objective. 
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We obtain the optimality cut from 2 2* ( ) *Tz b A w  − . With  
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Now we return to step 1, but before we do, we distinguish between a 

feasibility cut and an optimality cut: 

• Feasibility cut: Takes place as a result of finding an unbounded 

dual subproblem, which, by Table 1, implies an infeasible primal 

subproblem. It means that for the value of w found in the 

master problem, there is no possible solution in the primal 

subproblem. We address this by adding a feasibility cut (a 

constraint on w) to the master problem, where that cut is obtained 

from dual subproblem to avoid its unboundedness, or, 

alternatively, to avoid the primal subproblem infeasibility. 

(b-A2w)Tλ≥0. 

• Optimality cut: Takes place as a result of finding that Benders 

optimal rule is not satisfied, i.e., that  

 of instead  **)(*

problem
master from

*
1

subproblem from *z

2

problem
master from

2

2

zwAbwc TT −+    
 



problem
master from

*
1

subproblem from *z

2

problem
master from

2

2

**)(* zwAbwc TT =−+    
 

It means that the value of z2* computed in the master problem 

(and contained in z1*) is larger than the value of z2* computed in 

the subproblem. This must be the case (when Benders optimal 

rule is not satisfied) since z1* is always an upper bound for the 

solution (see comment 3 regarding “Upper bounds” on pg. 16). 

We address this by adding an optimality cut (a constraint on z2* 

in terms of w) to the master problem, to force z2* in the master 

problem to be smaller, where that cut is obtained from Benders 

optimal rule reflecting the maximum which the subproblem 

allows for z2*. The optimality cut is: 

*)(* 22 TwAbz −  
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Observe that 2( )Tb A w−  plays a crucial role in generating both 

feasibility and optimality cuts. Through this term,  

• the feasibility cut, obtained when the dual subproblem is 

unbounded, imposes additional constraints to limit w; 

• the optimality cut, obtained when Benders optimal rule is not 

satisfied, imposes additional constraints to limit z2
* in terms of w.  

 

One last comment is necessary here before we proceed with solving 

the example. It is also possible that we may find an infeasible 

subproblem, as shown in Figure 7. Reference to Table 1 indicates 

that an infeasible dual implies the primal may be either unbounded 

or infeasible.  

 

If the primal is infeasible, then the situation may at first appear 

similar to our step 2 situation generated by an unbounded dual, 

where we were able to avoid the dual unboundedness (and thus the 

primal infeasibility) by restricting w to impose non-negativity on the 

dual objective coefficients. In other words (focusing on the dual): 

• In the case of an unbounded dual, a dual feasible space exists and 

modifying the dual objective function (by restricting w) can avoid 

the unboundedness.  

• But in the case of an infeasible dual, however, there is no feasible 

space, and modifying w only affects the dual objective function 

coefficients (the dual constraints are independent of w).  The dual 

space remains infeasible no matter what we do to w, and thus the 

primal remains either infeasible or unbounded, and so the original 

problem P1P also remains either infeasible or unbounded. 

 

Step 1: Adjoin the optimality cut to Q, resulting in the following 

master problem: 

( )
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This all-integer program can be solved using a branch and bound 

algorithm (both CPLEX and Matlab have one), but the solution can 

be identified using enumeration, since w can only be 0, 1, 2, 3, or 4. 

For example, letting w=0, we have 

( )
  36 M,z     :     :subject to

   z            max
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21
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The solution is recognized immediately, as z2*=36, z1*=36. 

 

Likewise, letting w=1, we have 

( )
27 M,z    :     :subject to

   z5            max
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The solution is recognized immediately, as z2*=27, z1*=32. 

 

Continuing on, we find the complete set of solutions are 

w=0, z2*=36, z1=36 

w=2, z2*=27, z1=32 

w=2, z2*=18, z1=28 

w=3, z2*=9, z1=24 

w=4, z2*=0, z1=20 

Since the first one results in maximizing z1, our solution is  

w*=0, z2*=36, z1*=36. 

 

Step 2: Using the value of w found in the master, get the dual: 
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Substituting, from step 1, w*=0, the subproblem becomes: 



 31 

0,

3

4

13

22

..

12120
3

1

12

12
min

21

2

1

21

2

1

2





























+=




























−








=












ts

z

T

 

We can use CPLEX LP solver (or any other LP solver) to solve the 

above, obtaining the solution λ1*=2, λ2*=0, with objective function 

value z2*=24. Since we have a bounded dual solution, our primal is 

feasible, and we may proceed to step 3.  

Step 3: Compare z1 found in step 1 to ** 22 zwcT +  where 

**)(* 22 TwAbz −=  is found in step 2. 

 

In step 1, solution of the master problem resulted in z1*=36  

 

In step 2, solution of the subproblem resulted in z2*=24. 

In both problems, c2=5, and we found (master) or used (sub) w*=0. 

 

Benders optimal rule is     
problem

master from

*

1

?

subproblem from *z

2

problem
master from

2    **)(*

2

zwAbwc TT =−+    
 

Substitution yields:         
  
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master from

?

subproblem from *z
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master from

36      2405
2

=+•
 

 

Benders optimal rule is not satisfied, we need to obtain the 

optimality cut from *)(* 22 TwAbz − . With  
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Now we return to step 1. 

 

Step 1: Adjoin the optimality cut to Q, resulting in the following 

master problem: 

( )

integer     ,0                      

224  ,936 M,z  ,4  ,20   :    :subject to

   z5            max

*

2
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2

*

2
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21

ww

wzwzww Q

wz



−−

+=

This all-integer program can be solved using a branch and bound 

algorithm (both CPLEX and Matlab have one), but the solution can 

be identified using enumeration, since w can only be 0, 1, 2, 3, or 4. 

For example, letting w=0, we have 

( )
 24  ,36 M,z     :     :subject to

   z            max

*

2

*

2

*

2

*

21



=

zzQ

z
 

The solution is recognized immediately, as z2*=24, z1*=24. 

 

Likewise, letting w=1, we have 

( )
22  ,27 M,z    :     :subject to

   z5            max

*

2

*

2

*

2

*

21



+=

zzQ

z
 

The solution is recognized immediately, as z2*=22, z1*=27. 

 

Continuing on, we find the complete set of solutions is: 

w=0, z2*=24, z1=24 

w=1, z2*=22, z1=27 

w=2, z2*=18, z1=28 

w=3, z2*=9, z1=24 

w=4, z2*=0, z1=20 

And so the third one results in maximizing z1, so our solution is  

w*=2, z2*=18, z1*=28. 

 

Step 2: Using the value of w found in the master, get the dual: 



 33 

0

..

*)(min

11

22





−=







cA

ts

wAbz

T

T

 ➔ 

0,

3

4

13

22

..

*
3

1

12

12
min

21

2

1

2

1

2


























































−








=











ts

wz

T

 

Substituting, from step 1, w*=2, the subproblem becomes: 
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We can use CPLEX LP solver (or any other LP solver) to solve the 

above, obtaining the solution λ1*=0.5, λ2*=1.5, with objective 

function value z2*=14. Since we have a bounded dual solution, our 

primal is feasible, and we may proceed to step 3. 

 

Step 3: Compare z1 found in step 1 to ** 22 zwcT +  where 

**)(* 22 TwAbz −=  is found in step 2. 

 

In step 1, solution of the master problem resulted in z1*=28  

 

In step 2, solution of the subproblem resulted in z2*=14. 

In both problems, c2=5, and we found (master) or used (sub) w*=2. 

 

Benders optimal rule is     
problem

master from

*

1

?

subproblem from *z

2

problem
master from

2    **)(*

2

zwAbwc TT =−+    
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Substitution yields:         
  

problem
master from

?

subproblem from *z
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master from

28      1425
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Benders optimal rule is not satisfied, we need to obtain the 

optimality cut from *)(* 22 TwAbz − . With  
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Now we return to step 1. 

 

Step 1: Adjoin the optimality cut to Q, resulting in the following 

master problem: 

( )

integer     ,0                      

524  ,224  ,936 M,z  ,4  ,20   :    :subject to

   z5            max
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This all-integer program can be solved using a branch and bound 

algorithm (both CPLEX and Matlab have one), but the solution can 

be identified using enumeration, since w can only be 0, 1, 2, 3, or 4. 

 

Enumerating the solutions to this problem results in 

w=0: z2*=24, z1*=24 

w=1: z2*=19, z1*=24 

w=2: z2*=14, z1*=24 

w=3: z2*=9, z1*=24 

w=4: z2*=0, z1*=20 

We see that w=0, 1, 2, and 3 are equally good solutions  

 

Steps 2 and 3: for each of these solutions, using the value of w 

found in the master, get the dual. Then check Benders rule. The 

general form of the dual is below. 
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Benders optimal rule is 
problem

master from

*

1

?

subproblem from *z

2

problem
master from
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2
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w*=0, the subproblem becomes: 
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Solution from CPLEX is λ1=2, λ2=0, with objective function value 

z2*=24. 

Benders rule:         
  

problem
master from

?

subproblem from *z
problem

master from

24      2405
2

=+•
 

This solution is optimal. Dual variables obtained from CPLEX are 

x1=6, x2=0. (These variables are dual variables in the dual problem, 

therefore they are the variables in our original primal problem). 
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w*=1, the subproblem becomes: 
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Solution from CPLEX is λ1=0.5, λ2=1.5, with objective function 

value z2*=19. 

Benders rule:         
  

problem
master from

?

subproblem from *z
problem

master from
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This solution is optimal. Dual variables obtained from CPLEX are 

x1=4, x2=1. 

 

w*=2, the subproblem becomes: 
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Solution from CPLEX is λ1=0.5, λ2=1.5, with objective function 

value z2*=14. 

Benders rule:         
  

problem
master from

?

subproblem from *z
problem

master from

24      1425
2

=+•
 

This solution is optimal. Dual variables obtained from CPLEX are 

x1=2, x2=2. 
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w*=3, the subproblem becomes: 
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Solution from CPLEX is λ1=0, λ2=3, with objective function value 

z2*=9. 

Benders rule:         
  

problem
master from

?

subproblem from *z
problem

master from

24      935
2

=+•
 

This solution is optimal. Dual variables obtained from CPLEX are 

x1=0, x2=3. 

Problem summary:  

 

Recall our original problem: 

integer                              

,0,,                            

20                                             

1232                           

1232          :subject to

534            max

P
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21

21
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0

w

wxx

w
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wxx
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



++

++

++=

 

Optimal solutions to this problem result in an objective function 

value of z1=24 and are: 

• w=0, x1=6, x2=0 

• w=1, x1=4, x2=1 

• w=2, x1=2, x2=2 

• w=3, x1=0, x2=3 
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Some comments about this problem: 

1. It is coincidence that the values of x1 and x2 for the optimal 

solution also turn out to be integers. 

2. The fact that there are multiple solutions is typical of MIP 

problems. MIP problems are non-convex. 

 

5.0 Benders simplifications 

In the previous section, we studied problems having the following 

structure: 
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and we defined the master problem and primal subproblem as 
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max
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subproblem Primal

 

However, what if our original problem appears as below, which is 

the same as the original problem except that it does not contain an 

“x” in the objective function, although the “x” still remains in one of 

the constraints.  
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In this case, the master problem and the primal subproblem become: 
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One sees clearly here that the primal subproblem has no z2 to 

maximize! One way to address this issue is to introduce a vector of 

non-negative slack variables s having one element for each 

constraint. We will minimize the sum of these slack variables, so 

that a non-zero value of this sum indicates the subproblem is 

infeasible. That is, we replace our primal subproblem with a 

feasibility check subproblem, as follows: 
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max
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w
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ts
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ts
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Here, Ones is a column vector of 1’s, so that v=OnesTs is the 

summation of all elements in the column vector s. When v=0, each 
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constraint in A1x-s≤b-A2w* is satisfied so that A1x≤b-A2w*, which 

means the constraints to the original problem are in fact satisfied.  

 

In this case, one observes that if v=0, then the problem is solved 

since Benders optimality rule will always be satisfied. 


problem

master from

*

1

subproblem from *z

2

problem
master from

2

2

**)(* zwAbwc TT =−+    
 

Here, z2 is always zero, and the other two terms come from the 

master problem, therefore if the problem is feasible, it is optimal, 

and no step 3 is necessary.  

 

One question does arise, however, and that is what should be the 

feasibility cuts returned to the master problem if the feasibility 

check subproblem results in v>0? The answer to this is stated in [7] 

and shown in [8] to be  

v + λ A2(w* − w) < 0 

 

This kind of problem is actually very common. Figure 5, using a 

SCOPF to motivate decomposition methods for enhancing 

computational efficiency, is of this type. This is very similar to the 

so-called simultaneous feasibility test (SFT) of industry. 

 

The SFT (Simultaneous Feasibility Test) is widely used in SCED 

and SCUC [9, 10, 11]. SFT is a contingency analysis process. The 

objective of SFT is to determine violations in all post-contingency 

states and to produce generic constraints to feed into economic 

dispatch or unit commitment, where a generic constraint is a 

transmission constraint formulated using linear sensitivity 

coefficients/factors. 

 

The ED or UC is first solved without considering network 

constraints and security constraints. The results are sent to perform 

the security assessment in a typical power flow. If there is an 
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existing violation, the new constraints are generated using the 

sensitivity coefficients/ factors and are added to the original problem 

to solve repetitively until no violation exists. The common flowchart 

is shown in Figure 8. 

 
Figure 8 

This section has focused on the very common case where the 

general Benders approach degenerates to a feasibility test problem 

only, i.e., the optimality test does not need to be done. There are at 

least two other “degenerate” forms of Benders: 

• No feasibility problem: In some situations, the optimality 

problem will be always feasible, and so the feasibility problem is 

unnecessary. 

• Dual-role feasibility and optimality problem: In some 

applications, the feasibility and optimality problem can be the 

same problem. 

 

Reference [7] provides examples of these degenerate forms of 

Benders decomposition.  

 

6.0 Application of Benders to other Problem Types  

 

This section is best communicated by quoting from Geoffrion [4] 

(highlight added), considered the originator of Generalized Benders. 

 

ED, UC, or FTR 

SFT 

Violated? 

Finish 

Generic 

Constraints 
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“J.F. Benders devised a clever approach for exploiting the structure 

of mathematical programming problems with complicating variables 

(variables which, when temporarily fixed, render the remaining 

optimization problem considerably more tractable). For the class of 

problems specifically considered by Benders, fixing the values of 

the complicating variables reduces the given problem to an ordinary 

linear program, parameterized, of course, by the value of the 

complicating variables vector. The algorithm he proposed for 

finding the optimal value of this vector employs a cutting-plane 

approach for building up adequate representations of (i) the extremal 

value of the linear program as a function of the parameterizing 

vector and (ii) the set of values of the parameterizing vector for 

which the linear program is feasible. Linear programming duality 

theory was employed to derive the natural families of cuts 

characterizing these representations, and the parameterized linear 

program itself is used to generate what are usually deepest cuts for 

building up the representations.  

In this paper, Benders' approach is generalized to a broader class of 

programs in which the parametrized subproblem need no longer be a 

linear program. Nonlinear convex duality theory is employed to 

derive the natural families of cuts corresponding to those in Benders' 

case. The conditions under which such a generalization is possible 

and appropriate are examined in detail.” 

 

The spirit of the above quotations is captured by the below modified 

formulation of our problem. 

The problem can be generally specified as follows: 
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Define the master problem and primal subproblem as 
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The Benders process must be generalized to solve the above 

problem since the subproblem is a nonlinear program (NLP) rather 

than a linear program (LP). Geoffrion shows how to do this [4]. 

 

In the above problem, w is integer, the master is therefore a linear 

integer program (LIP); the complete problem is therefore an integer 

NLP. If Benders can solve this problem, then it will also solve the 

problem when w is continuous, so that the master is LP and 

subproblem is NLP. If this is the case, then Benders will also solve 

the problem where both master and subproblem are LP, which is a 

very common approach to solving very-large-scale linear programs. 

Table 2 summarizes the various problems Benders is known to be 

able to solve. 

 

 

 

 

 

Table 2 

 Master 

ILP LP 

Subproblem 
LP √ √ 

NLP √ √ 

 

One might ask whether Benders can handle a nonlinear integer 

program in the master, but it is generally unnecessary to do so since 

such problems can usually be decomposed to an ILP master with a 

NLP subproblem. 
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7.0 Generalized Benders for EGEAS 

 

The description of EGEAS provided here is adapted from [12]. 

 

The EGEAS computer model was developed by researchers at MIT 

under funding from the Electric Power Research Institute (EPRI). 

EGEAS can be run in both the expansion optimization and the 

production simulation modes. Uncertainty analysis, based on 

automatic sensitivity analysis and data collapsing via description of 

function estimation, is also available. A complete description of the 

model can be found in [13]. 

 

The production simulation option consists of production 

cost/reliability evaluation for a specified generating system 

configuration during one or more years. Probabilistic production 

cost/reliability simulation is performed using a load duration curve 

based model. Customer load and generating unit availability are 

modeled as random variables to reflect demand fluctuations and 

generation forced outages. Two algorithmic implementations are 

available: an analytic representation of the load duration curve 

(cumulants) and a piecewise linear numerical representation. 

 

EGEAS has three main solution options: Screening curves, dynamic 

programming, and generalized Benders (GB) decomposition. We 

discuss here the latter.  

 

GB is a non-linear optimization technique incorporating detailed 

probabilistic production costing.  

• It is based on an iterative interaction of a simplex algorithm 

master problem with a probabilistic production costing 

simulation subproblem.  

• After a sufficient number of iterations, non-linear production 

costs and reliability relationship are approximated with as 

small an error bound as desired by the user.  
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• It is computationally more efficient than the dynamic 

programming EGEAS option but produces optimal expansion 

plans consisting of fractional unit capacity additions.  

• It resolves correctly among planning alternative unit sizes, and 

it models multiple units correctly in terms of expected energy 

generated and reliability impacts.  

• System reliability constraints are modeled according to the 

probabilistic criterion of expected unserved energy.  

• It is suitable for analyses involving thermal, limited energy and 

storage units, non-dispatchable technology generation, and 

certain load management activities.  

• A unique capability of the GB option is the estimation of 

incremental costs to the utility associated with meeting 

allowed unserved energy reliability targets. This capability 

replaces reliability constraints by an incremental cost of 

unserved energy to consumers.  

• Finally, the GB option has not been developed in its present 

form to model interconnections or subyearly period production 

costing/reliability considerations.  

• End effects are handled by an extension period model. 

 

The formulation of the GB generating capacity expansion planning 

problem in EGEAS follows, adapted from [14]. 
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• X = vector of plant capacities, Xj Megawatts (MW) (decision 

variable); 

• j = unique index for each plant;  

• C = vector of plant present-value capacity costs, Cj $/MW;  

• Yt = vector of plant utilization levels in period t, Yit MW 

(decision variable);  

• i= merit order position of plant in period t;  

• EFt(Yt) = present-value expected operating cost function in 

period t;  

• EGt(Yt) = expected unserved energy function in period t; 

• εt = desired reliability level in period t, measured in expected 

MWhr of demand not served;  

• δt = matrix which selects and sorts plants, indexed by j, into merit 

order, indexed by i, in period t;  

• T = number of periods (years) in planning horizon. 

 

In this formulation it is assumed that the capacities of all plants are 

decision variables in order to simplify the notation; however, 

existing plants of given capacity can be incorporated.  

 

The objective function (1) consists of two components, the capacity 

costs of the plants and the expected operating costs of the system 

over the planning horizon.  

 

The constraint (2) represents the reliability standard of the system.  

 

The constraint (3) requires that no plant be operated over its 

capacity.  
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Associated with this capacity planning problem there is, for each 

period t in the planning horizon, an operating subproblem which 

results from fixing the plant capacities X at trial values.  

 

There is one such subproblem for each period t in the planning 

horizon; the load duration functions, the operating cost coefficients, 

and the merit order all depend on the period. The index t has been 

suppressed below for clarity of notation.  

 

The general subproblem has the following form: 

 
• i = index of plant in merit order;  

• I= number of plants;  

• Yi = utilization level of ith plant, MW (decision variable) 

(component of vector Y);  

• Xi capacity of ith plant, MW (regarded as fixed in the operating 

problem) (component of the vector δtX);  

• Fi = operating cost of ith plant, $/MWhr;  

• pi = 1 - qi= availability of ith plant; qi = FOR of ith plant; 

• Gi = equivalent load duration function faced by ith plant;  

• Ui = cumulative utilization of first i plants in merit order (Ui-1 is 

the loading point of the ith plant). 

 

The plant loading points are defined by 
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Equation (4) is a sum over each units production cost, where 

individual unit production cost was designated in the course notes 

on production costing as Cj(Ej)=bjEj, where Ej is 

 dFTAE

j

j

e

x

x

j

Djj 
−

−=

1

)()1(

 

and 
)1( −j

De
F  is the equivalent load duration curve seen by the jth unit, 

and 
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1

1
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state the same thing as eq. (7). 

 

This model assumes linearity of the capacity costs with size and of 

the operating costs with output. In reality, capacity costs for 

constructing power plants generally exhibit economies of scale and 

plant operations have decreasing marginal costs at low output levels 

and increasing marginal costs as output approaches capacity.  

 

The capacity expansion planning problem (1)-(3) can be written in 

equivalent form as a two-stage optimization 

 
where the optimization within the inner brackets is just the operating 

subproblem (4)-(6). The set Ω consists of all capacity vectors X 

which allow a feasible solution in each of the subproblems. 

 

In addition to [14], Bloom published a number of other papers 

addressing his work on applying Benders decomposition to the 

expansion planning problem. These include  
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• Reference [15]: This paper describes methods of including power 

plants with limited energy (e.g., hydro) and storage plants in the 

production costing convolution algorithm we have studied, for 

use in a Benders decomposition formulation of the expansion 

planning problem where the production costing problem is the 

subproblem, and there is one for each period of the planning 

horizon. 

• Reference [16]:  

• Reference [17]: 

In addition to the work reported on using Benders in EGEAS, there 

are many other works related to application of Benders 

decomposition to electric power planning problems. A representative 

sample of them include [18, 19, 20, 21, 22, 23,… ]. 

 

8.0 Application of Benders to Stochastic Programming 

 

For good, but brief overviews of Stochastic Programming, see [24] 

and [25].  

 

In our example problem, we considered only a single subproblem, as 

shown below. 

integer

0,

..

max
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bwAxA

eDw

ts
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To prepare for our generalization, we rewrite the above in a slightly 

different form, using slightly different notation: 
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integer
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Now we are in position to extend our problem statement so that it 

includes more than a single subproblem, as indicated in the structure 

provided below. 
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In this case, the master problem is 

0
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where zi provide values of the maximization subproblems given by: 
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Note that the constraint matrix for the complete problem appears as: 
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The constraint matrix shown above, if one only considers D, B1, and 

A1, has an L-shape, as indicated below. 
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Consequently, methods to solve these kinds of problems, when they 

are formulated as stochastic programs, are called L-shaped methods.  

 

But what is, exactly, a stochastic program [24]?  

• A stochastic program is an optimization approach to solving 

decision problems under uncertainty where we make some 

choices for “now” (the current period) represented by w, in order 

to minimize our present costs. 

• After making these choices, event i happens, so that we take 

recourse4, represented by xi, in order to minimize our costs under 

each event i that could occur in the next period. 
 

4 Recourse is the act of turning or applying to a person or thing for aid. 
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• Our decision must be made a-priori, however, and so we do not 

know which event will take place, but we do know that each 

event i will have probability pi. 

• Our goal, then, is to minimize the cost of the decision for “now” 

(the current period) plus the expected cost of the later recourse 

decisions (made in the next period). 

 

An application of this problem for power systems is the security-

constrained optimal power flow (SCOPF) with corrective action. 

• In this problem, we dispatch generation to minimize costs for the 

network topology that exists in this 15 minute period. Each unit 

generation level is a choice, and the complete decision is captured 

by the vector w. The dispatch costs are represented by cTw. 

• These “normal” conditions are constrained by the power flow 

equations and by the branch flow and unit constraints, all of 

which are captured by Dw≤e.  

• Any one of i=1,…,n contingencies may occur in the next 15 

minute period. Given that we are operating at w during this 

period, each contingency i requires that we take corrective action 

(modify the dispatch, drop load, or reconfigure the network) 

specified by xi.  

• The cost of the corrective action for contingency i is di
Txi, so that 

the expected costs over all possible contingencies is Σpidi
Txi. 

• Each contingency scenario is constrained by the post-contingency 

power flow equations, and by the branch flow and unit 

constraints, represented by Biw+Aixi≤bi. The dependency on w 

(the pre-contingency dispatch) occurs as a result of unit ramp rate 

limitations, to constrain each unit’s redispatch to an amount that 

can be achieved within a given time frame, i.e., for each unit, the 

vector w would contain P0 (pre-contingency dispatch), the vector 

x would contain ∆P+ (increases) and ∆P- (decreases), so that the 

equations 

P0 + ∆P+ ≤ b+,  -P0 + ∆P- ≤ b- 

would be represented in Biw+Aixi≤bi. 
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A 2-stage recourse problem is formulated below: 
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where pi is the (scalar) probability of event i, and di is the vector of 

costs associated with taking recourse action xi. Each constraint 

equation Biw+Aixi≤bi limits the recourse actions that can be taken in 

response to event i, and depends on the decisions w made for the 

current period. 

 

Formulation of this problem for solution by Benders (the L-shaped 

method) results in the master problem as 
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where zi is minimized in the subproblem given by: 
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Note that the first-period decision, w, does not depend on which 

second-period scenario actually occurs (but does depend on a 
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probabilistic weighting of the various possible futures). This is 

called the non-anticipativity property. The future is uncertain and so 

today's decision cannot take advantage of knowledge of the future. 

 

Recourse models can be extended to handle multistage problems,  

• where a decision is made “now” (in the current period),  

• we wait for some uncertainty to be resolved,  

• and then we make another decision based on what happened.  

The objective is to minimize the expected costs of all decisions 

taken. This problem can be appropriately thought of as the coverage 

of a decision tree, as shown in Fig. 7, where each “level” of the tree 

corresponds to another stochastic program. 

 
Fig. 7 
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Multistage stochastic programs have been applied to handle 

uncertainty in planning problems before. This is a reasonable 

approach; however, one should be aware that computational 

requirements increase with number of time periods and number of 

scenarios (contingencies in our example) per time period. Reference 

[26] by J. Beasley provides a good but brief overview of multistage 

stochastic programming. Reference [27], notes for an entire course, 

provides a comprehensive treatment of stochastic programming 

including material on multistage stochastic programming. Dr. Sarah 

Ryan of ISU’s IMSE department teaches a course on this topic, 

described below. 
I E 633X. Stochastic Programming. (3-0) Cr. 3. S. Prereq: I E 513 or STAT 447, I E 534 
or equivalent. Mathematical programming with uncertain parameters; modeling risk 
within optimization; multi-stage recourse and probabilistically constrained modes; 
solution and approximation algorithms including dual decomposition and 
progressive hedging; and applications to planning, allocation and design problems. 

 

9.0 Two related problem structures 

We found the general form of the stochastic program to be 
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so that the constraint matrix appears as 
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If we move the w vector to the bottom of the decision vector, the 

constraint matrix appears as 
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Notice that this is the structure that we introduced in Fig. 3 at the 

beginning of these notes, repeated here for convenience. We 

referred to this structure as “block angular with linking variables.” 

Now we will call it the Benders structure.  

 

 

 

 

 

  

 

  
x1 

x2 

x3 

≤ 

b1 

b2 

b3 

 

 

 

x4 

 
Fig. 3 

 

This means that coupling exists between what would otherwise be 

independent optimization problems, and that coupling occurs via the 

variables, in this case w.  
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For example, in the SCOPF with corrective action, the almost-

independent optimization problems are the n optimization problems 

related to the n contingencies. The dependency occurs via the 

dispatch determined for the existing (no-contingency) condition. 

 

The first example at the beginning of these notes shows this 

structure. In this example, the CEO decided which of 100 products 

would be made by the company, and then each department has to 

optimize its resources accordingly. The CEO’s decisions are 1-0 

decisions on the 100 variables contained in x4.  The variables in x1 

through x3 would be the decisions that each of departments 1-3 

would need to make. 

 

Recall from our discussion of duality that one way that primal and 

dual problems are related is that  

- coefficients of one variable across multiple primal constraints  

- are coefficients of multiple variables in one dual constraint,  

as illustrated below. 
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This can be more succinctly stated by saying that the dual constraint 

matrix is the transpose of the primal constraint matrix. You should 

be able to see, then, that the structure of the dual problem to a 

problem with the Benders structure looks like Fig. 2, repeated here 

for convenience. 



 58 

 

 

 

 

 

  

 

  λ1 

λ2 

λ3 

 

≤ 

c1 

c2 

c3 

c0 

 
Fig. 2 

This structure differs from that of the Benders structure (where the 

subproblems were linked by variables) in that now, the subproblems 

are linked by constraints. This problem is actually solved most 

effectively by another algorithm called Dantzig-Wolfe (DW) 

decomposition. We refer to the above structure as the DW structure. 

It is illustrated in the next section using a GEP problem. 

 

10.0 A GEP formulation resulting in a DW structure 

Consider the following network for which a generation expansion 

planning (GEP) problem will be solved.  

 
Fig. 8 

 

This GEP problem has the following features: 

1. There are four buses, buses 1 and 2 have only generation, and 

buses 3 and 4 have only load. 

2. There are two periods, t=1, 2. 

Bus 1 Bus 2 Bus 3 Bus 4 

Line 1 Line 2 Line 3 

p2 p1 

d3 d4 
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3. There are two existing generating units, k=1, 2, having 

capacities at time t=0 of C10 and C20, respectively.  

4. Expansion can only occur at the two generation units, in either 

periods 1 or 2. Thus, the decision variables for investment are 

xkt and represent the additional capacity added to unit k at time 

t. The specific investment-related decision variables are then 

x11, x21, x12, and x22.  

5. The operation-related decision variables are the generation 

levels at each unit k at time t, pkt. The specific generation level 

variables are then p11, p21, p12, and p22. 

6. The operation-related load parameters are d31, d41, d32, and d42. 

7. The operation-related bus angles are θ11, θ21, θ31, θ41, θ12, θ22, 

θ32, and θ42.  

8. The DC power flow matrix relating bus angles to bus 

injections for period 1 is B1 and for period 2 is B2. (In this 

problem formulation, there is no transmission investment, and 

we will not consider outages, therefore these matrices will be 

the same). For our 4-bus system, these matrices are dimension 

4x4 with elements bijt. 

9. There are three lines; they are flow-constrained to flows PL1 

for period 1 and to flows PL2 for period 2. Flows are computed 

as a function of angles using DAθ, where D is the square 

diagonal matrix of susceptances and A is the node-arc 

incidence matrix. Again, because there is no transmission 

investment, D1 and D2 are identical, and A1 and A2 are 

identical. With 3 lines and 4 buses, the matrix DA is 3x4, with 

elements denoted by sjkt (line j, bus k, period t). 

10. We have the following equations for our system: 

Period 1 generation constraints:  p1-x1 ≤ C0 

Period 2 generation constraints:  p2-x1-x2≤ C0 

Period 1 DC power flow eqts:  p1-B1θ1=0 

  Period 1 Line flow constraints: D1A1θ1 ≤ PB1 

Period 2 DC power flow eqts:  p2-B2θ2=0 

  Period 2 Line flow constraints: D2A2θ2 ≤ PB2 
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We have written the above equations to conform to how 

we want to order them in our constraint matrix.  

11. Define α1 and α2 as the discount factors for periods 1 and 

2, respectively, and c1 and c2 as the cost coefficients associated 

with units 1 and 2 generation, respectively.  

Given the above points 1-11, we write our optimization problem as  
operational costs operational costsinvestment costs investment costs
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Comparing to Fig. 2, we observe the DW structure in the above 

constraint matrix. The yellow area at the top identifies the linking 

constraints, and the yellow submatrices below indicate two different 

subproblems corresponding to the operating conditions in the two 

different periods.   

 

There are several observations/questions/thoughts to consider now: 

 
5 The constraint equation uses both “≤” and “=” to indicate both types of constraints exist. The constraints 

with “=” (e.g., the DC power flow equations p=Bθ) can be expressed as p≤Bθ and p≥Bθ; doing so increases 

the size of each subproblem block in the constraint matrix, but it does not change the structure of the 

constraint matrix. 
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1. Observation: The subproblems in the above DW structure are 

associated with the network equations in different periods. 

2. Observation: The fact that the above problem decomposes by 

period is encouraging with respect to increasing the fidelity of 

the production cost representation. 

3. Question: Bloom used Benders to solve his problem, and so 

we assume he obtained a Benders structure. Is it important, 

relative to obtaining a Benders structure, that Bloom did not 

account for the network? That is, if we include the network, 

does that influence our ability to obtain a Benders structure? 

4. Question: Is the DW decomposition method efficient? 

Consider the following comment from [28]: 

“Thus, although (DW) has a smaller number of 

constraints, its number of variables can be huge since the 

number of extreme points and extreme rays of a 

polyhedron can be very large. To use this idea to 

effectively solve large scale LP problems, we need to 

avoid considering all extreme points and extreme rays of 

Cx ≥ d. This is when the idea of column generation comes 

into play, i.e., we start by including only a few number of 

extreme points and extreme rays in the problem and we 

add more on the fly in a as needed basis.” 

There is another reference, [29], that raises questions about 

using either DW or Benders for decomposed, parallelized 

solutions of large linear programs (in contrast to large MIPs). 

For example, he writes, “At present Dantzig-Wolfe and 

Benders methods in the original versions are rarely used for 

solving large scale continuous linear programming problems. 

The reason is their too slow convergence.” 

5. Observation: The DW decomposition procedure is described in 

Section 11.0. It is good to review Section 11.0 to begin to get 

familiar with DW, trying to think of reasons it might not work 

very well. Following review of Section 11.0, if it still looks 

promising, we should identify it as a promising method and list 

it among other possibly promising methods. At this point, it 
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might be good to start to review individual references about 

DW, e.g., [2, 5, 46] and others. 

6. Thought: Consider the following additional approaches:  

a. Nested decomposition: Use a nested decomposition 

algorithm [30] and solving it iteratively in a forward and 

backward manner using forward and backward passes. In 

essence, the forward pass iteratively solves over each 

time period to yield an upper bound for each period over 

the full problem, and the backward pass provides a lower 

bound by generating cuts from relaxed sub-problems. 

The convergence criteria is determined by a pre-defined 

tolerance in terms of the difference between the upper 

and lower bounds. 

b. CPLEX’s barrier algorithm: One statement from [31] is 

interesting: “The CPLEX barrier optimizer is 

appropriate and often advantageous for large problems, 

for example, those with more than 100,000 rows or 

columns. It is not always the best choice, though, for 

sparse models with more than 100,000 rows. It is 

effective on problems with staircase structures or banded 

structures in the constraint matrix. It is also effective on 

problems with a small number of nonzeros per column 

(perhaps no more than a dozen nonzero values per 

column). In short, denseness or sparsity are not the 

deciding issues when you are deciding whether to use the 

barrier optimizer. In fact, its performance is most 

dependent on these characteristics: 

• the number of floating-point operations required to 

compute the Cholesky factor; 

• the presence of dense columns, that is, columns 

with a relatively high number of nonzero entries.” 

But what about parallelization? CPLEX offers the 

parallel barrier optimizer. A good treatment of CPLEX 

algorithms is in [32]. Some insights on using CPLEX for 

large LPs can be found in [33]. Some related questions: 
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• Does use of GAMS offer the full capabilities of the 

parallel barrier algorithm? 

• Is AIMMS better at using the CPLEX parallel 

barrier algorithm than GAMS?  

• Does GORUBI have a better parallel barrier 

algorithm than CPLEX? 

• Does Pyomo have a better parallel barrier algorithm 

than CPLEX? 

c. Problem structure: There may be a natural decomposition 

based on our particular adaptive expansion planning 

problem. For example, can we parallelize the operating 

problems for each future (i.e., scenario)? 

d. Lagrangian relaxation (LR): LR is also an effective 

approach for problems that have the DR structure (i.e., 

problems that have block structure with complicating 

constraints). References [34, 35] provide good tutorial 

treatment of LR. Paraphrasing from [34]:  

➔In LR, the complicating constraints are removed from 

the constraint equations and then dualized, i.e., added to 

the objective function, with a penalty term (the Lagrange 

multiplier) proportional to the amount of violation of the 

dualized constraints. It is a relaxation of the original 

problem because (a) the removal of some constraints 

relaxes the original feasible space; (b) the solution to the 

LR problem will bound the original problem (from above 

if maximizing and from below if minimizing) because the 

addition of the complicating constraints will always 

cause the objective function to increase (if maximizing) 

or decrease (if minimizing).  

e. Progressive hedging: Reference [36] indicates that “PH, 

sometimes referred to as a horizontal decomposition 

method because it decomposes stochastic programs by 

scenarios rather than by time stages, possesses 

theoretical convergence properties when all decision 
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variables are continuous.” Reference [37] indicates, 

“The progressive hedging algorithm (PHA) has emerged 

as an effective method for solving multi-stage stochastic 

programs, particularly those with discrete decision 

variables in every stage. The PHA mitigates the 

computational difficulty associated with large problem 

instances by decomposing the extensive form according 

to scenario, and iteratively solving penalized versions of 

the sub-problems to gradually enforce implementability.” 

f. Hybrid decomposition methods (HDM): HDM use a 

combination of Benders, DW, LR, and/or some other 

decomposition methods. For example, so-called cross-

decomposition uses Benders and LR [38, 39, 40]. 

 

7. Question: How would our decision change if we implemented 

the production costing approach with a higher degree of 

fidelity? Relatedly, what level of fidelity is required in the 

expansion planning production cost model to adequately 

represent storage? These are important questions because of 

the need to include flexibility services6 within expansion 

planning. A very good basic review of UC is contained in [41], 

and a high-fidelity model for storage for production cost is 

given in [42]. There have been several good papers written 

recently on this topic, e.g., [43, 44, 45]. In gaining 

understanding of how to include production cost modeling 

fidelity within expansion planning, it is useful to review these 

papers, paying attention to the papers they reference for 

possible additional resources to study. 

 

 
6 We define flexibility services as (1) transient frequency response (0-20 seconds following loss of 

generation); (2) frequency regulation (continuous steady-state frequency control at ~4 second intervals); (3) 

contingency reserve provision (capacity reserves having the ability to compensate for loss of generation 

within 10-30 minutes); (4) load following or ramping reserve provision (capacity reserves having the ability 

to compensate for 30-min to 4 hour daily changes in new load); and (5) planning reserve provision (capacity 

reserves to satisfy the annual peak).  
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The above thinking revolves around a view of optimization design 

which is captured by Fig. 9 below. The solution speed is not 

determined by any one design feature but rather by their 

combination. 

 
Fig. 9: Influences on compute time 

 

 

11.0 The Dantzig-Wolfe Decomposition Procedure 

Most of the material from this section is adapted from [5].  

We attempt to solve the following problem P. 
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where  

• cj and xj have dimension nj×1 

• Aij has dimension mi×nj 

• bi has dimension mi×1 

• This problem has 
=

h

i

im
0

constraints and 
=

h

i

in
0

variables. 

Note: 
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• Constraints 1, 2, 3, …,h can be thought of as constraints on 

individual departments. 

• Constraint 0 can be thought of as a constraint on total corporate 

(organizational) resources (sum across all departments).  

 

 

Definition 1: For a linear program (LP), an extreme point is a 

“corner point” and represents a possible solution to the LP. The 

solution to any feasible linear program is always an extreme point. 

Figure 10 below illustrates 10 extreme points for some linear 

program. 

 

1 

2 

3

2 

4

2 

5

2 
6

2 

7

2 

8

2 

9 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

5 
10

2 

 
Fig. 10 

Observation 1: Each individual subproblem represented by  

iiii

i

T

i

bxA

xcz

=

=

  subject to

max
 

has its own set of extreme points. We refer to these extreme points 

as the subproblem i extreme points, denoted by 

i

k

i pkx ,,1, = where pi is the number of extreme points for 

subproblem i.  
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Observation 2: Corresponding to each extreme point solution k

ix , 
the amount of corporate resources used is k

ii xA0 , an m0×1 vector. 

 

Observation 3: The contribution to the objective function of the 

extreme point solution is k

i

T

i xc , a scalar. 

 

Definition 2: A convex combination of extreme points is a point 


=

ip

k

k

i

k

i yx
1

, where 1
1

=
=

ip

k

k

iy , so that k

iy  is the fraction of extreme point 

k

ix in the convex combination. Figure 11 below shows a white dot in 

the interior of the region illustrating a convex combination of the 

two extreme points numbered 4 and 9. 
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Fig. 11 

Fact 1: Any convex combination of extreme points must be feasible 

to the problem. This should be self-evident from Fig. 11 and can be 

understood from the fact that the convex combination is a “weighted 

average” of the extreme points and therefore must lie “between” 

them (for two extreme points) or “interior to” them (for multiple 

extreme points).  
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Fact 2: Any point in the feasible region may be identified by 

appropriately choosing the k

iy . 

 

Observation 4a: Since the convex combination of extreme points is a 

weighted average of those extreme points, then the total resource 

usage by that convex combination will also be a weighted average 

of the resource usage of the extreme points, i.e., ( )
=

ip

k

k

i

k

ii yxA
1

0 . The 

total resources for the complete problem is the summation over all 

of the subproblems, ( )
= =

h

i

p

k
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1 1
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Observation 4b: Since the convex combination of extreme points is 

a weighted average of those extreme points, then the contribution to 

the objective function contribution by that convex combination will 

also be a weighted average of the objective function contribution of 

the extreme points, i.e., ( )
=

ip

k

k

i

k

i

T

i yxc
1

. The total objective function can 

be expressed as the summation over all subproblems, ( )
= =

h

i

p

k

k

i

k

i

T

i

i

yxc
1 1

. 

Based on Observations 4a and 4b, we may now transform our 

optimization problem P as a search over all possible combinations of 

points within the feasible regions of the subproblems to maximize 

the total objective function, subject to the constraint that the k

iy  must 

sum to 1.0 and must be nonnegative, i.e.,  
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Note that this new problem P-T (P-transformed) has m0+h 

constraints, in contrast to problem P which has 
=

h

i

im
0

constraints. 

Therefore it has far fewer constraints. However, whereas problem P 

has only 
=

h

i

in
0

variables, this new problem has as many variables as it 

has total number of extreme points across the h subproblems, 
=

h

i

ip
0

, 

and so it has a much larger number of variables.  

 

The DW decomposition method solves the new problem without 

explicitly considering all of the variables.  

 

Understanding the DW method requires having a background in 

linear programming so that one is familiar with the revised simplex 

algorithm. We do not have time to cover this algorithm in this class, 

but it is standard in any linear programming class to do so.  

 

Instead, we provide an economic interpretation to the DW method.  

 

In the first constraint of problem P-T, b0 can be thought of as 

representing shared resources among the various subproblems 

i=1,…,h. 

 

Let the first m0 dual variables of problem P-T be contained in the 

m0×1 vector  . Each of these dual variables provide the change in 

the objective as the corresponding right-hand-side (a resource) is 

changed.  

➔ That is, if b0k is changed by b0k+∆, then the optimal value of the 

objective is modified by adding k . 

➔ Likewise, if the ith subproblem (department) increases its use of 

resource b0k by ∆ (instead of increasing the amount of the resource 

by ∆), then we can consider that that subproblem (department) has 

incurred a “charge” of k . This “charge” worsens its contribution 
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to the complete problem P-T objective, and accounting for all shared 

resources b0k, k=1, m0, the contribution to the objective is 

ii

T

i

T

i xAxc 0− where ii xA0 is the amount of shared resources consumed 

by the ith subproblem (department).  

 

One may think of these dual variables contained in   as the “prices” 

that each subproblem (department) must pay for use of the 

corresponding shared resources.  

 

Assuming each subproblem i=1,…,h represents a different 

department in the CEO’s organization, the DW-method may be 

interpreted in the following way, paraphrased from [2]: 

- If each department i worked independently of the others, 

then each would simply minimize its part of the objective 

function, i.e., i

T

i xc .  

- However, the departments are not independent but are 

linked by the constraints of using resources shared on a 

global level.  

- The right-hand sides b0k, k=1,…,m0, are the total amounts of 

resources to be distributed among the various departments. 

- The DW method consists of having the CEO make each 

department pay a unit price, πk, for use of each resource k.  

- Thus, the departments react by including the prices of the 

resources in its own objective function. In other words,  

o Each department will look for new activity levels xi 

which minimize  ii

T

i

T

i xAxc 0− . 

o Each department performs this search by solving the 

following problem: 

kx

bxA

xAxc

ik

iii

ii

T

i

T

i



=

−

   0                 

   subject to

          max

i

0

 

- The departments make proposals of activity levels xi back to 

the CEO, and the CEO then determines the optimal weights 
k

iy  for the proposals by solving problem P-T, getting a new 
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set of prices  , and the process repeats until all proposals 

remain the same. 

Reference [2], p. 346, and [46], pp. 349-350, provide good 

articulations of the above DW economic interpretation. 

 

12.0 Other ways of addressing uncertainty in planning 

Stochastic programming is an elegant mathematical tool for 

addressing uncertainty in planning, but it is computationally 

burdensome. Other ways include Monte Carlo simulation and robust 

optimization.  

 

A few slides presented by engineers from the Midwest ISO are 

interesting. 
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