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Review of Optimization Basics 

 
1. Introduction 

 

Electricity markets throughout the US are said to 

have a two-settlement structure. The reason for this is 

that the structure includes two different markets: 

 The real time or balancing market 

 The day-ahead market 

These are two kinds of tools which are used in these 

two markets, and both are optimization tools.  

 The security-constrained unit commitment 

(SCUC), which is used in the day-ahead market; 

 The security constrained economic dispatch 

(SCED), which is used in both real time and day-

ahead markets. 

 

Although the SCED is most generally a nonlinear 

optimization problem, most electricity markets solve 

it by linearizing it and applying linear programming. 

 

On the other hand, SCUC is most generally a mixed 

integer nonlinear optimization problem. Again, most 

electricity markets solve it by linearizing it so that it 

becomes a mixed integer linear optimization 

problem. 
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Thus, to fully understand electricity markets, one 

needs to also these two kinds of optimization 

problems. 

 

Therefore, in these notes, we wish to review some 

basic convex programming concepts. This material in 

these notes should be read together with other 

resources. Some good additional resources include 

Appendix 3A of [1].   

 

2. Convexity 

At the end of our discussion on “Cost Curves,” we 

considered generator types that had non-convex cost 

curves. These included all steam plants that have 

multiple valve points. It also includes combined cycle 

units.  

 

Let’s recall what we mean by convexity. There are 

formal mathematical definitions of convexity, but we 

will try to remain as simple as possible.  

 

Convexity #1: A function f(x) is convex in an interval 

if its second derivative is positive on that interval. 

 

The quadratic function f(x)=x2 is convex, for 

example, since f’(x)=2x and f’’(x)=2. 
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This second derivative test is that the rate of change 

of slope should increase with x. One can see that the 

function f(x)=x2 satisfies this property as shown in 

Fig. 1a below. 

 

 
Fig. 1a 

The second derivative test, although sufficient, is not 

necessary, as a second derivative need not even exist. 

 

We may observe this in Fig. 1b [2] where we see 

some functions for which the first and higher 

derivatives do not exist.  
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We also observe the line segment drawn across the 

function f(x) on the left of Fig. 1b. This line segment 

indicates another kind of test for convexity, as 

follows. 

 

Fig. 1b 

 

Convexity #2: A function is convex if a line drawn 

between any two points on the function remains on or 

above the function in the interval between the two 

points. 

 

We see that all of the functions in Fig. 1b satisfy 

Convexity #2 definition, and this is a definition that 

is workable within this class. 

 

Question: Is a linear function convex? 



 5 

 
Answer is “yes” since a line drawn between any two 

points on the function remains on the function. 

 

This leads to another important definition.  

 

Convex set: A set C is convex if a line segment 

between any two points in C lies in C. 

 

Which of the two sets below are convex [3]? 

 
Here are some more examples of convex and non-

convex sets [4]. 
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3. Global vs. local optimum 

 

We will use certain techniques to solve optimization 

problems. These techniques will result in solutions. 

An important quality of those solutions is whether 

they are local optimal or global optimal.  

 

Example: Solve the following problem: 

Minimize f(x)=x2 

We know how to do this as follows: 

f’(x)=2x=0x*=0. 

The solution we just found is a local optimum. It is 

also the global optimum. 
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Example: Solve the following optimization problem. 

Minimize f(x)=x3-17x2+80x-100 

Applying the same procedure, we obtain: 

f’(x)=3x2-34x+80=0 

Solving the above results in x=3.33 and x=8.  

 

We have two problems to address: 

 Which is the best solution? 

 Is the best solution the global solution? 

 

We can immediately see the answers to our questions 

by plotting the original function f(x), as shown 

below. 
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And so we see that x=8 is the best solution, but it is 

not the global solution. It appears that this particular 

problem has no global solution, i.e., the smaller we 

make x, the more we can minimize f. It is unbounded. 

 

This shows that when minimizing a function, if we 

want to be sure that we can get a global solution via 

differentiation, we need to impose some requirements 

on our objective function. We will also need to 

impose some requirements on the set of possible 

values that the solution x* may take. 

 

4. Convex optimization 

 

Optimization problems can be classified in a number 

of different ways. One way is illustrated below [5]. 
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In this figure, the branch of optimization is divided 

into continuous and discrete. We observe that the 

continuous types are then divided into unconstrained 

and constrained, with the constrained being divided 

into several types including linear programming.  

 

In this class, we will be interested in the linear 

programming problems and in the discrete integer 

programming problems.  

 

Another way to classify optimization problems is by 

whether they are convex or not.  

 

Consider the following problem 

S

xf

x  s.t.

)( min

 

This problem says:  

 

minimize f(x) subject to the requirement that the 

point x must lie in a region defined by S. 

 

Definition: If f(x) is a convex function, and if S is a 

convex set, then the above problem is a convex 

programming problem.  
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The desirable quality of a convex programming 

problem is that any locally optimal solution is also a 

globally optimal solution.  

 

Thus, if we have a method of finding a locally 

optimal solution, then that method also finds for us 

the globally optimum solution. 

 

The undesirable quality of a nonconvex programming 

problem is that any method which finds a locally 

optimal solution does not necessarily find the 

globally optimum solution. 

 

These are very important qualities of optimization 

problems, and they motivate us to provide another 

classification of optimization problems: 

 Convex programming problems 

 Nonconvex programming problems. 

 

Of interest to us is that  

 linear programs are convex programming 

problems.  

 mixed integer programs are nonconvex 

programming problems.  

 

We focus in these notes on some fundamental 

concepts related to convex programming.  
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We will address nonconvex programming problems 

when we look at the unit commitment problem. 

  

5. Problem Statement 

The general problem that we want to solve is the two-

variable equality-constrained minimization problem, 

as follows: 

cxxh   s.t.

xxf 

),(

),(min

21

21

     (1) 

Problem (1) is the 2-dimensional characterization of a 

similar n-dimensional problem: 

c)xh(

xf

   s.t.

)( min

     (2) 

And problem (2) is n-dimensional, single-constraint 

characterization of a similar n-dimensional, multi-

constraint problem: 

c)x(h

xf

   s.t.

)( min

      (3) 

Whatever we can conclude about (1) will also apply 

to (2) and (3).  
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6. Contour maps 

To facilitate discussion about our two-dimensional 

problem (1), we need to fully understand what a 

contour map is. A contour map is a 2-dimensional 

plane, i.e., a coordinate system in two variables, say 

x1 and x2, that illustrates curves (or contours) of 

constant functional value f(x1, x2).  

Example 1: Draw the contour map for 
2
2

2
121 ),( xxxxf  .  

Solution: The below Matlab code does it: 
[X,Y] = meshgrid(-2.0:.2:2.0,-2.0:.2:2.0); 

Z = X.^2+Y.^2; 

[c,h]=contour(X,Y,Z); 

clabel(c,h); 

grid; 

xlabel('x1'); 

ylabel('x2'); 

Figure 1 illustrates. 
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Fig. 1: Contour map for 
2
2

2
121 ),( xxxxf   

The numbers on each contour show the value of 

f(x1,x2) for that contour, and so the contours show  

f(x1,x2)=1, f(x1,x2)=2, f(x1,x2)=3, f(x1,x2)=4, 

f(x1,x2)=5,  f(x1,x2)=6, and f(x1,x2)=7.  

 

We could show similar information with a 3-D 

figure, where the third axis provides values of 

f(x1,x2), as shown in Fig. 2. I used the following 

commands to get Fig. 2. 
[X,Y] = meshgrid(-2.0:.2:2.0,-2.0:.2:2.0); 

Z = X.^2+Y.^2; 

surfc(X,Y,Z) 

xlabel('x1') 

ylabel('x2') 

zlabel('f(x1,x2)') 
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Figure 2 also shows the contours, where we see that 

each contour of fixed value f is the projection onto 

the x1-x2 plane of a horizontal slice made of the 3-D 

figure at a value f above the x1-x2 plane. 

 

Fig. 2: 3-D illustration of 
2
2

2
121 ),( xxxxf   

 

7. Understanding problem 1 solution 

procedure 

We desire to solve Problem 1. Let’s consider it by 

following up on the example which we began in the 

previous section. 
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Example 2: Use graphical analysis to solve the 

following specific instance of Problem 1. 

32

),(min

2121

2

2

2

121





xx),xh(x   s.t.

xxxxf
 

To visualize the solution to this problem, let’s 

express the equality constraint where x2 is the 

dependent variable and x1 is the independent variable, 

according to: 

1

221
2

3
32

x
xxx   

This is a function that we can plot on our x1, x2 

Cartesian plane, and we will do so by superimposing 

it over the contour plot of f(x1,x2), as in Fig. 3. 

 

One can immediately identify the answer from Fig. 3, 

because of two requirements of our problem: 

 f(x1,x2) must be minimized, and so we would like 

the solution to be as close to the origin as possible; 

 the solution must be on the thick line in the right-

hand corner of the plot, since this line represents the 

equality constraint. 
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Fig. 3: Contour plots with equality constraint 

From the plot, we see that the solution is about       

)25.1,25.1(),( 021 xx , as this point results in the 

smallest possible value of f that is still on the equality 

constraint. The value of f at this point is 3. We will 

check this analytically in the next section.  

 

Before we do that, note in Fig. 3 the intersection of 

the equality constraint and the contour f=3. Notice 

 any contour f<3 does not intersect the equality 

constraint; 

 any contour f>3 intersects the equality constraint at 

two points. 
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This means that the f=3 contour and the equality 

constraint just touch each other at the point identified 

as the problem solution, about )25.1,25.1(),( 021 xx . 

The notion of “just touching” implies  

The two curves are tangent1 to one another at the 

solution point.  

The notion of tangency is equivalent to another one:  

The normal (gradient) vectors2 of the two curves, 

at the solution (tangent) point, are parallel.  

From multivariable calculus, we know we can 

express a normal vector to a curve as the gradient of 

the function characterizing that curve.  

 

The gradient operator is  . It operates on a function 

by taking first derivatives with respect to each 

variable. For example,  

 

  



















1

2
21

2

12
2

2
1

2

2
32

2

2

x

x
xx

x

x
xx

 

And then, we can evaluate those derivatives at some 

certain value of x, a point which, notationally, we 

refer to as x0=(x1, x2)0. Gradients have magnitude and 

angle. 

                                                 
1
 The word “tangent” comes from the Latin word tangere, which means “to touch.” 

2
 Normal vectors are perpendicular (2-space) and more generally, orthogonal (n-space), to the tangent. 
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The functions of the two curves are f(x1,x2) and 

h(x1,x2). If the two normal vectors are to be parallel to 

one another at the point x0, then  

 c),xh(xxxf  021021 ),(      (4a) 

Alternatively,  

 021021 ),( ),xh(xcxxf       (4b) 

The reason for parameter λ is as follows.  

 Recall that gradient gives both magnitude and 

direction;  

 Yet, the only thing we know is that the two 

gradients have the same direction - we do not 

know that they also have the same magnitude; 

 And so we insert λ as a “multiplier” to account 

for the fact that the two gradients may not have 

the same magnitudes. 

Because it was Joseph Louis Lagrange (1736-1813) 

who first thought of the “calculus of variations,” as it 

was called then (and still is by mathematicians), we 

call λ the “Lagrange multiplier.” We will see later 

that Lagrange multipliers are very important in 

relation to locational marginal prices. 

 

Now from (4a), we move the right side to the left: 

  0),( 021021  c),xh(xxxf     (5a) 

Alternatively, from (4b): 

  0),( 021021  ),xh(xcxxf     (5b) 
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Since the gradient operation is precisely the same 

operation on f as it is on h (taking first derivatives 

with respect to x1 and x2), we can write (5a) as 

   0),( 021021  c),xh(xxxf     (6a) 

Alternatively, 

   0),( 021021  ),xh(xcxxf     (6b) 

And so we observe that the solution, i.e., the value of 

(x1, x2) that identifies a feasible point corresponding 

to a minimum value of f, will satisfy the partial 

derivative equations associated with (6), according to 

   0),(
02121  c),xh(xxxf      (7a) 

Alternatively,  

   0),( 02121  ),xh(xcxxf      (7b) 

Expressing (7a) in terms of partial derivatives yields: 
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0

),(

),(

0

2121

2

2121

1

c),xh(xxxf
x

c),xh(xxxf
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   (8a) 

Alternatively, using (7b): 

  

  






































0

0

),(

),(

0

2121
2

2121
1

),xh(xcxxf
x

),xh(xcxxf
x





   (8b) 

Notice in (7) and (8) that the “0”-subscript, indicating 

“evaluation at the solution,” has been shifted to the 

outside of the brackets, implying “evaluation at the 

solution” occurs after taking the derivatives.  
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But let’s think of it in a little different fashion. Let’s 

write down the partial derivatives without knowing 

the solution (and we certainly can do that). Then, eq. 

(7) (or (8)) provides equations that can be used to 

find the solution, by solving them simultaneously. 

 

Of course, there is still one small issue. By (8) we see 

that we only have two equations, yet we have the 

unknowns x1, x2, and λ. We cannot solve two 

equations in three unknowns! What do we do???? 

 

This issue is resolved by recalling that we actually do 

have a third equation: h(x1, x2)-c=0 (or alternatively, 

c- h(x1, x2)). This is just our equality constraint. And 

so we see that we have 3 equations, 3 unknowns, and 

at least in principle, we can solve for our unknowns 

x1, x2, λ. To summarize, the 3 equations are: 
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   (9a) 

Alternatively,  
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   (9b) 

We make one more startling observation, and that is 

that the three equations are simply partial derivatives 

of the function  c),xh(xxxf  2121 ),(   (or 

alternatively  ),xh(xcxxf 2121 ),(  ) with respect to 

each of our unknowns!!!! This is obviously true for 

the first two equations in (9), but it is not so 

obviously true for the last one. But to see it, observe: 

  

c),xh(xc),xh(x

c),xh(xxxf








2121

2121

0

0),( 


   (10a) 

Alternatively 

  

c),xh(x),xh(xc

),xh(xcxxf








2121

2121

0

0),( 


   (10b) 

We are now in a position to formalize solution to our 

2-dimensional, one constraint problem. Let’s define 

the Lagrangian function as: 
 c),xh(xxxfxx  212121 ),(),,( L    (11a) 

 ),xh(xcxxfxxF 212121 ),(),,(  L   (11b) 
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Then the first-order conditions for solving this 

problem are 
0),,( 21  xxL      (12) 

or,  

0),,(

0),,(

0),,(

21

21
2

21
1























xx

xx
x

xx
x

L

L

L

     (13) 

In slightly more compact notation, (13) becomes: 

0),(

0),(
















x

x
x

L

L

     (14) 

where we have used x=(x1, x2).  

 

The conditions expressed by (14) are the general 

conditions for finding the optimal solution to an n-

dimensional problem having a single equality 

constraint. The first equation in (14) is a vector 

equation, comprised of n scalar equations, with each 

scalar equation consisting of a derivative with respect 

to one of the n variables xi. 

 

The second equation in (14) just returns the equality 

constraint. Now let’s see how this works in practice. 
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Example 3: Use our first-order conditions to solve the 

following specific instance of Problem 1. 

32  s.t.

),(min

2121

2
2

2
121





xx),x h(x

xxxxf
 

 

The Lagrangian function is: 

 32),( 21
2
2

2
121  xxxxxx L  

Applying first-order conditions, we obtain: 

  (17)       032),,(

(16)        022),,(

(15)        022),,(

2121

1221
2

2121
1
















xxxx

xxxx
x

xxxx
x








L

L

L

 

This is a set of 3 equations in 3 unknowns, and so we 

may solve them. Unfortunately, these are not linear 

equations, and so we cannot set up Ax=b and then 

solve by x=A-1b. In general, we must use a nonlinear 

solver (such as Newton) to solve nonlinear equations. 

But this case happens to be simple enough to use 

substitution. The details of the substitution procedure 

are not really important for our purposes, but I will 

give them here nonetheless, just for completeness… 
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From (15), 21 22 xx  , and then substitution into (16) 

yields 022 2
2

2  xx   01 2   12   1  

Choosing 1 (choosing 1  results in complex 

solutions), and since (15) gives 21 22 xx  , we have 

that 21 22 xx  , and substitution into (17) results in 

  032 2
2 x  32 2

2 x 
2

32
2 x 

2

3
2 x , and since 

21 22 xx  , 
2

3
1 x . From Fig. 3, we see that the 

desired solution3 is 2247.1
2

3
21  xx , which results 

in a minimum value of f(x1, x2) given by 

3
2

3

2

3
),(

22

2
2

2
121 





























 xxxxf , consistent 

with our observation from Fig. 3. 

 

8. Multiple equality constraints 

We can extend our n-dimensional slightly by 

considering that it may have multiple equality 

constraints. In this case, we have (3), repeated here 

for convenience. 

cx

xf

)(h   s.t.

)( min

     (3) 

                                                 
3
 The negative values of x1, x2 originate from the fact that the equality constraint 2x1x2-3=0x2=3/(2x1), 

mathematically, may also have negative values of x1, resulting in a curve in the lower left hand quadrant. 
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Consider that we have m equality constraints. Then 

we may apply the exact same approach as before, i.e., 

we formulate the Lagrangian and then apply first-

order conditions, except in this case we will have m 

Lagrange multipliers, as follows: 
 

   mmm c),x(xhc),x(xh

c),x(xhxxfxx





2122122

121112121

...                     

),(),,(



L
 (18a) 

or, alternatively  
 

   ),x(xhc),x(xhc

),x(xhcxxfxx

mmm 2121222

211112121

...                     

),(),,(







L
 (18b) 

The first order conditions are: 

0),(

0),(
















x

x
x

L

L

    (19) 

 

9. One inequality constraint 

The general form of our problem when we have 1 

inequality constraint is: 

bxg

c)x(h

xf





)(

   s.t.

)( min

    (20) 

An effective strategy for solving this problem is to 

first solve it by ignoring the inequality constraint, i.e., 

solve  
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c)x(h

xf

   s.t.

)( min

     (21) 

by writing our first-order conditions. Then check the 

solution against the inequality constraint. There are 

two possible outcomes at this point: 

 If the inequality constraint is satisfied, then the 

problem is solved.  

 If the inequality constraint is violated, then we 

know the inequality constraint must be binding. This 

means that the inequality constraint will be enforced 

with equality, i.e.,  

bxg )(     (22) 

If this is the case, then we include (22) as an equality 

constraint in our optimization problem, resulting in 

the following equality-constrained problem: 

bxg

c)x(h

xf





)(

   s.t.

)( min

    (23) 

The Lagrangian for this problem is 

   

   bxgc),x(xh

c),x(xhc),x(xhxfx

mmm 



)(...                     

)(),,(

21

2212212111



L

(24a) 

Alternatively, 
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   )(...                     
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2122221111
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L

(24b) 

 

And the first-order conditions for solving this 

problem are:  

0),,(

0),,(

0),,(
























x

x

x
x

L

L

L

    (25) 

The procedure that we just described, where we first 

solved the problem without the inequality constraint, 

then tested for violation, and then resolved if a 

violation existed, is equivalently stated as 

0)(

0),(

0),(













xg

x

x
x

k






L

L

    (26) 

The last is called the complementary condition, and 

the overall conditions expressed as (26) are called the 

Kurash-Kuhn-Tucker (KKT) conditions. 
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10. Multiple inequality constraints 

The method of the previous section for solving 

problems having a single equality constraint also 

generalizes to the case of a problem having multiple 

inequality constraints, except after each solution, one 

must check all of the remaining inequality 

constraints, and any that are binding are then brought 

in as equality constraints. 

 

11. Terminology and basics of OR 

 

Operations research (OR), or “optimization” is about 

decision-making. In light of this, we provide 2 basic 

definitions. 

 

The decision variables are the variables in the 

problem, which, once known, determine the decision 

to be made. 

 

The objective function is the function to be 

minimized or maximized. It is also sometimes known 

as the cost function. 

 

The constraints are equality or inequality relations in 

terms of the decision variables which impose 

limitations or restrictions on what the solution may 

be, i.e., they constrain the solution.  
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Inequality constraints may be either non-binding or 

binding. A non-binding inequality constraint is one 

that does not influence the solution. A binding 

inequality constraint does restrict the solution, i.e., 

the objective function becomes “better” (greater if the 

problem is maximization or lesser if the problem is 

minimization) if a binding constraint is removed. 

 

Optimization problems are often called programs or 

programming problems. Such terminology is not to 

be confused with use of the same terminology for a 

piece of source code (a program) or what you do 

when you write source code (programming). Use of 

the terminology here refers to an analytical statement 

of a decision problem. In fact, optimization problems 

are often referred to as mathematical programs and 

their solution procedures as mathematical 

programming.  Such use of this terminology is 

indicated when one uses the term linear 

programming (LP), nonlinear programming (NLP), 

or integer programming (IP). 

 

The general form of a mathematical programming 

problem is to find vector x in:  

 Min f (x)   

 subject to:  (1) 

g (x)  b 

h (x) = c 
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and:   x  0 

Here, f, g, and h are given functions of the n decision 

variables x. The condition x  0 can be satisfied by 

appropriate definition of decision variables.  

 

The LaGrangian function of (1) is: 

         bxgcxhxfxF
TT

 ,,  (2a) 

or, alternatively,  

         xgbxhcxfxF
TT

 ,,  (2b) 

where individual elements of  m ,, 21   and 

 r ,, 21   are called LaGrange multipliers. 

 

The LaGrangian function is simply the summation of 

the objective function with the constraints.  It is 

assumed that f, h, and g are continuous and 

differentiable, that f is convex, and that the region in 

the space of decision variables defined by the 

inequality constraints is a convex region.  

 

Given that x is a feasible point, the conditions for 

which the optimal solution occurs are: 
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ni
x

F

i

,10 



                    (3) 

Jj
F

j

,10 



                 (4) 

   Kkbxg kkk ,10  (5) 

These conditions are known as the Karush-Kuhn-

Tucker (KKT) conditions or, more simply, as the 

Kuhn-Tucker (KT) conditions. The KKT conditions 

state that for an optimal point 

1) The derivatives of the LaGrangian with respect 

to all decision variables must be zero (3). 

2) All equality constraints must be satisfied (4). 

3) A multiplier μk cannot be zero when its 

corresponding constraint is binding (5). 

 

Requirement 3, corresponding to eq. (5), is called the 

“complementary” condition. The complementary 

condition is important to understand. It says that if x 

occurs on the boundary of the kth inequality 

constraint, then gk(x) = bk. In this case eq. (5) allows 

μk to be non-zero. Once it is known that the kth 

constraint is binding, then the kth constraint can be 

moved to the vector of equality constraints; i.e. gk(x) 

can then be renamed as hJ+1(x) and μk as λJ+1, 

according to: 
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J

J

k

k xhxg

   (7)  

On the other hand, if the solution x does not occur on 

the boundary of the kth inequality constraint, then 

(assuming x is an attainable point) gk(x) - bk < 0. In 

this case, eq. (5) requires that μk = 0 and the kth 

constraint makes no contribution to the LaGrangian. 

 

It is important to understand the significance of μ and 

λ. The optimal values of the LaGrangian Multipliers 

are in fact the rates of change of the optimum 

attainable objective value f(x) with respect to changes 

in the right-hand-side elements of the constraints. 

Economists know these variables as shadow prices or 

marginal values.  This information can be used not 

only to investigate changes to the original problem 

but also to accelerate repeat solutions.  The marginal 

values λj or μk indicate how much the objective f(x) 

would improve if a constraint bj or ck, respectively, 

were changed.  One constraint often investigated for 

change is the maximum production of a plant. 
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