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Settlement 
 

1.0 Settlement without congestion 

 

Let’s consider the base case solution obtained from the notes called 

LPOPF2. How would the suppliers and the loads be paid? 

 

To answer this question, we repeat here the solution in terms of the 

one-line diagram and in terms of the table of Lagrange multipliers.  

 

 

PB5=0.4197 
PB1 = 

-0.0152 

PB4 = 

0.4348 

PB3 

=0.3242 

PB2=0.0955 

Pg1=0.5pu 

Pd3=1.1787pu 

Pd2=1pu 
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3 4 

Pg2=1.2287pu 

Pg4=0.45pu 

 
Fig. 1: Result in terms of generation levels and flows for base case 

 

The objective function is Z=2705.8 $/hr.  
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Table 2: Lagrange multipliers for Pd2=1.0, Pd3=1.1787  

and infinite transmission capacity ($/per unit-hr) 

Equality constraints Lower bounds Upper bounds 

Equation Value*10
3
 Variable value variable value 

PB1     0.0000 Pg1 96.0000 Pg1     0.0000    

PB2     0.0000 Pg2 0 Pg2     0.0000 

PB3     0.0000 Pg4 43.0000 Pg4     0.0000        

PB4     0.0000 PB1 0 PB1     0.0000 

PB5     0.0000 PB2 0 PB2     0.0000 

P1     1.2110 PB3 0 PB3     0.0000 

P2     1.2110 PB4 0 PB4     0.0000 

P3     1.2110 PB5 0 PB5     0.0000 

P4     1.2110 θ1 0 θ1     0.0000 

  θ2 0 θ2     0.0000 

  θ3 0 θ3     0.0000 

  θ4 0 θ4     0.0000 

 

The settlement for this case would occur like this: 

Amount paid to generators:  

hrMWhrMWLMPPPayment gg /$50.605/$11.1250111 

hrMWhrMWLMPPPayment gg /$96.1487/$11.1287.122222 

hrMWhrMWLMPPPayment gg /$95.544/$11.1245444 

The total payments to the generators will be 

605.50+1487.96+544.95=2638.41$/hr. 

 

Now what do the loads have to pay? 

hrMWhrMWLMPPPayment dd /$00.1211/$11.12100222 

hrMWhrMWLMPPPayment dd /$41.1427/$11.1287.117233 

The total payments by the loads will be 

1211.00+1427.41=2638.41$/hr, and so we see that the market 

settles with total payment to the generators equaling total payment 

to the loads. 
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Question: Why does this differ from the objective function of 

2705.80 $/hr? 

Answer: We optimize on the offers. We settle at the LMPs.  

The bus k LMP is the change in the objective function for 

increasing the load at bus k by a unit. It is determined by the least 

expensive regulating generator. So we are paying generators at the 

offer of generator 2. 

You can see this clearly by recomputing the total payment if we 

paid each generator according to the offers they make: In this case, 

it would be 

hrMWhrMWsPPayment gg /$50.653/$07.1350111 

hrMWhrMWsPPayment gg /$96.1487/$11.1287.122222 

hrMWhrMWsPPayment gg /$30.564/$54.1245444   

In this case, if we paid according to the offers, the total payments 

to the generators will be 653.50+1487.96+564.30=2705.76$/hr, 

which agrees with the value of the objective function (there is a 

little round-off error).  

 

So why do we settle at the LMPs rather than the offers? According 

to the paper I placed on the web page [i, pg. 26],  

“The primary reason for this conclusion is that under the pay-

as-bid settlement scheme, market participants would bid 

substantially higher than their marginal costs (since there is 

no incentive for participants to bid their operating cost) to try 

to increase their revenue and, thus, offset and very likely 

exceed the expected consumer payment reduction. As a 

result, currently all ISOs in the United States adopt the pay-

at-MCP principle.” 

 

Note to make a comment regarding what happens when you hit 

lower limit and constrain-on units as in this example. Otherwise, 

we should have objective function=sum of payments. 
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In other words,  

 A pay-as-bid settlement scheme incentivizes participants to bid 

high since the bid is what they will be paid if their bid is 

accepted. The disincentive to bidding high is that their bid might 

not be accepted.  

 A pay-at MCP settlement scheme provides no incentive to bid 

high. The disincentive to bid high because their bid might not be 

accepted remains. 

 

2.0 Settlement with congestion 

Now let’s consider the case 2 solution obtained from the notes 

called LPOPF. This is the case where line 3 was congested. How 

would the suppliers and the loads be paid? 

 

To answer this question, we repeat here the solution in terms of the 

one-line diagram and in terms of the table of Lagrange multipliers. 
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PB1 = 
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Fig. 6: Cases 2 flows 
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Table 3: Lagrange multipliers for Pd2=1.0, Pd3=1.1787  

and infinite transmission capacity except for and  

0.3 capacity constraint on PB3 ($/per unit-hr) 

Equality constraints Lower bounds Upper bounds 

Equation Value*10
3
 Variable value variable value 

PB1     0.0000 Pg1   63.7500 Pg1     0.0000 

PB2     0.0000 Pg2     0.0000 Pg2     0.0000 

PB3     0.0860 Pg4     0.0000 Pg4     0.0000 

PB4     0.0000 PB1     0.0000 PB1     0.0000 

PB5     0.0000 PB2     0.0000 PB2     0.0000 

P1     1.2432 PB3     0.0000 PB3   86.0000 

P2     1.2110 PB4     0.0000 PB4     0.0000 

P3     1.2647 PB5     0.0000 PB5     0.0000 

P4     1.2540 θ1     0.0000 θ1     0.0000 

  θ2     0.0000 θ2     0.0000 

  θ3     0.0000 θ3     0.0000 

  θ4     0.0000 θ4     0.0000 

The settlement for this case would occur like this: 

Amount paid to generators:  

hrMWhrMWLMPPPayment gg /$60.621/$432.1250111 

hrMWhrMWLMPPPayment gg /$34.1429/$11.1203.118222 

hrMWhrMWLMPPPayment gg /$99.624/$54.1284.49444 

The total payments to the generators will be 

621.60+1429.34+624.99=2675.93$/hr. 

 

Now what do the loads have to pay? 

hrMWhrMWLMPPPayment dd /$00.1211/$11.12100222 

hrMWhrMWLMPPPayment dd /$70.1490/$647.1287.117233 

The total payments by the loads will be 

1211.00+1490.70=2701.70$/hr. 
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Notice: The amount paid by the loads exceeds that paid to the 

generators by 2701.7-2675.93=25.77$/hr. 

 

Why is this? 

 

This is due to the congestion charges, denoted as CC and given by: 





M

j

bjjPCC
1


 

In our example, since we have only one congested line, this is: 

8.253.0*86
1




M

j

bjj PCC   

Note that the units of μj are $/per-unit hr and the units of Pbj are per 

unit, and so the units of CC are $/hr. Congestion charges are 

allocated by the market operator to holders of financial 

transmission rights (FTRs). We will discuss more about FTRs 

when we talk about (a) risk management and (b) planning. 

 

Comparison to the difference between payment to the generators 

and payment by the loads, 25.77$/hr, indicates that this accounts 

for it (within roundoff error).  

Thus we are led to conclude that 





genk

gkk

loadk

dkj

M

j

bjj PLMPPLMPPCC **
1


 

 

Let’s try to prove this. 

 

We show in the Appendix A (see eq. 26) that the LMPs at each bus 

are given by: 
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component Congestion                                     

component Loss                                      

componentEnergy                 :

1













M

j

jkj

dk

loss

k

t

P

P

LMPloadk







    

 

If we ignore the loss component, then LMP’s are given by: 





M

j

jkjk tLMP
1

  

where tjk are called shift factors and give the change in flow on 

circuit j to a change in real power injection at bus k, under a 

specified slack distribution, according to 

k

j

jk
P

F
t






     (1) 

If the network is linear over its entire operating range, then (1) 

applies even when  

0     ,0  kkjj PPFF     (2) 

so that 

k

j

jk
P

F
t 

     (3) 

or 

kjkj PtF      (4) 

In matrix form, (4) becomes: 

PTF       (5) 

 

We show in Appendix B how to compute shift factors. 

 

Then the congestion charge is: (Note there is a minus sign error on 

the below somewhere, need to find it). 
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N

k

M

j

jkjgk

N

k

M

j

jkj

dk

N

k

kgk

N

k

k

PPt

PPtPP

PPtPP

PPtPP

PPt

PtPt

PtPt

PLMPPLMPCC

1 1

1 11

1 11

1 1

1 1

1 11

1 11 1

11

0

**

**

**








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Now interchange the summation to obtain: 

 

 

 

 



 

 

 







M

j

jj

M

j

N

k
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M
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N

k
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M

j

N

k
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PPt

PPtCC

11 1

1 1

1 1






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Appendix A (LMPs) 
1.0 Objective function 

 

We make two simplifications on the objective function:  

 We assume that demand bids are not price sensitive, i.e., that 

demand is fixed, independent of the price. Therefore, the problem 

of maximizing the social surplus becomes one of maximizing the 

producer’s surplus, which is the same as minimizing the producer’s 

cost. So our objective function will be to minimize producers’s 

cost. 

 We assume that producers cost is expressed linearly as a function 

of their generation. You can think about this in two different ways.  

o The producers represent their cost functions using a 

piecewise linear approximation, or 

o The producers are simply making offers of certain quantities, 

at fixed prices. 

In either case, we may represent the objective function as 





N

k

gkkg PsPG
1

)(
     (1) 

where sk are the $/MWhr offers being made on an amount of 

generation of Pgk over 1 hour, and there are N generators making 

such offers. If bus k is a pure load bus, then Pgk=sk=0. 

 

2.0 Power balance 

 

If our analysis is based on linearized network representation, then 

it is implied that resistance has been assumed zero. Therefore, 

losses should be zero, and the power balance equation would be  

0
11

 


N

k

k

N

k

dkgk PPP
    (2) 

That left-hand summation of (2), when placed equal to 0, says that 

the sum of generation is exactly equal to the sum of demand. The 
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right-hand summation of (2), when placed equal to 0, says the sum 

of injections is exactly equal to zero. 

 

However, we will, for the moment, give a more general relation 

that accounts for losses, i.e.,  

loss

N

k

dkgk PPP 
1

    (3) 

 

3.0 Line flow constraints 

 

Regarding network representation, we assume that we have a 

constraint sensitivity matrix T with elements tjk that give the 

change in flow on circuit j to a change in real power injection at 

bus k, under a specified slack distribution, according to 

k

j

jk
P

F
t






     (4) 

If the network is linear over its entire operating range, then (4) 

applies even when  

0     ,0  kkjj PPFF     (5) 

so that 

k

j

jk
P

F
t 

     (6) 

or 

kjkj PtF      (7) 

In matrix form, (7) becomes: 

PTF       (8) 

It is important to note that the sensitivity factors of (6) are 

computed under a so-called “slack-bus” assumption which 

indicates how the change ΔPk is assumed to be compensated. It 

could be compensated from another certain bus, or from several 
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other buses, or from all other buses, and the elements of T will 

change depending on which of these is assumed. It is generally 

considered best to employ a so-called distributed slack bus 

assumption here where the compensation is assumed to come from 

all other generator buses. 

 

Given that we know the “normal” flow constraints on every circuit, 

then  

maxmax FFF      (9) 

Substitution of (8) into (9) results in 

maxmax FPTF     (10) 

We assume at this point that high flows in our network are 

unidirectional, i.e., we need not be concerned with high flows in 

both directions. This does not prevent bidirectional flows, it merely 

enables us to be concerned with reaching the upper bound in only 

one direction. Therefore, we may ignore the lower bound in (10) so 

that our circuit flow constraint is 

maxFPT       (11) 

In scalar form, (11) is 

MjFPt j

N

k

kjk ,...,1,max

1




    (12) 

and replacing injection with difference between generation and 

load, we obtain:  

MjFPPt j

N

k

dkgkjk ,...,1,)( max

1




   (13) 

 

4.0 Optimization problem for LOPF-1 
 

A linearized optimal power flow (OPF) problem minimizes (1) 

subject to (3) and (12), that is,  
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MjFPPt

PPP

ts

PsPG

j

N

k

dkgkjk

loss

N

k

dkgk

N

k

gkk

,...,1,)(

..

)(   min

max

1

1

1



















    (14) 

We will call (14) LOPF-1. 

 

The Lagrangian function for LOPF-1 is 

 

 
 




















M

j

j

N

k

dkgkjkjloss

N

k

dkgk

N

k

gkkg FPPtPPPPsPL
1

max

111

)(),,( 

(15) 

The first order conditions for finding the optimum to LOPF-1 

include: 

0)1(:
1










 



M

j

jkj

gk

loss
k

gk

t
P

P
s

P

L
genk    (16) 

But we are more interested in the load buses. Consider 















M

j

jkj

dk

loss

dk

t
P

P

P

L
loadk

1

)1(:     (17) 

Note carefully that Pdk is not a decision variable, and therefore we 

do not set it equal to 0.  

 

Let’s consider (17). What is this? To answer this question, we need 

to learn a theorem. 

5.0 Envelope theorem 
 

Consider the following optimization problem. 
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0),(   ..

),(max





xgts

xf
x

    (18) 

where x is the decision variable and θ is some parameter that is 

influential in the problem, but it is not a decision variable, i.e., we 

may not select its value. We desire to find how the optimal value 

of f changes with respect to θ. 

 

Let’s give a name to the optimal value of f. Let’s call it V; it is a 

function of θ. That is, 

)),(*()(  xfV      (19) 

Then what we are trying to find is  







 )(V
      (20) 

Note that V will change both because θ affects f and because it also 

affects the optimal choice of x.  

 

The Lagrangian function is 

),(),(),,(  xgxfxL    (21) 

Envelope theorem: The total rate of change in the optimal value of 

the objective function due to a small change in the parameter θ is 

the rate of change in the Lagrangian L evaluated at the optimal 

value of x. That is, 

*

),),(()(

xx

xLV

















   (22) 

The proof requires several lines of calculus that we omit here. 

 

6.0 Locational marginal price 
 

Need to review following paper to consider updating this part. 
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T. Organogianni and G. Gross, “A General Formulation for LMP 

Evaluation,” IEEE Trans. On Power Systems, Vol 22, No 3, Aug 

2007. 

 

Armed with the envelope theorem, we may now identify the 

meaning to (17), which is repeated here for convenience: 















M

j

jkj

dk

loss

dk

t
P

P

P

L
loadk

1

)1(:     (17) 

Equation (17) gives the change in the optimal value of the 

objective function due to a small change in the parameter Pdk.  

 

In other words, if we solve the optimization problem with 

Pdk=Pdk0, obtaining G*(Pdk0), and then resolve the optimization 

problem with Pdk=Pdk0+1, obtaining G*(Pdk0+1), then  

dk

dkdk
P

L
PGPG




 )(*)1(* 00    (23) 

We call 
dkP

L




 the LMP for bus k, that is, 










M

j

jkj

dk

loss
k t

P

P
LMPloadk

1

)1(:     (24) 

Written slightly different, it is 










M

j

jkj

dk

loss
k t

P

P
LMPloadk

1

:     (25) 

And (25) show us a very useful way to think about LMPs. They 

consist of three components: 

component Congestion                                     

component Loss                                      

componentEnergy                 :

1













M

j

jkj

dk

loss

k

t

P

P

LMPloadk







   (26) 

We discuss each one of these terms in what follows. 
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7.0 Energy component 
 

We are considering the components of the LMP at a particular bus 

k. The first component is the energy component, represented by λ.  

 

To gain better understanding of exactly what this is, we will 

neglect losses in our original formulation (14), resulting in 

MjFPPt

PP

ts

PsPG

j

N

k

dkgkjk

N

k

dkgk

N

k

gkk

,...,1,)(

0

..

)(   min

max

1

1

1



















  (27) 

 

Rewriting the equality constraint in (27) so that the function of 

decision variables is on the left-hand-side and constants on the 

right-hand-side, we have 

MjFPPt

PPP

ts

PsPG

j

N

k

dkgkjk

totD

N

k

dk

N

k

gk

N

k

gkk

,...,1,)(

..

)(   min

max

1

,

11

1



















   (28) 
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Now write the Lagrangian function: 

 
 




















M

j

j

N

k

dkgkjkj

N

k

dk

N

k

gk

N

k

gkkg FPPtPPPsPL
1

max

1111

)(),,( 

 

(29) 

or  

 
 




















M

j

j

N

k

dkgkjkjtotD

N

k

gk

N

k

gkkg FPPtPPPsPL
1

max

1

,

11

)(),,( 

(30) 

 

Notice that λ is the Lagrange multiplier (or dual variable) on the 

power balance equality constraint. This immediately gives us an 

interpretation of λ.  

 

The energy component λ of the LMP is the increase in the 

objective function (in this case, cost per hour) if demand 

PD,tot increases by 1 unit. 

 

Without losses, the LMP expression becomes (from (29)): 










M

j

jkj

dk

k t
P

L
LMPloadk

1

:     (31) 

The summation is the congestion component. If there is no 

congestion, then  
 kLMPloadk :      (32) 

Equation (32) makes the interesting point that, if we ignore losses, 

and if there is no congestion, then the LMP will equal to λ, and this 

will be true for every load bus in the network. 

 

One last comment here. It is worthwhile to identify what 

determines λ. We may gain insight to this via the first order 

condition (16) which, without losses, becomes 

0:
1





 



M

j

jkjk

gk

ts
P

L
genk     (33) 
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Solving for λ, we obtain: 





M

j

jkjk tsgenk
1

:      (34) 

Under the condition of no congestion, then 

ksgenk  :      (35) 

What does this mean?... 

 

To understand what this means, it is important to understand that 

Pgk for which we differentiate to obtain (35) must be “regulating,” 

i.e., it cannot be at its limit. We could have exposed this idea more 

clearly by including constraints on Pgk in the optimization problem 

formulation, in which case we would have obtained corresponding 

terms in the objective that would have vanished for regulating units 

and would have contributed for non-regulating units.  

 

Now consider how an electricity market works. Each generation 

owner offers in their sk with a corresponding range. The algorithm 

selects the lowest offer, and takes the full range of that offer, and 

then selects the next lowest offer, and then the next, and so on until 

the demand is met. Figure 1 illustrates. 

 

C’(P) 

P 

1 

2 

3 

4 

5 
6 

7 
8 

9 

 
Fig. 1 

The only unit that is selected, and is regulating, is unit 5. This is 

the unit for which λ=sk. It is the unit that will pick up the extra 



 18 

demand when the demand is increased by 1 unit. We say that unit 5 

is “on the margin.”  

 

8.0 Loss component 
 

Consider the expression for LMP again, from (25) 

 










M

j

jkj

dk

loss
k t

P

P
LMPloadk

1

:     (25) 

Assuming no congestion, we have 

dk

loss
k

P

P
LMPloadk




 :      (36) 

When we increase the demand at bus k by one unit, the losses will 

increase due to more current flowing through the network. 

Therefore the term 
dk

loss

P

P




 will be positive. This results in each bus 

seeing a higher LMP than that set by the energy component λ.  

 

For a particular bus k, the increase in LMPk beyond λ will depend 

on how an increase in that buses demand Pdk would be 

compensated. The way it would really be compensated is that the 

marginal unit would increase its generation. This would require 

dk

loss

P

P




 to be recomputed each time the marginal unit changes which 

is very frequent. What is really done is that 
dk

loss

P

P




 is computed for 

each bus under an assumed compensation strategy. For example, 

reference [ii]
1
 shows how to compute 

dk

loss

P

P




 relative to a 

distributed slack bus reference. We will not cover this but will 

simply assume the availability of 
dk

loss

P

P




.  

                                                 
1
 I have placed this reference on the web page. It is an excellent paper on LMP calculation. 
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9.0 Congestion component 
 

Finally, we reconsider the expression for LMP once again, from 

(25) 










M

j

jkj

dk

loss
k t

P

P
LMPloadk

1

:     (25) 

At this point, our interest is the last term. Let’s ignore the losses, 

resulting in 





M

j

jkjk tLMPloadk
1

:     (37) 

The summation in (37) will contain zero terms for all circuits j for 

which flow is not at the rating, i.e., the only non-zero terms in the 

summation will be for circuits that are at their rating, i.e., that are 

congested. Let’s consider that there is only one such circuit in the 

network, circuit 5. Then 

kk tLMPloadk 55:      (38) 

The Lagrange multiplier (dual variable) μ5 is on the flow constraint 

for circuit 5, and it will always be nonnegative. On the other hand, 

t5k, the generation shift factor, representing the change in flow on 

circuit 5 for an increase in injection at bus k, may be positive or 

negative. Thus we see that congestion, although usually increasing 

LMPs for most buses, can also decrease LMPs under certain 

conditions. 

 

We will study the effects of congestion on LMPs in some depth in 

the next set of notes. 
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Appendix B (Sensitivities) 
 

1.0 Introduction 

 

Operation of the Eastern Interconnection has become heavily 

reliant on using the so-called Interchange Distribution Calculator 

(IDC). This is an internet-accessed system that interfaces with 

OASIS and allows market participants and network operators to 

efficiently, but approximately, determine the change in MW flow 

on a flowgate given a set of changes in MW bus injections.  

 

A flowgate is a circuit or set of circuits that interconnect different 

regions of a network that can be limiting under some condition. 

 

The IDC does not represent buses but rather represents control 

areas, and there are 97 of them in the eastern interconnection. 

Therefore the flowgates often represent interconnections between 

these control areas; however, a flowgate may also be internal to a 

single control area as well. 

 

For our purposes, a control area is a bus, and the flowgates are 

interconnections between the buses.  

 

One of the most important uses of the IDC is in the coordination of 

Transmission Loading Relief (TLR) actions. TLR procedures are 

in place to guide operators in mitigating flows that exceed 

operational security limits. TLR levels, summarized in Table 1 [1] 

have been defined that correspond to different types of actions that 

may be taken for which curtailments must be made. When a TLR 

level 5 is declared, all ongoing transactions including those with 

firm transmission service are subject to curtailment.  
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What we desire to obtain, then, is an expression for computing the 

change in flow on a branch in a network for a given change in MW 

bus injection. 
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Table 1: Summary of TLR Levels [1] 

TLR 
Level 

RELIABILITY COORDINATOR Action Comments  

1 Notify RELIABILITY COORDINATORS of potential 
OPERATING SECURITY LIMIT violations 

 

S
y
s
te

m
 

S
e
c
u

re
 

2 Hold INTERCHANGE TRANSACTIONS at current levels to 
prevent OPERATING SECURITY LIMIT violations 

Of those transactions at or above the 
CURTAILMENT THRESHOLD, only those under 
existing Transmission Service reservations will 
be allowed to continue, and only to the level 
existing at the time of the hold. Transactions 
using Firm Point-to-Point Transmission Service 
are not held. See Section B.1. 

3a Reallocation Transactions using Non-firm Point-to-
Point Transmission Service are curtailed to allow 
Transactions using higher priority Point-to-Point 
Transmission Service 

Curtailment follows Transmission Service 
priorities. Higher priority transactions are 
enabled to start by the REALLOCATION process. 
See Section B.3. 

3b Curtail Transactions using Non-firm Point-to-Point 
Transmission Service to mitigate Operating Security 
Limit Violation 

Curtailment follows Transmission Service 
priorities. There are special considerations for 
handling Transactions using Firm Point-to-Point 
Transmission Service. See Section B.4. 

S
e
c
u

rity
 

L
im

it 
V

io
la

tio
n

 

4 Reconfigure transmission system to allow 
Transactions using Firm Point-to-Point Transmission 
Service to continue 

There may or may not be an OPERATING 

SECURITY LIMIT violation. There are special 
considerations for handling Transactions using 
Firm Point-to-Point Transmission Service. See 
Section B.5. 

 

5a Reallocation Transactions using Firm Point-to-Point 
Transmission Service are curtailed (pro rata) to allow 
new Transactions using Firm Point-to-Point 
Transmission Service to begin (pro rata). 

Attempts to accommodate all Transactions using 
Firm Point-to-Point Transmission Service, 
though at a reduced (“pro rata”) level. Pro forma 
tariff also requires curtailment / REALLOCATION on 
pro rata basis with Network Integration 
Transmission Service and Native Load. See 
Section B.6. 

S
y
s
te

m
 

S
e
c
u

re
 

5b Curtail Transactions using Firm Point-to-Point 
Transmission Service to mitigate Operating Security 
Limit Violation 

Pro forma tariff requires curtailment on pro rata 
basis with Network Integration Transmission 
Service and Native Load. See Section B.7. 

S
e
c
u

rity
 L

im
it 

V
io

la
tio

n
 6 Emergency Action Could include demand-side management, re-

dispatch, voltage reductions, interruptible and 
firm load shedding. See Section B.8. 

0 TLR Concluded Restore transactions. See Section B.9. 

 

S
y
s
te

m
 

S
e
c
u

re
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TLR 
Lev 

“Risk” Criteria Transaction criteria RELIABILITY 

COORD    
Action 

Comments 

IMMINENCE State 

1 Forsee possible condition 
resulting in violation 

Secure 

 Notify  

2 Expected to approach, is 
approaching, SOL 

 Hold Not > 30 minutes before going 
to higher levels so xactions may 
be made based on priority. 

3a Expected to approach is 
approaching, SOL 

Some non-firm ptp at or 
above curtailment thres –
holds, higher priority ptp 
reservation approved 

Reallocate Curtailments made at top of 
hour. 

3b Existing or imminent SOL 
violation or will occur on 
element removal 

Insecure 
or about 
to be 

Some non-firm ptp at or 
above their curtailment 
thresholds. 

Hold and 
Curtail 

Hold on  onfarm; Curtailments 
made immediately. 

4 Existing or imminent SOL 
violation 

Insecure
or about 
to be 

 Hold and 
Reconfigur
e 

Hold on  onfarm. 

5a At SOL, no further 
reconfig possible 

Secure 

All non-firm ptp at or 
above curtailment 
thresholds curtailed; 
xaction request for  
previously arranged firm 
xmission service. 

Reallocate Curtailments made at top of 
upcoming hour. 

5b Existing or imminent SOL 
violation or one will occur 
on element removal, no 
further reconfig possible 

Insecure
or about 
to be 

All non-firm ptp at or 
above curtailment 
thresholds curtailed. 

Curtail Curtailments made 
immediately. 

6 Existing SOL violation or 
one will occur upon 
element removal 

Insecure 
or about 
to be 

 Emergency 
Action 

Could include redispatch, 
reconfiguration, voltage 
reductions, interruptible and 
firm load shedding. 
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2.0 Calculation of Generation Shift Factors 

 

The desired quantity is referred to as the generation shift factor and 

will be denoted by tb,k. It gives the fraction of a change in injection 

at bus k that appears on branch b. The Power Transfer Distribution 

Factor (PTDF) is a generalization of the generation shift factor. 

 

This calculation of generation shift factors is relatively 

straightforward based on what we have done using the DC power 

flow model. 

 

Recall the DC power flow equations and the corresponding matrix 

relation for flows across branches. 

'BP        (1) 

 )( ADPB     (2) 

 Inverting eq (1) yields: 

  PB
1

'


      (3) 

Substitution of (3) into (2) yields:  

  PBADPB

1
')(


     (4) 

As we have previously defined in the notes on DC PowerFlow: 

 PB is the vector of branch flows. It has dimension of M x 1. 

Branches are ordered arbitrarily, but whatever order is chosen 

must also be used in D and A. 

 D is an M x M matrix having non-diagonal elements of zeros; 

the diagonal element in position row k, column k contains the 

negative of the susceptance of the k
th

 branch. 

 A is the M x (N-1) node-arc incidence matrix. 

 B’ is the DC power flow matrix of dimension (N-1)x(N-1), 

where N is the number of buses in the network, obtained from 

the Y-bus as follows: 
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1. Replace diagonal element B’kk with the sum of the non-

diagonal elements in row k. Alternatively, subtract bk (the 

shunt term) from Bkk, and multiply by -1. 

2. Multiply all off-diagonals by -1. 

3. Remove row 1 and column 1. 

 P is the vector of nodal injections for buses 2, …, N 

 

The calculation of eq. (4) provides the flows on all lines given the 

injections at all buses.  

 

Bus this is not what we want. What we want is the fraction change 

in flow on all lines given a change in injection at one bus. 

 

In other words, given a change in injection vector ∆P: 

0
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0

0

0

3

0

2

3

2

PP

P

P

P

P

P

P

P

P

P

P

P

P

P

N

k

N

k

N

k


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




















   (5) 

Therefore,  

   

   
  PBAD       

PPBAD       

PBADPBAD        

PPP BBB















1

01

011

0

')(

')(

')(')(

 (6) 
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Now let the ∆P vector be all zeros except for the element 

corresponding to the k
th

 bus, and assign this bus an injection 

change of 1. 





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
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
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



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










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P
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     (7) 

Then 

 






























































































0

1

0

0

')(
1

,

,

,2

,1

2

1












BAD

t

t

t

t

P

P

P

P

P

kM

kb

k

k

BM

Bb

B

B

B

  (8) 

Question: Does the above equation imply that the injection is 

changed at only one bus? Explain. 

 

Definition: The generation shift factor tb,k is defined as 

Policy
onReallocati

,
k

Bb
kb

P

P
t






 

Example 1: 

Consider the example that we started in the “PowerFlow” notes. 

Compute the generation shift factors for all branches 

corresponding to an increase in bus 2 injection and a decrease in 

bus 3 injection. 
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Note that the above generation shift factors are for a “double shift.”  

 

You can think of it like this. A generation shift factor for branch b, 

bus k would be kbt , and another generation shift factor for branch 

b, bus j would be .,2 jbt If we have an injection increase at bus k 

of ∆Pk and an injection increase at bus j of ∆Pj, then  

jjbkkbb PtPtP  ,,    (9) 

 
Therefore, if ∆Pk=-∆Pj, then 

Increase Pk,  

Decrease P1 

Decrease Pj,  

Increase P1 
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  kjbkbb PttP  ,,    (10) 

 

 

3.0 Generation Shift Factors with Distributed Slack 

 

Equation (8) shows how to compute the generation shift factors for 

the case when a single specified slack bus corresponds to bus 1.  

 

Example 1 above shows how to compute the generation shift 

factors for the case when a single specified slack bus corresponds 

to some other bus in the network (not the bus corresponding to the 

reference by way of omission from its corresponding row and 

column in the B’ matrix).  

 

What we are interested in here is computation of generation shift 

factors for the case when we would like to distribute the slack, or 

the compensation, throughout the network. The key criterion to 

guide this is that the elements in the nodal injection vector should 

correspond to the percentage of desired compensation for each bus. 

 

This criterion is illustrated below: 
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  (11) 

where  
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    (12) 

is the allocation desired for the reference bus.  

 

One way to distribute the slack is to distribute equally to all buses. 

In this case, 

1

1






N
ci      (13) 

where we use N-1 in the denominator because one bus, bus k, is the 

bus for which the computation is being made (and therefore ck=1). 

If we use (13), then we can substitute into (12) to obtain: 
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Example 2: 

Using the system from Example 1 above, compute generation shift 

factors for all branches corresponding to an increase in bus 2 

injection, when the slack is equally distributed to all buses. 
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It is of interest to compare the answer from the example where the 

slack was distributed entirely to bus 3 and the example where the 

slack was distributed to all buses. 
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Clearly the assumption on slack distribution is important! 

 

There are other ways to distribute the slack. For example, we may 

distribute the slack equally to all generation buses. Or we may 

distribute the slack equally to all load buses. Or we may distribute 

the slack to all generation buses in proportion to the MVA rating of 

the generation that is located there (this approach conforms best to 

reality, as we will see when we study AGC). 

 

4.0 Generation Shift Factor Matrix 

 

Given a specified slack distribution, we may compute a matrix of 

generation shift factors according to 
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The above assumes that we desire generation shift factors for every 

branch (a row of T) and every bus (a column of T). Note that the 

first column of T is for a shift at the bus 1, which is the one 

assumed to be deleted from the B’ matrix. 

 

However, we need not include every branch. There may be some 

branches that we know from experience will never overload, or 

there may be policy that requires a particularly application to only 

monitor certain branches. The latter is the case for NERC’s IDC 

described at the beginning of this document. 
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Example 3: Let’s compute the T-matrix for Example 2. We assume 

a distributed slack bus, where, c=-1/3. Therefore 
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The one-line diagram is shown below to facilitate understanding of 

the relation between increased injection at bus k (the columns) and 

how branch flows are affected (the rows). 
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Remember: each column is the set of shift factors for a unit 

increase in injection (generation) at a certain bus. Column 1 is 

when the injection at bus 1 is increased (there is no “1” in that 

column because that is the one corresponding to the bus that was 

deleted in the B’ matrix). Column 2 is when the injection at bus 2 

is increased, and so on.  
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