Costs of Generating Electrical Energy

1.0 Overview

The costs of electrical energy generation can be divided into two broad areas: ownership or sunk costs and operating or avoidable costs. These costs are illustrated below.

Typical values of these costs are given in the following table [1]. Some notes of interest follow:

- The “overnight cost” is the cost of constructing the plant, in $/kW, if the plant could be constructed in a single day.
- The “variable O&M” is in mills/kWhr (a mill is 0.1¢). These values represent mainly maintenance costs. They do not include fuel costs.
- Fuel costs are computed through the heat rate. We will discuss this calculation in depth.
- The heat rate values given are average values.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrubbed pulverized supercritical coal new</td>
<td>600</td>
<td>4</td>
<td>2,223</td>
<td>4.69</td>
<td>28.15</td>
<td>9,200</td>
<td>1,661</td>
<td>0.7007</td>
<td>0.579</td>
<td>0.107</td>
<td>9.45E-06</td>
</tr>
<tr>
<td>Integrated coal-gasification combined cycle (IGCC)</td>
<td>550</td>
<td>4</td>
<td>2,569</td>
<td>2.99</td>
<td>39.53</td>
<td>8,765</td>
<td>1,459</td>
<td>0.0942</td>
<td>0.406</td>
<td>0.053</td>
<td>4.24E-06</td>
</tr>
<tr>
<td>IGCC with carbon sequestration</td>
<td>380</td>
<td>4</td>
<td>3,776</td>
<td>4.54</td>
<td>47.15</td>
<td>10,781</td>
<td>154</td>
<td>0.0751</td>
<td>0.366</td>
<td>0.056</td>
<td>4.48E-06</td>
</tr>
<tr>
<td>Conventional gas/oil combined cycle</td>
<td>250</td>
<td>3</td>
<td>984</td>
<td>2.11</td>
<td>12.76</td>
<td>7,196</td>
<td>Negligible</td>
<td>0.203</td>
<td>Negligible</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Advanced gas/oil combined cycle</td>
<td>400</td>
<td>3</td>
<td>968</td>
<td>2.04</td>
<td>11.96</td>
<td>6,752</td>
<td>Negligible</td>
<td>0.06</td>
<td>Negligible</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Adv gas combined cycle with carbon sequestration</td>
<td>400</td>
<td>3</td>
<td>1,932</td>
<td>3.01</td>
<td>20.35</td>
<td>8,613</td>
<td>Negligible</td>
<td>0.066</td>
<td>Negligible</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Conventional combustion turbine</td>
<td>160</td>
<td>2</td>
<td>685</td>
<td>3.65</td>
<td>12.38</td>
<td>10,788</td>
<td>None</td>
<td>0.117</td>
<td>Negligible</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Advanced combustion turbine</td>
<td>230</td>
<td>2</td>
<td>648</td>
<td>3.24</td>
<td>10.77</td>
<td>9,289</td>
<td>217.7</td>
<td>None</td>
<td>0.117</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Fuel cells</td>
<td>10</td>
<td>3</td>
<td>5,478</td>
<td>49.00</td>
<td>5.78</td>
<td>7,930</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Advanced nuclear</td>
<td>1,350</td>
<td>6</td>
<td>3,820</td>
<td>0.51</td>
<td>92.04</td>
<td>10,488</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Biomass</td>
<td>80</td>
<td>4</td>
<td>3,849</td>
<td>6.86</td>
<td>65.89</td>
<td>9,451</td>
<td>Negligible</td>
<td>0.07</td>
<td>1.575</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td>50</td>
<td>4</td>
<td>1,749</td>
<td>0.00</td>
<td>168.33</td>
<td>32,969</td>
<td>Negligible</td>
<td>Negligible</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Landfill gas</td>
<td>30</td>
<td>3</td>
<td>2,599</td>
<td>0.01</td>
<td>116.80</td>
<td>13,648</td>
<td>Unknown</td>
<td>Unknown</td>
<td>1.833</td>
<td>0.388</td>
<td></td>
</tr>
<tr>
<td>Conventional hydropower</td>
<td>500</td>
<td>4</td>
<td>2,291</td>
<td>2.49</td>
<td>13.93</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>50</td>
<td>3</td>
<td>1,966</td>
<td>0.00</td>
<td>30.98</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Wind offshore</td>
<td>100</td>
<td>4</td>
<td>3,937</td>
<td>0.00</td>
<td>86.92</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Concentrated solar power</td>
<td>100</td>
<td>3</td>
<td>5,132</td>
<td>0.00</td>
<td>58.05</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Photovoltaic</td>
<td>5</td>
<td>2</td>
<td>6,171</td>
<td>0.00</td>
<td>11.94</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
We will focus on the operating costs in these notes. Our goal is to characterize the relation between the cost and the amount of electric energy out of the power plant.

2.0 Fuels

Fuel costs dominate the operating costs necessary to produce electrical energy (MW) from the plant, sometimes called production costs. To give you some idea of the difference between costs of different fuels, some typical average costs of fuel are given in the following table for coal, petroleum, and natural gas. Average costs of uranium are about $0.65/MBTU. One should note in particular

- The difference between lowest and highest average price over this 15 year period for coal, petroleum, and natural gas are by factors of 1.72, 7.27, and 4.60, respectively, so coal has had more stable price variability than petroleum and natural gas.
- During 2008, coal is $2.07/MBTU, petroleum $15.56/MBTU, and natural gas $9.11/MBTU, so coal is clearly a more economically attractive fuel for producing electricity (gas may begin to look much better if a CO2 cap-n-trade system is begun).
Despite the high price of natural gas as a fuel relative to coal, the 2000-2009 time period saw new combined cycle gas-fired plants far outpace new...
coal-fired plants, with gas accounting for over 85% of new capacity in this time period [3] (of the remaining, 14% was wind). The reason for this has been that natural-gas-fired combined cycle plants have

- lower capital costs,
- higher fuel efficiency,
- shorter construction lead times, and
- lower emissions.

Natural gas prices have declined significantly during the past two years, mainly due to the increase of supply from shale gas, as indicated by the below figure, and so it is likely natural gas will remain a central player for some years to come.
Planned capacity will continue to emphasize gas and wind plants, although coal plants will also play a role, as indicated below [4].

![Figure ES 3. Planned Capacity Additions, 2010-2014](source: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report")

3.0 Fuels continued – transportation & emissions

The ways of moving bulk quantities of energy in the nation are via rail & barge (for coal), gas pipeline, & electric transmission, illustrated in Fig. 0a.
An important influence in the way fuel is moved is the restriction on sulfur dioxide (SO2):

- Cap-and-trade: control SO2 emissions
- 1 allowance=1 ton SO2, compliance period: 1 yr.

Compliance strategies:
- Retrofit units with scrubbers
- Build new power plants w/ low emission rates
- Switch fuel (or source of fuel)
- Trade allowances with other organizations
- Bank allowances
- Purchase power

- National annual emission limit: ~ 9 million tons
• Emissions produced depends on fuel used, pollution control devices installed, and amount of electricity generated
• Allowance trading occurs directly among power plants (with a significant amount representing within-company transfers), through brokers, and in annual auctions conducted by the US Environmental Protection Agency (EPA). Fig 0b indicates the organizations most heavily involved in this trading [5].

Fig. 0b:
Coal is classified into four ranks: lignite (Texas, N. Dakota), sub-bituminous (Wyoming), bituminous (central Appalachian), anthracite (Penn), reflecting the progressive increase in age, carbon content, and heating value per unit of weight.
The below table illustrates differences among coal throughout the country, in terms of capacity, heat value, sulfur content, and minemouth price. Appalachian coal is primarily bituminous, mainly mined underground, whereas Wyoming coal is subbituminous, mainly mined from the surface.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Appalachia</td>
<td>169,819</td>
<td>24.04</td>
<td>1.83</td>
<td>24.79</td>
</tr>
<tr>
<td>Central Appalachia</td>
<td>335,926</td>
<td>25.03</td>
<td>0.75</td>
<td>30.18</td>
</tr>
<tr>
<td>Southern Appalachia</td>
<td>28,221</td>
<td>24.66</td>
<td>0.57</td>
<td>33.61</td>
</tr>
<tr>
<td>Illinois Basin</td>
<td>121,801</td>
<td>22.73</td>
<td>2.03</td>
<td>22.86</td>
</tr>
<tr>
<td>Western Interior</td>
<td>2,538</td>
<td>23.58</td>
<td>2.28</td>
<td>27.86</td>
</tr>
<tr>
<td>Gulf Coast Lignite</td>
<td>56,063</td>
<td>13.10</td>
<td>1.62</td>
<td>17.02</td>
</tr>
<tr>
<td>North Dakota Lignite</td>
<td>32,400</td>
<td>13.24</td>
<td>1.15</td>
<td>8.46</td>
</tr>
<tr>
<td>Powder River Basin</td>
<td>479,761</td>
<td>17.45</td>
<td>0.39</td>
<td>6.63</td>
</tr>
<tr>
<td>Rocky Mountains</td>
<td>75,185</td>
<td>22.81</td>
<td>0.40</td>
<td>17.96</td>
</tr>
<tr>
<td>Southwest</td>
<td>56,653</td>
<td>20.22</td>
<td>0.63</td>
<td>22.47</td>
</tr>
<tr>
<td>Northwest</td>
<td>7,284</td>
<td>15.63</td>
<td>1.13</td>
<td>8.92</td>
</tr>
</tbody>
</table>

Although the above table is a little dated, its general message is still relevant, as confirmed by the figures below [6], where we see western coal production climbing, due to facts that (a) its $/BTU is much more attractive, and (b) it has low sulfur content.

Carbon content of three coal types is given in [7].
As a result, a great deal of coal is transported from Wyoming eastward, as illustrated in Fig. 0c.

The Coal Dog….
Powder River Basin Coal Movement

Fig. 0c
We do not have a national CO2 cap and trade market yet, but there is a regional one called the Regional Greenhouse Gas Initiative (RGGI) – see http://www.rggi.org/home. There WAS serious discussion ongoing to develop a national one, as indicated by the following table.
Kerry-Lieberman-Graham unveiled a 2nd version of the senate bill on 12/10/09. This would have been very important to costs of energy production. For example, a “low” CO2 cost would be about $10/ton of CO2 emitted, which would increase energy cost from a typical coal-fired plant from about $60/MWhr to about $70/MWhr. However, the Senate bill never passed, and all indications are that today, it is dead.

4.0 CO₂ Emissions - overview

There is increased acceptance worldwide that global warming is caused by emission of greenhouse gases into the atmosphere. These greenhouse gases are (in order of their contribution to the greenhouse effect on Earth) [8]:

- Water vapor: causes 36-70% of the effect
- Carbon dioxide (CO₂): causes 9-26% of the effect
- Methane (CH₄): causes 4-9% of the effect
- Nitrous oxide (N₂O):
- Ozone (O₃): causes 3-7% of the effect
- Chlorofluorocarbons (CFCs) are compounds containing chlorine, fluorine, and carbon, (no H₂). CFCs are commonly used as refrigerants (e.g., Freon).

<table>
<thead>
<tr>
<th></th>
<th>Waxman-Markey (House, passed)</th>
<th>Kerry-Boxer (Senate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012 renewables target</td>
<td>6% of electric energy renewable</td>
<td>In separate bill (Bingaman)</td>
</tr>
<tr>
<td>2020 renewables target</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>2012 Emissions target</td>
<td>Cuts by 3% (2005 baseline)</td>
<td>Cuts by 3% (2005 baseline)</td>
</tr>
<tr>
<td>2020 Emissions target</td>
<td>Cuts by 20%</td>
<td>Cuts by 20%</td>
</tr>
<tr>
<td>2030 Emissions target</td>
<td>42%</td>
<td>42%</td>
</tr>
<tr>
<td>2050 Emissions target</td>
<td>83%</td>
<td>83%</td>
</tr>
</tbody>
</table>
The DOE EIA publishes an excellent annual report on annual greenhouse gas emissions in the US, for example, the one published in November 2007 (for 2006) is [9], and the one published in December 2009 (for 2008) is [10]. All such reports, since 1995, may be found at [11]. One figure from the report for 2006 is provided below as Figure 9a. The information that is of most interest to us in this table is in the center, which is summarized in Table 3a.

Note that each greenhouse gas is quantified by “million metric tons of carbon dioxide equivalents,” or MMTCO₂e. Carbon dioxide equivalents are the amount of carbon dioxide by weight emitted into the atmosphere that would produce the same estimated radiative forcing as a given weight of another radiatively active gas [9].

![Fig. 9a: Summary of US Greenhouse Gas Emissions, 2006](image-url)
Table 3a: Greenhouse Gas Total, 2006

<table>
<thead>
<tr>
<th>Sectors</th>
<th>MMTCO$_2$e</th>
<th>% total CO$_2$</th>
<th>% total GHG</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Power Sector</td>
<td>2344</td>
<td>39.1</td>
<td>32.8**</td>
</tr>
<tr>
<td>From DFU-transp</td>
<td>1885</td>
<td>31.4</td>
<td>26.4**</td>
</tr>
<tr>
<td>From DFU-other</td>
<td>1661</td>
<td>27.7</td>
<td>23.3**</td>
</tr>
<tr>
<td>From ind. processes</td>
<td>109</td>
<td>1.8</td>
<td>1.5**</td>
</tr>
<tr>
<td>Total CO$_2$</td>
<td>5999</td>
<td>100</td>
<td>84.0</td>
</tr>
<tr>
<td>Non-CO$_2$ GHG</td>
<td>1141</td>
<td></td>
<td>16.0</td>
</tr>
<tr>
<td>Total GHG</td>
<td>7140</td>
<td></td>
<td>100.</td>
</tr>
</tbody>
</table>

*The direct fuel use (DFU) sector includes transportation, industrial process heat, space heating, and cooking fueled by petroleum, natural gas, or coal. The DFU-transportation CO$_2$ emissions of 1885 MMT was obtained from the lower right-hand-side of Fig. 9a. The DFU-other CO$_2$ emissions of 1661 MMT was obtained as the difference between total DFU emissions of 3546 MMT (given at top-middle of Fig. 9a) and the DFU-transportation emissions of 1885 MMT.

** The “% total GHG” for the 4 sectors (power, DFU-transp, DFU-other, and ind processes) do not include the Non-CO$_2$ GHG emitted from these four sectors, which are lumped into the single row “Non-CO$_2$ GHG.” If we assume that each sector emits the same percentage of Non-CO$_2$ GHG as CO$_2$, then the numbers under “% total CO$_2$” are representative of each sector’s aggregate contribution to CO$_2$ emissions. The only sector we can check this for is transportation, where we know Non-CO$_2$ emissions are 126MMT, which is only 11% of the 1141 MMT total non-CO$_2$, significantly less than the % of total CO$_2$ for transportation, which is 31.4%.

Figure 9b [10] is the same picture as Fig. 9a except it is for the year 2008; the information is summarized in Table 3b.

![Fig. 9b: Summary of US Greenhouse Gas Emissions, 2008](image-url)
Table 3b: Greenhouse Gas Total, 2008

<table>
<thead>
<tr>
<th>Sectors</th>
<th>MMTCO₂e</th>
<th>% total CO₂</th>
<th>% total GHG</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Power Sector</td>
<td>2359</td>
<td>39.8</td>
<td>33.18**</td>
</tr>
<tr>
<td>*From DFU-transp</td>
<td>1819</td>
<td>30.8</td>
<td>25.5**</td>
</tr>
<tr>
<td>*From DFU-other</td>
<td>1636</td>
<td>27.6</td>
<td>22.9**</td>
</tr>
<tr>
<td>From ind. processes</td>
<td>104</td>
<td>1.8</td>
<td>1.5**</td>
</tr>
<tr>
<td>Total CO₂</td>
<td>5918</td>
<td>100</td>
<td>83.0</td>
</tr>
<tr>
<td>Non-CO₂ GHG</td>
<td>1213</td>
<td></td>
<td>17.0</td>
</tr>
<tr>
<td>Total GHG</td>
<td>7131</td>
<td></td>
<td>100.</td>
</tr>
</tbody>
</table>

*The direct fuel use (DFU) sector includes transportation, industrial process heat, space heating, and cooking fueled by petroleum, natural gas, or coal. The DFU-transportation CO₂ emissions of 1819 MMT was obtained from the lower right-hand-side of Fig. 9b. The DFU-other CO₂ emissions of 1636 MMT was obtained as the difference between total DFU emissions of 3555 MMT (given at top-middle of Fig. 9b) and the DFU-transportation emissions of 1819 MMT. ** The “% total GHG” for the 4 sectors (power, DFU-transp, DFU-other, and ind processes) do not include the Non-CO₂ GHG emitted from these four sectors, which are lumped into the single row “Non-CO₂ GHG.” If we assume that each sector emits the same percentage of Non-CO₂ GHG as CO₂, then the numbers under “% total CO₂” are representative of each sector’s aggregate contribution to CO₂ emissions. The only sector we can check this for is transportation, where we know Non-CO₂ emissions are 127MMT, which is only 10.5% of the 1213 MMT total non-CO₂, significantly less than the % of total CO₂ for transportation, which is 30.8%.

Some numbers to remember from Tables 3a and 3b are

- Total US GHG emissions are about 7100 MMT/year.
- Of these, about 83-84% are CO₂.
- Percentage of GHG emissions from power sector is about 40% (see ** note for Tables 3a and 3b).
- Percentage of GHG emissions from transportation sector is about 31% (see ** note for Tables 3a and 3b).
- Total Power Sector + Transportation Sector emissions is about 71% (see ** note for Tables 3a and 3b).

5.0 CO₂ Emissions – power sector

Figure 10a [10] shows that electric sector CO₂ emissions from the electric power sector have been generally rising from 1990 to 2008, but the fact that they are rising more slowly than power sector sales indicates that emissions per
unit of energy consumed is decreasing. Note that the emissions values given in Fig. 10a have been normalized by the value in the year 2000, which was 2293.5 MMT.

![Figure 13. U.S. Electric Power Sector Energy Sales and Losses and CO₂ Emissions from Primary Fuel Combustion, 1990-2008](image)

Fig. 10a: Electric power sector CO₂ emissions by year

Table 4 [10] shows the year-by-year breakdown of electric power sector CO₂ emissions by fuel. We see the dominant contributor is coal, with natural gas a distant second.

Table 4: Yearly breakdown of electric sector CO₂ emissions

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum</td>
<td>91.6</td>
<td>44.6</td>
<td>68.6</td>
<td>51.9</td>
<td>68.5</td>
<td>69.3</td>
<td>69.1</td>
<td>28.4</td>
<td>31.3</td>
<td>18.8</td>
</tr>
<tr>
<td>Residual Fuel Oil</td>
<td>7.1</td>
<td>7.9</td>
<td>12.6</td>
<td>9.3</td>
<td>11.8</td>
<td>8.1</td>
<td>8.4</td>
<td>5.4</td>
<td>5.5</td>
<td>5.2</td>
</tr>
<tr>
<td>Distillate Fuel Oil</td>
<td>3.1</td>
<td>0.2</td>
<td>10.1</td>
<td>17.9</td>
<td>17.0</td>
<td>22.7</td>
<td>24.9</td>
<td>21.6</td>
<td>17.5</td>
<td>10.6</td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>101.8</td>
<td>60.7</td>
<td>91.5</td>
<td>79.1</td>
<td>98.1</td>
<td>100.1</td>
<td>102.3</td>
<td>55.6</td>
<td>55.3</td>
<td>39.7</td>
</tr>
<tr>
<td>Petroleum Subtotal</td>
<td>1,531.2</td>
<td>1,648.7</td>
<td>1,910.8</td>
<td>1,872.4</td>
<td>1,910.7</td>
<td>1,922.9</td>
<td>1,963.9</td>
<td>1,937.8</td>
<td>1,970.6</td>
<td>1,945.9</td>
</tr>
<tr>
<td>Coal</td>
<td>175.5</td>
<td>228.2</td>
<td>280.9</td>
<td>306.0</td>
<td>273.3</td>
<td>296.8</td>
<td>319.1</td>
<td>338.2</td>
<td>371.7</td>
<td>362.0</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>5.7</td>
<td>0.9</td>
<td>16.0</td>
<td>12.6</td>
<td>11.3</td>
<td>11.1</td>
<td>11.1</td>
<td>11.4</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Municipal Solid Waste</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Geothermal</td>
<td>1,814.6</td>
<td>1,947.9</td>
<td>2,293.5</td>
<td>2,270.5</td>
<td>2,298.8</td>
<td>2,331.3</td>
<td>2,396.8</td>
<td>2,343.5</td>
<td>2,499.1</td>
<td>2,359.1</td>
</tr>
</tbody>
</table>

Table 11. U.S. Carbon Dioxide Emissions from Electric Power Sector Energy Consumption, 1990-2008

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum</td>
<td>91.6</td>
<td>44.6</td>
<td>68.6</td>
<td>51.9</td>
<td>68.5</td>
<td>69.3</td>
<td>69.1</td>
<td>28.4</td>
<td>31.3</td>
<td>18.8</td>
</tr>
<tr>
<td>Residual Fuel Oil</td>
<td>7.1</td>
<td>7.9</td>
<td>12.6</td>
<td>9.3</td>
<td>11.8</td>
<td>8.1</td>
<td>8.4</td>
<td>5.4</td>
<td>5.5</td>
<td>5.2</td>
</tr>
<tr>
<td>Distillate Fuel Oil</td>
<td>3.1</td>
<td>0.2</td>
<td>10.1</td>
<td>17.9</td>
<td>17.0</td>
<td>22.7</td>
<td>24.9</td>
<td>21.6</td>
<td>17.5</td>
<td>10.6</td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>101.8</td>
<td>60.7</td>
<td>91.5</td>
<td>79.1</td>
<td>98.1</td>
<td>100.1</td>
<td>102.3</td>
<td>55.6</td>
<td>55.3</td>
<td>39.7</td>
</tr>
<tr>
<td>Petroleum Subtotal</td>
<td>1,531.2</td>
<td>1,648.7</td>
<td>1,910.8</td>
<td>1,872.4</td>
<td>1,910.7</td>
<td>1,922.9</td>
<td>1,963.9</td>
<td>1,937.8</td>
<td>1,970.6</td>
<td>1,945.9</td>
</tr>
<tr>
<td>Coal</td>
<td>175.5</td>
<td>228.2</td>
<td>280.9</td>
<td>306.0</td>
<td>273.3</td>
<td>296.8</td>
<td>319.1</td>
<td>338.2</td>
<td>371.7</td>
<td>362.0</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>5.7</td>
<td>0.9</td>
<td>16.0</td>
<td>12.6</td>
<td>11.3</td>
<td>11.1</td>
<td>11.1</td>
<td>11.4</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Municipal Solid Waste</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Geothermal</td>
<td>1,814.6</td>
<td>1,947.9</td>
<td>2,293.5</td>
<td>2,270.5</td>
<td>2,298.8</td>
<td>2,331.3</td>
<td>2,396.8</td>
<td>2,343.5</td>
<td>2,499.1</td>
<td>2,359.1</td>
</tr>
</tbody>
</table>

Table 4 is for CO₂ emissions only – it does not include Non-CO₂ emissions.
Note that coal is the largest contributor to CO₂ emissions. For example, in year 2008, it contributed 1945.9 MMT, 82.5% of the total power sector CO₂ emissions. The next highest contributor was natural gas, at 362 MMT, which is 15.3% of the total. The two combined account for 97.8% of power sector CO₂ emissions.

CO₂ emissions from gas are only 18.6% of CO₂ emissions from coal. **This does NOT imply that**
- CO₂ emissions per MWhr from a natural gas power plant are 18.6% of the
- CO₂ emissions per MWhr from a coal-fired power plant!!

The fact that coal is the largest contributor to GHG emissions is due to
(a) it is used to produce about half of US electricity,
(b) it has the highest emissions/energy content ratio, as indicated by Table 5 below [12],
(c) its average conversion efficiency is not very good.
Table 5: Emission Coefficients for Different Fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Code</th>
<th>Emission Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pounds CO2 per Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume or Mass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds CO2 per Million Btu</td>
</tr>
<tr>
<td>Petroleum Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aviation Gasoline</td>
<td>AV</td>
<td>18.355 per gallon</td>
</tr>
<tr>
<td>Distillate Fuel (No. 1, No. 2, No. 4 Fuel Oil and Diesel)</td>
<td>DF</td>
<td>22.384 per gallon</td>
</tr>
<tr>
<td>Jet Fuel</td>
<td>JF</td>
<td>21.095 per gallon</td>
</tr>
<tr>
<td>Kerosene</td>
<td>KS</td>
<td>21.537 per gallon</td>
</tr>
<tr>
<td>Liquified Petroleum Gases (LPG)</td>
<td>LG</td>
<td>12.805 per gallon</td>
</tr>
<tr>
<td>Motor Gasoline</td>
<td>MG</td>
<td>19.564 per gallon</td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>PC</td>
<td>32.397 per gallon</td>
</tr>
<tr>
<td>Residual Fuel (No. 5 and No. 6 Fuel Oil)</td>
<td>RF</td>
<td>26.033 per gallon</td>
</tr>
<tr>
<td>Natural Gas and Other Gaseous Fuels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>ME</td>
<td>116.376 per 1000 ft³</td>
</tr>
<tr>
<td>Landfill Gas</td>
<td>LF</td>
<td>1 per 1000 ft³</td>
</tr>
<tr>
<td>Flare Gas</td>
<td>FG</td>
<td>133.759 per 1000 ft³</td>
</tr>
<tr>
<td>Natural Gas (Pipeline)</td>
<td>NG</td>
<td>120.593 per 1000 ft³</td>
</tr>
<tr>
<td>Propane</td>
<td>PR</td>
<td>12.669 per gallon</td>
</tr>
<tr>
<td>Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracite</td>
<td>AC</td>
<td>5685 per short ton</td>
</tr>
<tr>
<td>Bituminous</td>
<td>BC</td>
<td>4931.3 per short ton</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>SB</td>
<td>3715.9 per short ton</td>
</tr>
<tr>
<td>Lignite</td>
<td>LC</td>
<td>2791.6 per short ton</td>
</tr>
<tr>
<td>Renewable Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>BM</td>
<td>Varies depending on the composition of the biomass</td>
</tr>
<tr>
<td>Geothermal Energy</td>
<td>GE</td>
<td>0</td>
</tr>
<tr>
<td>Wind</td>
<td>WN</td>
<td>0</td>
</tr>
<tr>
<td>Photovoltaic and Solar Thermal</td>
<td>PV</td>
<td>0</td>
</tr>
<tr>
<td>Hydropower</td>
<td>HY</td>
<td>0</td>
</tr>
<tr>
<td>Tires/Tire-Derived Fuel</td>
<td>TF</td>
<td>6160 per short ton</td>
</tr>
<tr>
<td>Wood and Wood Waste 2</td>
<td>WW</td>
<td>3812 per short ton</td>
</tr>
<tr>
<td>Municipal Solid Waste 2</td>
<td>MS</td>
<td>1999 per short ton</td>
</tr>
<tr>
<td>Nuclear</td>
<td>NU</td>
<td>0</td>
</tr>
</tbody>
</table>

One possible misleading indication from Table 5 is that the pounds CO₂/MBTU is based on energy content of the fuel. What is of more interest is the CO₂/MWhr obtained from the fuel together with a particular generation technology. To get this, we need efficiencies of the generation technologies. Fig. 10b provides such efficiencies; the resource from which it came [13] provides a good overview of various factors affecting generation efficiencies.
Fig. 10b: Generation efficiencies
Table 5 and Fig. 10b provide the ability to compare different technologies in terms of CO₂/MWhr. For example, let’s compare a natural gas combined cycle (NGCC) plant (η=.58), a gas turbine (η=.39), and a coal-fired power plant (η=.39), where the CO₂ content of the natural gas is 117.08 lbs/MBTU and the CO₂ content of the coal, assuming it uses (Powder River Basin) sub-bituminous coal is 212.7 lbs/MBTU. (Note: coal has a different energy & CO₂ content, depending on type) [14].

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Carbon Dioxide (lbs/mmBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bituminous Coal</td>
<td>205.3</td>
</tr>
<tr>
<td>Subbituminous Coal</td>
<td>212.7</td>
</tr>
<tr>
<td>Lignite</td>
<td>215.4</td>
</tr>
</tbody>
</table>
NGCC:

$$117.08 \frac{lbs}{MBTU_{IN}} \times \frac{1MBTU_{IN}}{.58MBTU_{OUT}} = 201.9 \frac{lbs}{MBTU_{OUT}} \times \frac{3.41MBTU}{MWhr} = 688.5 lbs / MWhr$$

Gas turbine:

$$117.08 \frac{lbs}{MBTU_{IN}} \times \frac{1MBTU_{IN}}{.39MBTU_{OUT}} = 300.2 \frac{lbs}{MBTU_{OUT}} \times \frac{3.41MBTU}{MWhr} = 1023.7 lbs / MWhr$$

Coal-fired plant:

$$212.7 \frac{lbs}{MBTU_{IN}} \times \frac{1MBTU_{IN}}{.39MBTU_{OUT}} = 545.4 \frac{lbs}{MBTU_{OUT}} \times \frac{3.41MBTU}{MWhr} = 1859.8 lbs / MWhr$$

The below table, from [15], indicates similar numbers for a pulverized coal (PC) plant, a circulating fluidized bed (CFB) plant, an integrated gasification combined cycle (IGCC) plant, and a combined cycle plant. Note that the fuels for the first three of these are all coal, and they have similar emissions/MWhr ratios. The combined cycle plant has a bit higher ratio (810 instead of 688.5) because it assumed a lower efficiency (49.3% instead of 58%).

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Unit</th>
<th>PC</th>
<th>CFB</th>
<th>IGCC</th>
<th>Combined Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
<td>Coal</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>NOx</td>
<td>lb/MBtu</td>
<td>0.05 - 0.07</td>
<td>0.07 - 0.11</td>
<td>0.055 - 0.10</td>
<td>0.007-0.013</td>
</tr>
<tr>
<td></td>
<td>lb/MWh</td>
<td>0.55</td>
<td>0.85</td>
<td>0.68</td>
<td>0.07</td>
</tr>
<tr>
<td>SO2</td>
<td>lb/MBtu</td>
<td>0.06 - 0.1</td>
<td>0.04 - 0.13</td>
<td>0.015 - 0.045</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>lb/MWh</td>
<td>0.74</td>
<td>0.80</td>
<td>0.27</td>
<td>0.004</td>
</tr>
<tr>
<td>PM/PM_{10} (filterable)</td>
<td>lb/MBtu</td>
<td>0.012 - 0.015</td>
<td>0.012 - 0.015</td>
<td>0.005 - 0.01</td>
<td>~ 0.020 - 0.025</td>
</tr>
<tr>
<td></td>
<td>lb/MWh</td>
<td>0.12</td>
<td>0.13</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>CO2</td>
<td>lb/MBtu</td>
<td>205-220</td>
<td>205-220</td>
<td>205-220</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>lb/MWh</td>
<td>1950</td>
<td>1990</td>
<td>1910</td>
<td>810</td>
</tr>
</tbody>
</table>

Notes:
- Mercury regulation has recently been vacated. New permitting efforts will proceed on a case-by-case basis.
- Air emissions based on 100 percent load.
- CO2 emissions are not currently regulated.
- IGCC is without CO2 capture and storage.
In the calculations at the top of the previous page, one can recognize that the $3.41/\eta$ factor in each equation is just the unit heat rate in MBTU/MWhr. This means the same calculation can be done by multiplying the lbs/MBTU$^\text{IN}$ factor from Table 5 by the average heat rate for the plant.

We can also convert the above to Metric tons/MWhr by dividing by 2204 lbs/Metric ton, to get the following figures:

- NGCC: 0.464 MT/MWhr
- Gas turbine: 0.312 MT/MWhr
- Coal-fired plant: 0.844 MT/MWhr.

It is interesting to compare these values with the emission coefficients given by region/state at [16]. A sample of some of these coefficients are provided below (this is 2002 data):

- New York: 0.389
- Vermont: 0.013
- Penn: 0.574
- Ohio: 0.817
- **Iowa:** 0.854
- N. Dakota: 1.017
- Georgia: 0.619
- Kentucky: 0.911
- Texas: 0.664
- California: 0.275
- Washington: 0.111
- US Average: 0.606
Vermont is so low because it has only one small fossil-fired unit (a diesel unit), and it is a peaker and so does not often run [17]. Almost 75% of Vermont’s electric energy comes from a large nuclear facility (Vermont Yankee) and most of the rest comes from outside the state via the ISO-NE market. Iowa was, in 2002, heavily dependent on coal. Today, with Iowa’s wind growth, it is less so, but still, coal is by far the dominant part of Iowa’s generation portfolio.

6.0 Heat rates
The values of Table 1 (fuel cost table) reflect only the cost of fuel input to a generation plant; they do not reflect the actual costs of producing electrical energy as output from the plant because substantial losses occur during production. Some power plants have overall efficiencies as low as 30%; in addition, the plant efficiency varies as a function of the generation level P_g. We illustrate this point in what follows.

We represent plant efficiency by η. Then η=energy output/energy input. We obtain η as a function of P_g by measuring the energy output of the plant in MWhrs and the energy input to the plant in MBTU.

We could get the energy output by using a wattmeter to obtain P_g over a given period of time, say an hour, and we could get the energy input by measuring the coal tonnage used during the hour and then multiplying by the coal energy content in MBTU/ton.
We could then plot the fuel input in MBTU/hr as a function of the power output \(P_g \) in MW. Such a plot is called an *input-output curve*, indicating how much fuel rate is required to produce a power level. A typical input-output curve is shown in Fig. 1a. We denote fuel rate (input, vertical axis of Fig. 1a) as \(R \)

One notes that the I/O curve of Fig. 1a does not go to \(P_g = 0 \). A generating unit has a minimum stable output, typically 10-30%, for oil and natural gas-fired steam units and 20-50% for coal-fired steam units [18].

![Fig. 1a: Input-output curve](image)

One interesting feature with respect to Fig. 1a is that as fuel input is increased, the power output per unit fuel input begins to decrease. We can see this more clearly if we invert the axes, as in Fig. 1b, yielding a *production function*, where, for high enough fuel rates, we will get no additional power output.
Physically, this happens because the furnace, boiler, steam pipes leak a larger percentage of input heat as temperatures increase. Economists call this the [19] law of diminishing marginal product: for almost all processes, the rate of increase in output decreases as the input increases, assuming other inputs are fixed.

To obtain η, we want the output energy divided by the input energy, which is

$$\eta \sim \frac{P_g}{R}$$

which in terms of units is $\text{MW} \div \text{MBTU/hr}$ to give units of MWhr/MBTU. Notice that these units are energy/energy, as they should be when computing η. However, the MBTU and MWhr are different units of energy, and so we are not getting η exactly, but we are getting something proportional to η.

So let’s obtain the ratio of the power to the fuel rate
\((P_g \div R)\) for every point on the input-output curve, and plot the results against \(P_g\). Fig. 1c shows a plot of the ratio \(P_g/R\) (units of MWHR/MBTU) versus \(P_g\).

Fig. 1c: Plot of MWhr/MBTU vs. \(P_g\)

Figure 1c indicates that efficiency is poor for low generation levels and increases with generation, but at some optimum level it begins to diminish. Most power plants are designed so that the optimum level is close to the rated output.

The heat rate curve is similar to Fig. 1c except that the y-axis is inverted to yield MBTU/MWhrs, which is proportional to \(1/\eta\). This curve is illustrated in Fig. 2. We denote heat rate by \(H\). Since the heat rate depends on operating point, we write \(H=H(P_g)\).
Fig. 2: Plot of Heat Rate (H) vs. Generation (Pg)

Some typical heat rates for units at maximum output are (in MBTU/MWhrs) 9.5-10.5 for fossil-steam units and nuclear units, 13.0-15.0 for combustion turbines [20], and 7.0-9.5 for combined cycle units. Future combined cycle units may reach heat rates of 6.5-7.0. *It is important to understand that the lower the heat rate, the more efficient the unit.*

An easy way to remember the meaning of heat rate $H=H(P_g)$ is it is the amount of input energy required to produce a MWhr, at the generation level P_g.

How does H relate to efficiency? To answer this question, we need to know that there are 1054.85 joules per BTU.

$$
\frac{1}{\eta} \sim H \frac{\text{MBTU}}{\text{MWhr}} = H \frac{1E6 \text{ BTU}}{1E6 \text{ Whr}} = H \frac{\text{BTU}(1054.85j/\text{BTU})}{(j/\text{sec})3600\text{sec}}
$$

$$
\Rightarrow \frac{1}{\eta} = H \frac{1054.85}{3600} = \frac{H}{3.41} \Rightarrow H = \frac{3.41}{\eta}
$$
Observe: We have seen this before when we computed CO$_2$ emissions per MWhr out (see pg. 19), e.g., for the NGCC plant:

$$\frac{117.08 \text{ lbs}}{\text{ MBTU}_{\text{IN}}} \times \frac{1 \text{ MBTU}_{\text{IN}}}{0.58 \text{ MBTU}_{\text{OUT}}} = 201.9 \frac{\text{ lbs}}{\text{ MBTU}_{\text{OUT}}} \times \frac{3.41 \text{ MBTU}}{\text{ MWhr}} = 688.5 \text{ lbs / MWhr}$$

We can see now that the above calculation can be done as

$$117.08 \frac{\text{ lbs}}{\text{ MBTU}_{\text{IN}}} \times 3.41 \frac{\text{ MBTU}_{\text{IN}}}{0.58 \text{ MBTU}_{\text{OUT}}} = \frac{3.41 \text{ MBTU}_{\text{IN}}}{\eta \text{ MBTU}_{\text{OUT}}} = 688.5 \text{ lbs / MWhr}$$

or

$$117.08 \frac{\text{ lbs}}{\text{ MBTU}_{\text{IN}}} \times H = 688.5 \text{ lbs / MWhr}$$

where H in this case is $3.41/0.58=5.88$ MBTU/MWhr.

The heat rate curve is a fixed characteristic of the plant, although it can change if the cooling water temperature changes significantly (and engineers may sometimes employ seasonal heat rate curves). The heat rate curve may also be influenced by the time between maintenance periods as steam leakages and other heat losses accumulate.

The above use of the term “heat rate” is sometimes also called the “**average heat rate**.” This is because we get it by dividing absolute values of fuel input rate by absolute values of electric output power. For example, if you buy an apple at $50 and a second one at $10, the average cost of apples after buying the first apple is $50/apple but after buying the second apple is $(50+10)/2=30$ apple.
This is different than **incremental heat rate**, as will be illustrated in the following example.

Example [21]: Consider the following input-output curve for Plant X.

![Input-Output Curve](image)

Compute the average heat rate characteristic and the incremental heat rate characteristic.

Average heat rates are computed by dividing the fuel rate by the generation level, $H = \frac{R}{P_g}$, as follows:

- Block 1: $20,000/1 = 20,000$
- Block 2: $24,000/2 = 12,000$
- Block 3: $30,000/3 = 10,000$

Incremental heat rates computed by dividing the increment of fuel rate by the increment of power, $IH = \frac{\Delta R}{\Delta P_g}$ as follows:

- Block 1: $20,000/1 = 20,000$
- Block 2: $4,000/1 = 4,000$
- Block 3: $6,000/1 = 6,000$

These results are summarized below:
And the below figure illustrates the input-output curve, the average heat rate curve, and the incremental heat rate curve.

We should note, however, that our first incremental heat rate value of 20,000 has a problem. This value assumes that the I/O curve extends as shown on the left hand side below. Probably a better approximation would be to extend it as indicated on the right.

<table>
<thead>
<tr>
<th></th>
<th>CAPACITY (MW)</th>
<th>INPUT-OUTPUT CURVE (1000 Btu/hr)</th>
<th>INCREMENTAL HEAT RATE (Btu/kWh)</th>
<th>AVERAGE HEAT RATE (Btu/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK 1</td>
<td>1</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>BLOCK 2</td>
<td>2</td>
<td>24,000</td>
<td>4,000</td>
<td>12,000</td>
</tr>
<tr>
<td>BLOCK 3</td>
<td>3</td>
<td>30,000</td>
<td>6,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>
Actually, it does not extend to 0 at all because the unit, like all real units, has a minimum generation level.

Although you may see data entered which reflects a “high initial incremental value,” you should know that a value so computed does not represent a true incremental heat rate value at all.

Reference [21] also provides some actual data for units in California. The one below is one of the most efficient gas-fired units in the PG&E system. On the coast about 100 miles south of San Francisco, it is called Moss Landing Unit 7.
Note that the Moss Landing unit 7 full-load average heat rate is 8.917 MBTU/MWhr, which gives an efficiency of \(\frac{3.41}{8.917} = 38.2\% \).

The next one is an old oil-fired unit in San Francisco called Hunter’s Point.
Note the full-load average heat rate of this plant is 12.598 MBTU/MWhr, which corresponds to an efficiency of $3.41/12.598=27.1\%$.

This plant was built in 1927 and demolished in 2008.

7.0 Cost rates

We are primarily interested in how the cost per MWhr changes with P_g, because that will tell us something about how to achieve the most economic dispatch of generation for a given demand (we will see that optimality is achieved when marginal or incremental costs of all regulating units are equal).
To get cost per MWhr as a function of P_g, we will assume that we know K, the cost of the input fuel in $$/MBTU. Also, recall that

- R is the rate at which the plant uses fuel, in MBTU/hr (which is dependent on P_g) – it is just the input-output curve (see Fig. 1a).

And we will denote

- C as the cost per hour in $$/hour.

Then, if $H(P_g)$, the heat rate, is the input energy used per MW per hour, then multiplying H by P_g gives input energy per hour, i.e., $R = P_g H(P_g)$ where H must be evaluated at P_g. Therefore, $C = RK = P_g H(P_g)K$, i.e., the cost rate function C is just the fuel rate function R scaled by the fuel cost.

A typical plot of C vs. P_g is illustrated in Fig. 3. Note that C is convex, i.e., the set of points lying on or above C contain all line segments between any pair of its points.

![Fig. 3: Plot of cost per hr (C) vs. generation (P_g)](image)

32
Fig. 3 shows that cost/hour increases with generation, a feature that one would expect since higher generation levels require greater fuel intake per hour. The desired $/MWHR characteristic, called the **incremental cost curve for the plant**, can be obtained by differentiating the plot in Fig. 3, i.e., by computing \(dC/dP_g \). A typical incremental cost curve is shown in Fig. 4. Note that because \(C \) is convex, \(dC/dP_g \) is a non-decreasing function.

![Incremental Cost Curve](image)

Fig. 4: Plot of incremental cost \(dC/dP_g \) vs. gen \(P_g \)

One last thing about getting incremental cost. Recall that the cost per hour is given by \(C = RK \), where \(R \) is just the input-output curve. Therefore \(dC/dP_g = K(dR/dP_g) \). The derivative is the incremental heat rate, which we denoted by IH. Therefore, in summary:

\[
C = RK = P_g H(P_g) K \\
\frac{dC}{dP_g} = (dR/dP_g) K = (IH) K
\]

Example 1
An 100 MW coal-fired plant uses a type of coal having an energy content of 12,000 BTU/lb. The coal cost is $1.5/MMBTU. Typical coal usage corresponding to the daily loading schedule for the plant is as follows:

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Electric Output (MW)</th>
<th>Coal Used (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00am-6:00am</td>
<td>40</td>
<td>105.0</td>
</tr>
<tr>
<td>6:00am-10:00am</td>
<td>70</td>
<td>94.5</td>
</tr>
<tr>
<td>10:00am-4:00pm</td>
<td>80</td>
<td>156.0</td>
</tr>
<tr>
<td>4:00pm-12:00am</td>
<td>100</td>
<td>270.0</td>
</tr>
</tbody>
</table>

For each of the four load levels, find (a) the efficiency η, (b) the heat rate H (MMBTU/MWhr) (c) the cost per hour, C ($/hr). Also, for the loading levels of 40, 70, and 80 MW, use a piecewise linear plot of C vs P to obtain incremental cost IC as a function of unit loading P. Then plot incremental cost as a function of unit loading. The conversion factor from joules to BTU is 1054.85 joules/BTU, and the units for coal used, tons, are short-tons, 2000 lb/ton.

Solution
Let T be the number of hours the plant is producing P MW while using y tons of coal. We need to compute the total energy out of the plant and divide by the total energy into the plant, but we need both numerator and denominator to be in the same units. We will convert both to joules (recall a watt is a joule/sec).

\[\eta = \frac{P \text{ MW} \times T \text{ hr} \times \left(10^6 \frac{\text{watts}}{\text{MW}} \times 3600 \frac{\text{sec}}{\text{hr}}\right)}{y \text{ tons} \times \left(2000 \frac{\text{lb}}{\text{ton}} \times 12,000 \frac{\text{BTU}}{\text{lb}} \times 1054.85 \frac{\text{joules}}{\text{BTU}}\right)} \]

(a) Note that the above expression for efficiency is dimensionless.

(b) The heat rate is the amount of MMBTUs used in the amount of time T divided by the number of MW-hrs output in the amount of time T.

\[H = \frac{y \text{ tons} \times \left(2000 \frac{\text{lb}}{\text{ton}} \times 12,000 \frac{\text{BTU}}{\text{lb}} \times \frac{1 \text{ MMBTU}}{10^6 \text{ BTU}}\right)}{P \times T} \]

Note that \(H = \frac{1}{\eta} \times \frac{3600}{1054.85} = \frac{3.41}{\eta} \), and the above expression has units of MMBTU/MWhr. Thus, if a
unit is 100% efficient, then it will have a heat rate of 3.41 MMBTU/MWhr, the absolute best (lowest) heat rate possible.

(c) \(C = RK \) where \(R \) is the rate at which the plant uses fuel and \(K \) is fuel cost in $/MMBTU. Note from units of \(P \) and \(H \) that \(R = PH \Rightarrow C = PHK \) where \(H \) is a function of \(P \).

Application of these expressions for each load level yields the following results:

Table 3

<table>
<thead>
<tr>
<th>(T) (hrs)</th>
<th>(P) (MW)</th>
<th>(y) (tons)</th>
<th>(\eta)</th>
<th>(H) (mbtu/mwhr)</th>
<th>(C) ($/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>40</td>
<td>105.0</td>
<td>0.33</td>
<td>10.5</td>
<td>630</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>94.5</td>
<td>0.42</td>
<td>8.1</td>
<td>850</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>156.0</td>
<td>0.44</td>
<td>7.8</td>
<td>936</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>270.0</td>
<td>0.42</td>
<td>8.1</td>
<td>1215</td>
</tr>
</tbody>
</table>

To obtain incremental cost \(IC = \frac{dC}{dP} \), we can plot \(C \) vs. \(P \) and then get an approximation on the derivative by assuming a piecewise linear model as shown in Figure 5.
Figure 5: Calculation of Incremental Cost

The incremental costs are plotted as a function of loading in Fig. 6.

Fig 6: Incremental cost curve from piecewise-linear cost curve
We may use another procedure to model the incremental costs. In this procedure, we first fit the data to a quadratic polynomial. Matlab commands for doing so are below:

\[
\begin{align*}
\text{p} & = [40 \ 70 \ 80 \ 100]; \\
\text{c} & = [630 \ 850 \ 936 \ 1215]; \\
\text{X} & = [\text{ones(size(p))} \ p \ p.^2]; \\
\text{a} & = \text{X}\backslash\text{c}
\end{align*}
\]

\[
\begin{align*}
a & = \\
&= 604.8533 \ \\
&= -2.9553 \ \\
&= 0.0903
\end{align*}
\]

\[
\begin{align*}
\text{T} & = (0:1:100); \\
\text{Y} & = [\text{ones(size(T))} \ T \ T.^2]*a; \\
\text{plot(T,Y,'-',t,y,'o'), grid on}
\end{align*}
\]

The quadratic function is therefore
\[
\begin{align*}
C(P) & = 0.0903P^2 - 2.9553P + 604.85
\end{align*}
\]

Figure 7 shows the plot obtained from Matlab.
Fig 7: Quadratic Curve Fit for Cost Rate Curve

Clearly, the curve is inaccurate for very low values of power (note it is above $605/\text{hr}$ at $P=0$ and decreases to about $590/\text{hr}$ at $P=10$). We can get the incremental cost curve by differentiating $C(P)$:

$$IC(P)=0.1806P-2.9553$$

This curve is overlaid on the incremental cost curve of Fig. 6, resulting in Fig. 8. Both linear and discrete functions are approximate. Although the linear one appears more accurate in this case, it would be easy to improve accuracy of the discrete one by taking points at smaller intervals of P_g. Both functions should be recognized as legitimate ways to represent incremental costs. The linear function is often used in traditional economic dispatching, whereas the discrete one is typical of market-based offers.
Fig. 8: Comparison of incremental cost curve obtained from piecewise linear cost curve (solid line) and from quadratic cost curve (dotted line)

8.0 Effect of Valve Points in Fossil-Fired Units

Figures 3 and 7 well represent cost curves of small steam power plants, but actual cost curves of large steam power plants differ in one important way from the curves shown in Figs. 3 and 7 – they are not smooth! The light curve of Fig. 8 [22] more closely captures the cost variation of a large steam power plant.
The reason for the discontinuities in the cost curve of Fig. 8 is because of multiple steam valves. In this case, there are 5 different steam valves. Large steam power plants are operated so that valves are opened sequentially, i.e., power production is increased by increasing the opening of only a single valve, and the next valve is not opened until the previous one is fully opened. So the discontinuities of Fig. 8 represent where each valve is opened.

The cost curve increases at a greater rate with power production just as a valve is opened. The reason for this is that the so-called throttling losses due to gaseous friction around the valve edges are greatest
just as the valve is opened and taper off as the valve opening increases and the steam flow smoothens.
The significance of this effect is that the actual cost curve function of a large steam plant is not continuous, but even more important, it is non-convex. A simple way (and the most common way) to handle these two issues is to approximate the actual curve with a smooth, convex curve, similar to the dark line of Fig. 8.

9.0 Combined cycle units

The following information was developed from [20, 23, 24, 25].

Combined cycle units utilize both gas turbines (based on the Brayton cycle) and steam turbines (based on the Rankine cycle). Gas turbines are very similar to jet engines where fuel (can be either liquid or gas) mixed with compressed air is ignited. The combustion increases the temperature and volume of the gas flow, which when directed through a valve-controlled nozzle over turbine blades, spins the turbine which drives a synchronous generator. On the other hand, steam turbines utilize a fuel (coal, natural gas, petroleum, or uranium) to create heat which, when applied to a boiler, transforms water into high pressure superheated (above the temperature of
boiling water) steam. The steam is directed through a valve-controlled nozzle over turbine blades, which spins the turbine to drive a synchronous generator. A combined cycle power plant combines gas turbine (also called combustion turbine) generator(s) with turbine exhaust waste heat boiler(s) (also called heat recovery steam generators or HRSG) and steam turbine generator(s) for the production of electric power. The waste heat from the combustion turbine(s) is fed into the boiler(s) and steam from the boiler(s) is used to run steam turbine(s). Both the combustion turbine(s) and the steam turbine(s) produce electrical energy. Generally, the combustion turbine(s) can be operated with or without the boiler(s).

A combustion turbine is also referred to as a simple cycle gas turbine generator. They are relatively inefficient with net heat rates at full load of some plants at 15 MBtu/MWhr, as compared to the 9.0 to 10.5 MBtu/MWhr heat rates typical of a large fossil fuel fired utility generating station. This fact, combined with what are typically high natural gas prices, make the gas turbine expensive. Yet, they can ramp up and down very quickly, so as a result, combustion turbines have mainly been used only for peaking or standby service.
The gas turbine exhausts relatively large quantities of gases at temperatures over 900 °F. In combined cycle operation, then, the exhaust gases from each gas turbine will be ducted to a waste heat boiler. The heat in these gases, ordinarily exhausted to the atmosphere, generates high pressure superheated steam. This steam will be piped to a steam turbine generator. The resulting combined cycle heat rate is in the 7.0 to 9.5 MBtu/MWhr range, significantly less than a simple cycle gas turbine generator.

In addition to the good heat rates, combined cycle units have flexibility to utilize different fuels (natural gas, heavy fuel oil, low Btu gas, coal-derived gas) [26]. In fact, there are some revolutionary technologies under development right now, including the integrated gasification combined cycle (IGCC) plant, which makes it possible to run combined cycle on solid fuel (e.g., coal or biomass) [].

This flexibility, together with the fast ramp rates of the combustion turbines and relatively low heat rates, has made the combined cycle unit the unit of choice for a large percentage of recent new power plant installations.
Fig. 9 shows the simplest kind of combined cycle arrangement, where there is one combustion turbine and one HRSG and corresponding steam turbine.

One additional level of complexity would have two combustion turbines (CT A and B) and one HRSG. In such a design, the following six combinations are possible.

- CT A alone
- CT B alone
- CT A and CT B together
- CT A and HRSG
- CT B and HRSG
- CT A and B and HRSG
The modes with the HRSG are more efficient than the modes without the HRSG (since the HRSG utilizes CT exhaust heat that is otherwise wasted), with the last mode listed being the most efficient.

Each of these six combinations will have their own unique cost-curve characteristic. Therefore, in performing economic dispatch [27], we need to be able to shift between these various cost curve characteristics, but this is not much of a problem to do.

But there is another more serious problem. Consider the transition between the combined cycle power plant operation just as the HRSG is ramped up. Previous to HRSG start-up, only the CT is generating, with a specified amount of fuel per hour being consumed, as a function of the CT power generation level. Then, after HRSG start-up, the fuel input remains almost constant, but the MW output of the (now) two generation units has increased by the amount of power produced by the steam turbine driven by the HRSG. A typical cost curve for this situation is shown in Fig. 10.
Fig. 10: Cost curve for a combined cycle plant
An important feature of the curve in Fig. 10 is that it is not convex, which means its slope (i.e., its incremental cost) does not monotonically increase with P_G. Figure 11 illustrates incremental cost variation with P_G.

Fig. 11: Incremental cost curve for a combined cycle plant
10.0 Economic dispatch and convexity of objective functions in optimization

The traditional economic dispatch (ED) approach used by electric utilities for many years is very well described in [27]. This approach is still used directly by owners of multiple generation facilities when they make one offer to the market and then need to dispatch their units in the most economic fashion to deliver on this offer. This approach also provides one way to view the method by which locational marginal prices are computed in most of today’s real-time market systems.

The simplest form of the ED problem is as follows:

Minimize:

$$F_T = \sum_{i=1}^{n} F_i(P_i)$$ \hspace{1cm} (1)

Subject to:

$$\sum_{i=1}^{n} P_i = P_{load} \implies \phi(P_i) = P_{load} - \sum_{i=1}^{N} P_i = 0$$ \hspace{1cm} (2)

$$P_i \geq P_{i,\text{min}} \implies -P_i \leq -P_{i,\text{min}}$$

$$P_i \leq P_{i,\text{max}}$$

$$P_i \geq 0$$ \hspace{1cm} (3)
Here, we note that the equality constraint is linear in the decision variables P_i. In the Newton approach to solving this problem ([27]), we form the Lagrangian according to:

$$\mathcal{L} = F_T(P_i) + \lambda \phi(P_i)$$ \hspace{1cm} (4)

If each and every individual cost curve $C_i(P_i)$, $i=1,n$, is quadratic, then they are all convex. Because the sum of convex functions is also a convex function, when all cost curves are convex, then the objective function $F_T(P_i)$ of the above problem is also convex. If $\phi(P_i)$ is linear, then it is convex, and therefore \mathcal{L} is convex. This fact allows us to find the solution by applying first order conditions.

First order conditions for multi-variable calculus are precisely analogous to first order conditions to single variable calculus. In single variable calculus, we minimize $f(x)$ by solving $f'(x)=0$, on the condition that $f(x)$ is convex, or equivalently, that $f''(x)>0$.

In multivariable calculus, where $\underline{x}=[x_1 \ x_2 \ldots \ x_n]^T$, we minimize $f(\underline{x})$ by solving $f'(\underline{x})=0$, that is,

$$\frac{\partial f}{\partial x_i} = 0, \hspace{0.5cm} i = 1,n$$ \hspace{1cm} (5)

on the condition that $f(\underline{x})$ is convex or equivalently, that the Hessian matrix $f''(\underline{x})$ is positive definite.
We recall that, in single variable calculus, if \(f(x) \) is not convex, then the first order conditions do not guarantee that we find a \textit{global} minimum. We could find a maximum, or a local minimum, or an inflection point, as illustrated in the below.

![Non-convex functions](image)

\(\text{Fig. 12: Non-convex functions} \)

The situation is the same in the multivariable case, i.e., if \(f(x) \) is not convex, then the first order conditions of (5) do not guarantee a global minimum.

Now returning to the Lagrangian function of our constrained optimization problem, repeated here for convenience:

\[
\mathcal{L} = F_T(P_i) + \lambda \phi(P_i)
\]

we recall that solution to the original problem is found by minimizing \(F_T \). But, to use what we now know, we are only guaranteed to find a global
minimum of \(F \) if \(\mathcal{L} \) is convex. In this case, the first order conditions results in

\[
\frac{\partial \mathcal{L}}{\partial P_i} = 0, \quad i = 1, N
\]

\[
\frac{\partial \mathcal{L}}{\partial \lambda} = 0
\]

from which we may find our solution (Inequality constraints may be handled by checking the resulting solution against them, and for any violation, setting up another equality constraint which binds the given decision variable to the limit which was violated).

But if one of the units is a combined cycle unit, the \(F_T \), and therefore \(\mathcal{L} \), will not be convex. So, first order conditions do not guarantee a global minimum. In other words, there may be a lower-cost solution than the one we will obtain from applying first order conditions. This makes engineers and managers unhappy, because they worry they are spending money unnecessarily.

As a result, generation owners who utilize combined cycle units must use special techniques to solve the EDC problem. Some of these techniques are listed in the following:
1. **Enumeration/Iteration**: In this method, all possible solutions are enumerated and evaluated, and then the lowest cost solution is identified. This method will always work but can be quite computational.

2. **Dynamic programming**: See pp. 51-54 of reference [20].

3. **Sequential unconstrained minimization technique (SUMT)**: This method is described on pp 473-477 of reference [28].

4. **Heuristic optimization methods**: There are a number of methods in this class, including Genetic Algorithm simulated annealing, tabu search, and particle swarm. A good reference on these methods is [29].

5. There is a matlab toolbox for handling non-convex optimization. It provides 2 different algorithms together with references on papers that describe the algorithms, located at http://tomlab.biz/. There are two methods provided

 (a) **Radial Basis Function (RBF) interpolation**:

 (b) **Efficient Global Optimization (EGO) algorithm**: The idea of the EGO algorithm is to first fit a response surface to data collected by evaluating the objective function at a few points. Then, EGO
balances between finding the minimum of the surface and improving the approximation by sampling where the prediction error may be high.

References