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Symmetrical Components 1 

 

1.0 Introduction 
 

These notes should be read together with 
Section 12.1 of your text. 

 
When performing steady-state analysis of 

high voltage transmission systems, we make 
use of the per-phase equivalent circuit. 

 
Also, when performing symmetrical fault 

(three-phase fault) analysis of high-voltage 
transmission systems, we make use of the 

per-phase equivalent circuit. 
 

But for unsymmetrical faults (single line to 
ground, two line to ground, and line to line) 

analysis, the three phases no longer see the 
same impedance, which violates the basic 

requirement of per-phase analysis (phases 
must be balanced).  
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There is a very elegant approach available 
for analyzing unsymmetric three-phase 

circuits. The approach was developed by a 
man named Charles Fortescue and reported 

in a famous paper in 1918. It is now called 
the method of symmetrical components. We 

will spend a little time studying this method 
in order to understand how to use it in 

unsymmetrical fault analysis. 
Charles Le Geyt FORTESCUE Professor was born about 1878 in Keewantin, Northwest Territories, Canada. 

Hudson Bay Factory where the Hayes River enters Hudson Bay He immigrated in 1901 to USA. He appeared 

in the census on 11 April 1930 in Pittsburgh, USA. Charles died on 4 December 1936 in Pittsburgh, USA. The 
Charles LeGeyt Fortescue Scholarship was established in 1939 at MIT as a memorial to Charles LeGeyt in 

recognition of his valuable contributions to the field of electrical engineering 
Charles LeGeyt Fortescue, born at York Factory, Manitoba, 1876, son of chief factor of Hudson Bay 

Company-was the first electrical engineering graduate of Queen's University.  

After graduation Fortescue joined Westinghouse Electric and Manufacturing Company at East Pittsburgh and 
attained universal fame for his contributions to the engineering principles and analysis of power 

transmission and distribution systems. He is especially noted for development of polyphase systems analysis 
by the symmetrical components method. He made his way, evenutally, to MIT where he became a very well 

known and respected professor. 
Its fascinating that Cecil Lewis Fortescue born 1881 also became a Professor of Electrical Engineering in 

London University, in the same period. One wonders if they heard about each other? 

Charles Le Geyt FORTESCUE Professor and Louise Cameron WALTER were married about 1905. Louise 
Cameron WALTER113 was born about 1885 in Pennsylvannia, USA. She was a Sculptor 

Charles Le Geyt FORTESCUE Professor and Louise Cameron WALTER had the following children: 
Jane Faithful FORTESCUE. 
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2.0 Symmetrical Components: Motivation 

Def: A symmetrical set of phasors have 
equal magnitude & are 120º out of phase. 

 
Goal: Decompose a set of three 

unsymmetrical phasors into  
 One unsymmetric but equal set of 3 

 Two symmetrical sets of 3 
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Then we can analyze each set individually 
and use superposition to obtain the 

composite result. 
In what follows, we demonstrate that: 

 Step 1: An unsymmetrical set, not 
summing to 0, can be decomposed into 

two unsymmetrical sets:  
o an “equal” set and an 

o unsymmetrical set that does sum to 0; 
 Step 2: An unsymmetrical set that sums to 

0 can be decomposed into two 
symmetrical sets 

 
Step 1: Consider a set of phasors that do not 

add to zero (because of different magnitudes 
or because of angular separation different 

than 120º or because of both). Assume that 
they have phase sequence a-b-c.  

 
Add them up, as in Fig. 1, i.e., 

cbaR VVVV 0

    (1) 
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a-b-c 
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Vb 

Va 

a-b-c 

 

Fig. 1: Addition of Unsymmetrical Phasors 
 

So we see from (1) that  

00  Rcba VVVV    (2) 

Define: 

0

0
3

1
RVV 

     (3) 

Then: 

03 0  VVVV cba    (4) 

      0000  VVVVVV cba   (5) 

Define: 

 

 

 0

0

0

VVV

VVV

VVV

cC

bB

aA







   (6) 

Then: 
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0VVV CBA     (7) 

Conclusion: We obtain an unsymmetrical set 

of voltages that sum to 0 by subtracting V0 
from each original phasor, where V0 is 1/3 

of the resultant phasor, illustrated in Fig. 2. 

 

VC 

VB 

VA 

 

VR
0 

Vc 

Vb 

Va 

a-b-c 

 

-V0=-VR
0
/3 

 
Fig. 2: Subtracting V0 from unsymmetrical 

phasors 

Step 2: How to decompose VA, VB, and VC 
into two symmetrical sets? 

 
Can we decompose VA, VB, VC into 2 a-b-c 

symmetrical sets? 
 

As a test, try to add any 2 a-b-c symmetrical 
sets and see what you get. See Fig. 3. 
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Fig. 3: Adding 2 symmetrical a-b-c sets 

 
Note that in adding the 2 phasor sets, we add 

the two a-phase phasors, the two b-phase 
phasors, and the two c-phase phasors.  

 
One can observe from Fig. 3 that the 

resultant phasor set, denoted by the solid 
lines, are in fact symmetrical! 
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It is possible to prove mathematically that 
the sum of any 2 a-b-c symmetrical sets is 

always another symmetrical set. 
 

Let’s try a different thing. Let’s try to add 
two symmetrical sets, but let’s have one be 

a-b-c (called positive sequence) and another 
be     a-c-b (called negative sequence). 

 
As before, in adding the 2 phasor sets, we 

add the two a-phase phasors, the two b-
phase phasors, and the two c-phase phasors. 

The result of our efforts in shown in Fig. 4. 
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Fig. 4: Adding a symmetrical a-b-c set to a 
symmetrical a-c-b set 

 
The resultant phasor set is unsymmetrical! 

 
We can guarantee that the three phasors in 

this unsymmetrical phasor set sums to zero, 
since we obtained it by adding two phasor 

sets that sum to zero, i.e., 
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Va1+Vb1+Vc1=0 
Va2+Vb2+Vc2=0 

-------------------     (8) 
VA+VB+VC=0 

 
Now consider Fig. 4 again. Assume that 

someone hands you the unsymmetrical set of 
phasors VA, VB, and VC.  

 
Can you decompose them into the two 

symmetrical sets? 
 

Can you be assured that two such 
symmetrical sets exist? 

 
The answer is yes, you can be assured that 

two such symmetrical sets exist. Fortescue’s 
paper contains the proof. 

 
I simply argue that the three phasors given 

in Fig. 4, VA, VB, and VC, are quite general 
(there is nothing special about them), with 

the single exception that they sum to zero. 
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Claim: We can represent ANY 
unsymmetrical set of 3 phasors that sum to 0 

as the sum of 2 constituent symmetrical sets:  
 A positive (a-b-c) sequence set and 

 A negative (a-c-b) sequence set. 
 

Given this claim, then the following theorem 
holds. 

 
Theorem: We can represent ANY 

unsymmetrical set of 3 phasors as the sum of 
3 constituent sets, each having 3 phasors: 

 A positive (a-b-c) sequence set and 
 A negative (a-c-b) sequence set and 

 An equal set 
 

These three sets we will call, respectively, 

 Positive  

cba VVV ,,  

 Negative  

cba VVV ,,  

 zero  000 ,, cba VVV  

sequence components. 
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The implication of this theorem is that any 
unsymmetrical set of 3 phasors Va, Vb, Vc 

can be written in terms of the above 
sequence components in the following way: 

 
  aaaa VVVV 0

 
  bbbb VVVV 0

    (9) 
  cccc VVVV 0

 

 
We can write the equations of (9) in a more 

compact fashion, but first, we must describe 
a mathematical operator that is essential. 

 
3.0 The α-operator 

To begin on familiar ground, we are all 
conversant with the operator “j” which is 

used in complex numbers.  
 

Remember that “j” is actually a vector with 
a magnitude and an angle: 

 901j     (10) 
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In the same way, we are going to define the 

“α” operator as: 

j0.8660 +0.5000- 1201  (11) 

 

It is easy to show the following relations: 

 12012     (12) 

 013       (13) 

  12014
   (14) 

We also have that:  

 6011 2   (15) 
as illustrated in Fig. 5.  

 

1+α 

 

α 

1 
 

Fig. 5: Illustration of 1+α 
Note that  

 60124012  (16) 
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Similarly, we may show that: 

 6011 2    (17) 

 3031      (18) 

 3031 2      (19) 

 15031      (20) 

 150312    (21) 

And there are many more relations like this 

that are sometimes helpful when dealing 
with symmetrical components. (See the text 

called “Analysis of faulted power systems” 
by Paul Anderson, pg. 17.) 

 
4.0 Symmetrical components: the math 

We repeat equations (9) below for 
convenience: 

  aaaa VVVV 0

 
  bbbb VVVV 0

    (9) 
  cccc VVVV 0
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We can relate the three different quantities 
having the same superscript. 

 
 Zero sequence quantities: These quantities 

are all equal, i.e.,  
000

cba VVV       (22) 

 
 Positive sequence quantities: The relation 

between these quantities can be observed 
immediately from the phasor diagram and 

can be expressed using the α-operator. 

 



cV  
a-b-c 



bV  



aV  

 

Fig. 6: Positive sequence components 









ac

ab

VV

VV



 2

      (23) 
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 Negative sequence quantities: The relation 
between these quantities can be observed 

immediately from the phasor diagram and 
can be expressed using the α-operator. 

 

a-c-b 


bV  



aV  



cV  

 

Fig. 8: Negative sequence components 
 









ac

ab

VV

VV

2



      (24) 

Now let’s use equations (22), (23), and (24) 
to express the original phasors Va, Vb, Vc in 

terms of only the a-phase components  


aaa VVV ,,0

, 

i.e., we will eliminate the b-phase 

components  


bbb VVV ,,0
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and the c-phase components 


ccc VVV ,,0
 

This results in 
  aaaa VVVV 0

 
  aaab VVVV  20

    (9) 
  aaac VVVV 20   

  
So we have written the abc quantities (phase 

quantities) in terms of the 0+- quantities 
(sequence quantities) of the a-phase. We can 

write this in matrix form as: 
 























































a

a

a

c

b

a

V

V

V

V

V

V 0

2

2

1

1

111




   (25) 

Defining 
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
















2

2

1

1

111



A

     (26) 

we see that eq. (25) can be written as: 







































a

a

a

c

b

a

V

V

V

A

V

V

V 0

      (27) 

We may also obtain the 0+- (sequence) 
quantities from the abc (phase) quantities: 








































c

b

a

a

a

a

V

V

V

A

V

V

V
1

0

      (28) 

where 























2

21

1

1

111

3

1
A

    (29) 
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Equations 22-29 hold for 
 Line-to-line voltages 

 Line-to-neutral voltages 
 Line currents 

 Phase currents 


