Stability 4
1.0 Introduction

In the previous notes (Stability 3), we developed

the equal area criterion, which says that

For stability, A;=A,, which means the
decelerating energy (A,;) must equal the
accelerating energy (A,) In order for the

system response to be stable.
Analytically, we have that
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Figure 1 below illustrates a stable case.
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Figure 2 below illustrates an unstable case.
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Everything about Figs. 1 and 2 are the same
with one exception, the clearing angle (Ogesr) IN
Fig. 2 Is greater than the clearing angle in Fig. 1.
In other words, Fig. 2 assumes that the speed of
the protection system is slower than the speed of
the protection system in Fig. 1.

In these notes, we want to develop expressions
for computing critical clearing angle.



2.0 Critical clearing angle

The critical clearing angle will occur when the
equal-area criterion Is satisfied and the
maximum angle is 0=180-09. Such a case is
illustrated In Fig. 3.
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We want to compute the critical clearing time.
We will denote 1t as Oceyr=0cr.



To do this, let’s define the following:

Dpre — I:)premax Sin 5 (2)

Dfault — I:)faultmax Sin 5 — r1|:)premax Sin 5 (3)

Dpost — I:)postmax Sin 5 — r2 I:)premax Sin 5 (4)
where

e Ppremaxs Prauttmax, @Nd Pposimax are the amplitudes
of the power-angle curves for the pre-faul,
fault-on, and post-fault networks, respectively;

. 0<r;<1 where r,=0 corresponds to a three-
phase fault at the machine terminals, and r=1
corresponds to no-fault at all.

. 0<r,<1 where r,=0 corresponds to a three-
phase fault at the machine terminals that is not
cleared, and r,=1 corresponds to a temporary
fault (fault i1s removed without protective relay
action to also remove a circuit and weaken the
transmission)

Let’s first compute A;.
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Now let’ s compute A,.
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postmax

= I:)postmax (COS clear — COS 5 )+ P ( clear max)

If the system Is stable, then A;=A,. So let’s
equate the expressions in eq. (5) and (6), below.



Ai — I:)I\SI) (5clear o 50) + I:)faultmax (COS 5c|ear — COS é‘0)
=P (COS 5clear —COS 5max) + I:)I\(z (5clear o §max) — AZ (7)

postmax

Expand:

0 0
Pvo. o PM 50 + I:)faultmax COS 5c|ear o I:)faultmax COS 50

M “clear

=P COs 5clear o I:)postmax COos §max + P|\5|) 5c|ear _ I:)I\SI) 5max (8)

postmax

Notice there is a Pyd, on both sides, and so:
T I:)I\(/)I 50 + I:)faultmax COS 5c|ear T I:)faultmax COS 50

=P COs 5clear o F)postmax COS 5max o I:)I\(z 5max (9)

postmax

Let’s put all terms with cosdcesr ON the left side

and everything else on the right:
I:)faultmax COS 0, - P COS 5clear

clear postmax
— I:)faultmax COS 50 o I:)postmax COS 5max o I:)I\(/)I 5max + I:)I\(/I) 50 (10)
Factor out the cosd.esr term on the left and the

Py term on the right;
COS O, -P

clear (Pfaultmax postmax )
=P

faultmax COS 50 B I:)postmax COS 5max + I:)l\sl) (50 T 5max) (11)

Divide by the term in parentheses on the left:

COS 5clear
P €OS Gy — P gmax COS Oy + P, (8, — 6.,

(Prostos — P

faultmax

) (12)
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Now eqg. (12) is true as long as the system
response Is stable (if it is not stable, then the
equal-area criterion is not satisfied and therefore
eq. (7) is invalid).

But If the system response Is marginally stable,
then the clearing angle will be the maximum
possible angle for which we can clear and still
retain stability, 1.e., it is the critical clearing
angle, and so in this case, dcea=0q In addition,
the maximum angle must be the unstable
equilibrium, which iIs 0mx=180-8,. Making these
substitutions into eq. (12) results in

COS O,

P

faultmax

cos(z—38,)+ Py (6, — 7 +6,)
P

postmax )

coso,—P

postmax
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(13)
Recalling that cos(m-X)=-cos(X), and noting on
the right-hand-side that we can combine the two
0o terms inside the brackets, we get:



COSO,,

_ I:)faultmax COS 50 + I:)postmax COs 50 + I:)I\Sl) (250 _ 7[) (14)
(Pfaultmax _ I:)postmax)
Now recall eqgs. (3) and (4), which imply that:
I:)faultmax =TI I:)premax (15)
I:)postmax =T I:)premax (16)

Substituting eqgs. (15) and (16) into (14), we get:
COS O,
_ 11Pyrems COS & + 1P cos S, + P (26, — )

premax 2" premax

-r,P )

(r premax premax
Factoring out the Ppremax from the bottom and
dividing it through all terms in the top, and
rearranging, results in

(17)

0

I, COS S, + I, COS O, + (26, — )

premax

(rl B rz)

COS 5cr = ( 1 8)

Let’s consider a few cases:



Case 1, Temporary fault at machine terminals:

The fact that it is a temporary fault means that
the post-disturbance network is the same as the
pre-disturbance network, therefore r,=1.

The fact that it is a three-phase fault at the
machine terminals means that the ability to
transmit power to the infinite bus, during the
fault-on period, Is zero. Therefore r,=0.

Applying these values to eq. (18) results In:

PO
C0S S, + —— (26, — )

premax

COSO,, =

-1
0
— _Fu (7 —26,) —C0Ss &, (19)
premax
But recall that
I:)I\(z — I:)premax Sin 50 (20)
Substitution of (20) into (19) results Iin

P sin o,
COS 5Cf = P : (72. o 250) (21)

premax




Or,

COS O, =SIN o, (7w —25,) — C0S o, (22)
The above is a closed form solution for the
critical clearing angle for the condition of a
temporary three phase fault at the machine
terminals.

Recall the example introduced iIn the notes
called “Stability 2” for the below system:
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Fig. 4
In those notes, we determined that the angle
between the generator internal voltage and the
infinite bus 1s 0,,=28.44°. This is 6y, and it is for
the same system that Is characterized in these
notes by Fig. 3. Using 0,=28.44°=0.4964 rad In
eg. (22) results In
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COS O, =SIN o, (7 —208,) — COS I,
=5in(0.4964) (7 — 2(0.4964)) — cos(0.4964)
=0.4763(7z —0.998) —0.8793

=1.021-0.8793=0.1417
Therefore we have that

cosd, =0.1417 =» 5, =cos +0.1417 =1.4286rad

In degrees, this is 81.85°. Reference to Fig. 5,
which is a “hand-approximation” for this case,
suggests this angle is quite reasonable.
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3.0 Critical clearing time

Let’s consider our case of a temporary three-
phase fault at the machine terminals. To obtain
Information on clearing time, we need to look at
the differential equation characterizing this
system, which Is:

2—H5(t) P, oo =Po —P.

Wegy (23)
The right hand-side is of course O before the
fault (no acceleration), but just after the fault, In
this case, P, goes instantly to 0. We therefore

have that

2H ——5(t)=P?
W, (24)

And so we see that just after the fault, there is
non-zero acceleration, but that acceleration is
constant since the right-hand-side Is constant!

Equation (22) may be rewritten as
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3(t) =0 Ry

2H (25)
Rewrite the left-hand-side of eq. (25) as
. d°6 do o
5 t — = — = €0
O dt> dt 2H " (26)

Multiply both sides by dt:
Q)
do=—2LP,dt
2H

(27)
Now Integrate on the left from ®(0)=0 (initial
state 1s zero velocity) to o(t) and on the right
from t=0" to t:
o(t)
jda)(t) — Zeo po jdt
@(0)=0 2 (28)

(Y
o(t) = 2Pyt
(1) =21 P

(29)
Now express the left-hand-side as the derivative
of o(t)
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do w,

= 20 pot
dt 2H " (30)
Multiply both sides by dt:
Q)
ds =22 P, tdt
2H " (31)

Now integrate the left-hand-side from &g to o(t),
and the right-hand-side from t=0" to t:
5(t) t

[ds= jg’l_(l’ RY tot
9

ot (32)

Woo p042

— 5, =—2 Pt

Now recall we have the critical clearing angle

o(t)=0c;, and we are attempting to find the time

for which we reach this angle. So solve eq. (33)
for time to obtain:

t=\/(5(t)—5o) i

Py @, (34)

14



When the angle is the critical clearing angle, we
obtain:

tcr — \/(50r (t) _50) sl

I:)I\SI) a)eO (35)

So, let’s compute the critical clearing time for
our machine. The only other thing we need to
know Is the Inertia constant H. We can assume
that 1t 1Is H=3.0 sec on the machine base. With
Py =10, ©,0=377, §,=28.44°=0.4964 rad, and
o, =1.4286rad e have

4*3
1*377

t, = \/ (1.4286 —0.4964)

=(0.1723sec
What If the inertia constant was 5? In this case,

we would obtain:

4*5
1%377

t, = \/ (1.4286 —0.4964)

=0.22245sec
=>» The larger the machine, the longer it takes to
accelerate It.
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