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Stability 2 

1.0 Introduction  

 
We ended our last set of notes, concluding that 

the following equation characterizes the 
electromechanical dynamics of a synchronous 

machine.  
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Now I want to do an example of the most simple 
power system that we can consider – the so-

called one-machine against an infinite bus. 
 

2.0 Example 
 

Consider the power system in Fig. 1. It is 
referred to as a one-machine against an infinite 

bus. There are no modern day power systems 
like this, although there are portions of actual 

systems which behave in a similar way, and this 
system serves well to illustrate these basic kinds 

of behavior.  
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So many engineers use it to provide conceptual 
basis for understanding fundamental machine 

behavior.   It would not be used, however, to 
provide precise machine response as the 

computer serves well for this purpose. 

 

Bus 1 Bus 2 Bus 3 

j0.4 

j0.4 

j0.1 
X’d=j0.2 

|Vt|= |V1|=1.0 

V= 1.0<0° 

Fig. 1 
 

Bus 2, the infinite bus, is so-called because it 
has a voltage and angle that is constant under all 

conditions, and it can absorb infinite power. 
Although there is no real infinite bus in power 

systems, a single small machine connected to a 
very large power system behaves as if it is 

connected to an infinite bus. 
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Given that the machine is delivering 1.0 per unit 
power under steady-state conditions, we have 

the following objectives in this problem. 
1. Determine the voltage phasor Ea. 

2. Draw the power-angle (P-δ) curve. 

3. Determine the steady-state operating point 

corresponding to the 1.0 pu power 

condition on the pre-fault power angle 

curve.  

4. For a three-phase fault in the middle of one 

of the lines between buses 3 and 2, 

determine the fault-on power angle curve. 

5. Determine the post-fault power-angle curve 

after protection has operated to clear the 

fault. 

6. Determine the steady-state operating point 

corresponding to the 1.0 pu power 

condition on the post-fault power angle 

curve.  

7. Use the three curves to describe what 

happens to the angle δ during the three 

periods: pre-fault, fault-on, and post-fault. 
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1. Determine the voltage phasor Ea. 

 

The pre-fault circuit diagram is given in Fig. 2. 

 

j0.2 

j0.1 

j0.4 

j0.4 

Ea=|Ea|<δ 

1.0<0 

 
Fig. 2 

 

Compute the impedance between the generator 
terminals and the infinite bus:  

3.02.01.04.0//4.01.01 X  
Note that we have two bus voltage magnitudes, 

the reactance between them, and the power 
flowing out of one of them, so our familiar 

relation for power flowing out of generator 
terminals will allow us to solve for δ1∞ , i.e., 
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where δ1∞ is the angle between Ea and bus 2. 
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  458.171  

  458.1711V  
From this we can compute the current flowing 
from the machine terminals (bus 1) to the 

infinite bus, according to 




 729.8012.1
3.0

00.1458.170.1

j
I

 

And from this, we may compute the internal 
voltage phasor Ea, according to 







44.2805.1
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The above procedure is typical of what is done 
in full-scale commercial power flow programs 

where the program will begin from a power 
flow solution, from which it computes the 

current flow from every gen bus, and then it 
computes each generator’s internal voltage as 

we have done in the above. 
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2. Draw the power-angle (P-δ) curve. 

We can draw the power angle curve for different 

angles. Some of the choices are given below: 
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Note that the electrical power (left-hand-side) is 

the same in all three cases since there is no 
resistance in this circuit. We should choose the 

most restrictive power angle curve, i.e., the one 
that gives the largest angle for the same power. 

Since the voltages are all reasonably close, the 
most restrictive curve is determined by the one 

with the largest reactance – this would be eq (3). 
 

Using the numerical data for eq. (3), we have: 
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Fig. 3 illustrates this curve. 
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Fig. 3 

 
3. Determine the steady-state operating point 

corresponding to the 1.0 pu power 

condition on the pre-fault power angle 

curve.  

 

This is where Pe=1.0, i.e.,  
0.1sin1.2  apreP      (6) 

Solving for δa, we get δa=28.44°. We can 

show this point on the pre-fault power-angle 
curve, using dots as in Fig. 4. 
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Fig. 4 

 
Figure 4 shows, however, that there are really 

two solutions, one at 28.44° and the other at 
180-28.44=151.56°. Both of these points 

constitute equilibria, i.e., a location in terms of 
the problem variables where all equations are 

satisfied, and, if unperturbed, the system would 
be able to lie in rest. We shall show later, 

however, that the point at 28.44° is a stable 
equilibrium, and the point at 151.56° is an 

unstable equilibrium. 
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4. For a three-phase fault in the middle of one 

of the lines between buses 3 and 2, 

determine the fault-on power angle curve. 

 

The faulted system is shown in Fig. 5.  

 

Bus 1 Bus 2 Bus 3 

j0.4 

j0.2 

j0.1 
X’d=j0.2 

|Vt|= |V1|=1.0 

V= 1.0<0° 

j0.2 

Fig. 5 
The circuit diagram corresponding to the faulted 

system is shown in Fig. 6. 

 

j0.2 

j0.1 
j0.4 

j0.2 Ea=|Ea|<δ 

1.0<0 

j0.2 

 
Fig. 6 
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So we want to be able to write another equation 
like eq. (5), except this time, the electrical 

power out will not be Ppre but rather Pfault.  
 

To write such an equation, however, we will 
need the series reactance between the two 

voltage sources. This series reactance is not 
obvious from the circuit diagram of Fig. 6. We 

can get it, however, if we replace the circuit to 
the right of the two marked nodes in Fig. 6 with 

its Thevenin equivalent. The relevant part of the 
circuit is shown in Fig. 7. 

 

j0.4 

j0.2 

1.0<0 

j0.2 

 
Fig. 7 

We obtain the Thevenin voltage from the circuit 
of Fig. 7 as the voltage seen at the left-hand 

terminals. We can use voltage division to get it. 
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 03333.0
4.02.0

2.0
00.1thevV   (7) 

 
We get the Thevenin impedance by idling the 

source and computing the composite impedance, 
as shown in Fig. 8.  

 

j0.4 

j0.2 j0.2 

 
Fig. 8 

 

In Fig. 8, we recognize that the j0.2 impedance 
on the right is shorted, therefore the impedance 

seen looking in from the terminals on the left is 
just the parallel combination of the j0.2 

impedance on the left and the j0.4 impedance at 
the top. This is j(0.2)(0.4)/0.6=j0.1333. The 

faulted circuit with the Thevenin equivalent is 
given in Fig. 9. 
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j0.2 

j0.1 
j0.1333 

Ea=|Ea|<δ 

0.333<0 

 
Fig. 9 

 
From Fig. 9, we can immediately see that the 

impedance between the sources is 

4333.01333.01.02.0 aThevX  

write down the power-angle equation as: 

aThev
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This curve is plotted in Fig. 10. 
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Fig. 10 

 
5. Determine the post-fault power-angle curve 

after protection has operated to clear the 

fault. 

 
The post-fault system is obtained from 

understanding of basic protective relaying 
which results in removing the faulted circuit. 

The resulting one-line diagram is shown in Fig. 
11, and the corresponding circuit diagram is 

shown in Fig. 12. 
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Bus 1 Bus 2 Bus 3 

j0.4 j0.1 
X’d=j0.2 

|Vt|= |V1|=1.0 

V= 1.0<0° 

Fig. 11 

 

 

j0.2 

j0.1 j0.4 

Ea=|Ea|<δ 

1.0<0 

 
Fig. 12 

Again, we need the series reactance between the 

two voltage sources, but this time, it is very easy 
to see that this series reactance is 

7.04.01.02.0 aX  

Therefore, the post-fault power-angle curve is 
given by 
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This curve is plotted in Fig. 13. 
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Fig. 13 

Note from Fig. 13 that the pre-fault curve is 

highest, the fault-on curve is lowest, the post-fault 

curve is in between. This reflects the relative 

“strength” of the systems to transfer power from 

source to the infinite bus, where “strength” is 

determined by the impedance magnitude between 

source and infinite bus and voltage magnitudes at 

these two buses. More transmission makes 

systems stronger. 



 16 

6. Determine the steady-state operating point 

corresponding to the 1.0 pu power 

condition on the post-fault power angle 

curve.  

 
This is where Pe=1.0, i.e.,  

0.1sin5.1  apostP      (6) 

Solving for δa, we get δa=41.81°. We can 
show this point on the pre-fault power-angle 

curve using triangles, as in Fig. 14. 
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Fig. 14 

Again, we see that there are two equlibria. 
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7. Use the three curves to describe what 

happens to the angle δ during the three 

periods: pre-fault, fault-on, and post-fault. 

 

We have the pre-fault equilibrium (at 28.44°) 
identifying where this systems “starts” (just 

before and just after being faulted) and the post-
fault equilibrium (at 41.81°) identifying where 

this system “ends” (after fault is cleared and 
after all transients die out).  

 
Question is: What happens in between these two 

points in time? 
 

Let’s review the sequence, to be clear. 
a.    Prefault condition. 

b. t=0: fault occurs 
c.    t=4 cycles (typical clearing): fault is cleared 

d. t=many seconds: transients die out and   
      system returns to rest. 

 
So we want to know what happens between 

steps b and d. Figure 15 tells this story. 
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Power 

 
Fig. 15 

Each stage of Fig. 15 (a, b, c, d, e, f, g) is 
described in what follows: 

(a) On occurrence of the fault, the electrical 
power out of the machine immediately drops 

due to the change in power-angle curves caused 
by the change in the network (from pre-fault 

network, Fig. 2, to the fault-on network, Fig. 9). 
However, because the power angle δ, 

characterizes the mechanical angle of the rotor, 
it cannot change instantaneously, and therefore 

it remains at 28.44° during this transition.  
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(b) Although the electrical power out of the 
machine has decreased from 1.0 to about 0.4 pu, 

the mechanical power into the machine is still 
1.0 pu. Therefore the accelerating power  

Pa=PM-Pe is no longer zero, rather it is positive 
(about 0.6), and so the machine begins to 

accelerate. This means that its rotational 
velocity begins to change. Whereas before the 

fault, it had a velocity equal to that of the 
synchronously rotating reference frame (and so 

a relative velocity  of 0), after the fault, due to 
acceleration, that velocity begins to increase 

(relative velocity  increases from 0).  

(c) Because the relative velocity   is positive, 

the angle  , which is relative to the reference 

angle (the infinite bus angle), increases.   
(d) At some point in time, let’s say 4 cycles 

after the fault, the protective system causes the 
breakers at both ends of the faulted circuit to 

operate and clear the fault. This results in a new 
network (post-fault, Fig. 12), and 

correspondingly a new power-angle curve. But 
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because the angle cannot change 
instantaneously, it remains at the angle it was at 

the moment just before the fault was cleared. 
Figure 15 indicates this angle is about 60°.  

(e) Now the electrical power out of the machine 
has increased to about 1.3 pu. But the 

mechanical power into the machine is still 1.0 
pu. Therefore Pa=PM-Pe is negative (about -0.3), 

and so the machine begins to decelerate.  
(f) Because of the acceleration associated with 

stage (c), the velocity is still positive and 
therefore the angle is increasing. But because of 

deceleration, the velocity is decreasing. 
(g) At some point (assuming the behavior is 

stable), the velocity becomes zero, and because 
Pa=PM-Pe is still negative (so machine is still 

decelerating), the velocity will go negative. 
When the velocity goes negative, the angle δ 

begins to decrease. 
 

The next stages (h, i, j, k) are shown in Fig. 16. 
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Fig. 16 

(h) Acceleration Pa=PM-Pe is still negative in 
this stage and therefore velocity continues to 

decrease (i.e., increase in negative direction), 
and because velocity is negative, the angle δ 

continues to decrease. 
(i) Here, the accelerating power is 0, since 

PM=Pe, but because velocity is still negative, the 
machine moves through this point. 

(j) Now Pa=PM-Pe is again positive, therefore the 
machine begins to accelerate again resulting in 

an increase in velocity. But the velocity is 
negative, and so acceleration causes this 

negative velocity to move towards 0. But 
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because the velocity is negative during this 
stage, the angle δ continues to decrease. 

(k) The velocity has reached 0 again, and 
because Pa=PM-Pe is still positive, the machine 

continues to accelerate, and so the velocity 
becomes positive. As the velocity becomes 

positive, the angle begins to increase again. 
 

The next stages, represented by (l, m, n), are 
shown in Fig. 17. 
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Fig. 17 

(l) Pa=PM-Pe is positive and so the machine 
continues to accelerate. Velocity is positive, and 

so angle increases. 
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(m) Here, Pa=PM-Pe is zero (PM=Pe) but because 
velocity is positive, machine moves through this 

point. 
(n) Pa=PM-Pe is negative, so machine 

decelerates. But velocity is positive, so angle 
continues to increase. At some point, velocity 

reaches 0, and angle begins to decrease. 
(o) If damping is present, the point at which the 

angle begins to decrease (the “turn-around” 
point) will occur “before” the turn-around point 

seen in the previous oscillation. 
(p) If damping is not present, the “turn around 

point” will be the same as the one in the last 
oscillation (labeled point (p) here but previously 

labeled (g)). 
 

One last thing with respect to this example. We 
have plotted power vs. angle, but you should be 

aware that the angle is actually a function of 
time. This relationship is conveniently 

illustrated in Fig. 18, where we also indicate a 
few stages previously discussed (b, g, i, k). 
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Fig. 18 
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In Fig. 18, the curves extending downwards are 
using the horizontal axis of the power-angle 

curve (the δ-axis) as the vertical axis of the 
angle-time curve. There are two angle-time 

curves shown, and both are associated with 
stable system behavior. The thin-lined curve 

shows the angular oscillation following the 
disturbance if the system has no damping. Such 

a system oscillates forever. The solid-lined 
curve shows the angular oscillation following 

the disturbance if the system has damping. One 
observes that the amplitude of the oscillations of 

this curve diminish with time (this is the 
realistic case). 

 
3.0 Equilibria 

We mentioned on page 8 of these notes that 
there are two equilibria for our pre-fault system, 

as shown in Fig. 4, which is repeated in Fig. 19, 
except we have designated the two points x and 

y. We also indicated that the one at 28.44° (x) is 
a stable equilibrium, and the one at 180-

28.44=151.56° (y) is an unstable equilibrium.  
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Fig. 19 

We can give an analogy here to a ball in a bowl. 
The stable equilibrium corresponds to when the 

ball is resting at the bottom of the bowl. The 
unstable equilibrium corresponds to when the 

ball is resting on the edge of the ball. This is 
illustrated in Fig. 20a.  

 

Stable equilibrium Unstable equilibrium 

 
Fig. 20a 
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It is possible for the ball to be at rest (in 
equilibrium) in both positions. However, the 

stable equilibrium is resilient to disturbances. If 
you shake the table, or if you give the ball a 

push, the ball in the stable equilibrium will 
move but then return to the stable equilibrium.  

 
On the other hand, the unstable equilibrium is 

not resilient to disturbances. If you shake the 
table, or if you give the ball a push, the ball in 

the unstable equilibrium will move down the 
bowl and come to rest at the stable equilibrium, 

or it will move out of the bowl altogether. If we 
consider the ball-bowl as a system, the latter 

movement is analogous to instability.  
A metal rod pendulum provides a similar 

analogy, shown in Fig. 20b [
1
]. 

 

Fig. 20b 
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We are now in a position to understand why one 

is a stable equilibrium and one is an unstable 
equilibrium. Consider perturbing the machine at 

the stable equilibrium, point x. The perturbation 
could be a fault, but let’s maintain simplicity as 

much as possible and assume the perturbation is 
just a small increase in mechanical power PM. 

The key point is that the moment just after the 
perturbation, the mechanical power is greater 

than 1, say 1.1, whereas the electrical power is 
still 1, and the machine begins to accelerate. The 

situation is illustrated in Fig. 21. 
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Fig. 21 
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This means the velocity becomes positive and 
the angle begins to increase.  

 
Question: As the angle increases (the point 

begins to move up and to the right, as shown), 
what happens to the accelerating power?  

 
 

Answer: Pa=PM-Pe decreases. This means that 
the rate of change in velocity is decreasing. 

Once the point moves above the solid line 
corresponding to PM=1.1, the machine will 

begin to decelerate, i.e., rate of change in 
velocity will go negative and the velocity will 

begin to decrease. 
 

The fact that the perturbation causes 
acceleration resulting in motion that inherently 

decreases that acceleration is the reason this is a 
stable equilibrium.  

 
One can go through similar logic in relation to 

the situation when mechanical power is 
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decreased to, say, 0.9. Then the machine 
decelerates, the angle decreases, and as angle 

decreases, the decelerating power decreases. 
 

Now let’s consider the unstable equilibrium, 
point y, and let’s again assume a small increase 

in mechanical power PM to, say, 1.1 pu. Does 
the angle increase or decrease? 

Because Pa=PM-Pe is positive, the velocity goes 
positive, resulting in an increase in angle.  

 
Question: As the angle increases (the point 

begins to move down and to the right, as 
shown), what happens to the accelerating 

power?  
 

Answer: Pa=PM-Pe increases! This means that 
the rate of change in velocity is increasing. The 

point does not move above the solid line 
corresponding to PM=1.1, and so the machine 

never decelerates. In fact, the accelerating 
power just continues to increase, equivalent to 

the ball falling of the edge.  
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The fact that the perturbation causes 

acceleration resulting in motion that inherently 
increases that acceleration is the reason this is 

an unstable equilibrium.  
 

One can go through similar logic in relation to 
the situation when mechanical power is 

decreased to, say, 0.9. Then the machine 
decelerates, the angle decreases, and as angle 

decreases, the decelerating power increases. 
This will continue until point y moves all the 

way back to point x, the stable equilibrium. This 
is equivalent to the ball rolling down into the 

bowl. 
 
                                              
[
1
] http://galileospendulum.org/2011/05/31/physics-quanta-pendulums-revisited  
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