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Stability 1 

1.0 Introduction  

We now begin Chapter 14.1 in your text. 
Our previous work in this course has focused on 

analysis of currents during faulted conditions in 
order to design protective systems necessary to 

detect and clear faults. Now we turn our 
attention to the generator response, in terms of 

speed, during and for a few seconds after a fault. 
This response is called “electromechanical” 

because it involves the interaction of rotor 
dynamics (mechanical) with the dynamics of the 

generator armature and field winds together 
with the state of the external network. 

 
The basic requirement for generators is that they 

must operate “in synchronism.” This means that 
their mechanical speeds must be such so as to 

produce the same “electrical speed” (frequency). 
 

You know for EE 303 that electrical speed for a 
generator equals the mechanical speed times the 

number of poles, per eq. (1). 
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me

p


2


      (1) 

where ωm is the mechanical speed and ωe is the 
electrical speed (frequency), both in rad/sec, and 

p is the number of poles on the rotor. 
 

Equation (1) reflects that the electrical quantities 
(voltage and current) go through 1 rotation 

(cycle) for every 1 magnetic rotation.  
 

If p=2, then there is 1 magnetic rotation for 
every 1 mechanical rotation. In this case, the 

stator windings see 1 flux cycle as the rotor 
turns once. But if p=4, then there are 2 magnetic 

rotations for every mechanical rotation. In this 
case, the stator windings see 2 flux cycles as the 

rotor turns once. Figure 1 illustrates a 2 and a 4 
pole machine (salient pole construction). 
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Fig. 1 

 
The point of the above discussion is that to 

maintain synchronized “electrical speed” among 
all generators, each machine must maintain a 

constant mechanical speed as well. That is…. 
 All 2-pole machines must maintain ωm=377 

rad/sec 
 All 4-pole machines must maintain ωm=188.5 

rad/sec 
 Etc. 

 
So we are concerned with any conditions that 

will cause a change in rotational velocity. 
 
Question: What is “change in rotational 

velocity”? 
 



 4 

Answer: Acceleration (or deceleration). 
 

Question: What kind of conditions cause change 
in rotational velocity (acceleration)? 

 
To answer this question, we must look at the 

mechanical system to see what kind of “forces” 
there are on it.  

 
Recall that with linear motion, acceleration 

occurs as a result of a body experiencing a “net” 
force that is non-zero. That is, 

m

F
a 

      (2) 

where F is the net force acting on the body of 
mass m, and a is the resulting acceleration. It is 

important to realize that F represents the sum of 
all forces acting on the body. This is Newton’s 

second law of motion (first law is any body will 
remain at rest or in uniform motion, i.e., no 

acceleration, unless acted upon by a net non-
zero force). 
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The situation is the same with rotational motion, 
except that here, we speak of torque and inertias 

instead of forces and masses. Specifically,  

J

T


      (3) 

where T represents the “net” torque acting on 

the body, J is the moment of inertia of the body 
(the rotational masses) in kg-m

2
. Again, it is 

important to realize that T represents the sum of 
all torques acting on the body. 

 
Let’s consider that the rotational body is a shaft 

connecting a turbine with a generator, as shown 
in Fig. 2. 

 

 

Turbine 

 

Generator 

 
Fig. 2a 

Assumptions: 

1.The shaft is rigid (inelastic). 
2.There are no frictional torques. 

 
What are the torques on the shaft? 
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 The turbine exerts a torque in one direction 
which causes the shaft to revolve. This torque 

is mechanical. Call this torque Tm. 
 The generator exerts a torque in the opposite 

direction which retards this motion. This 
torque is electromagnetic acting on the field 

windings that are located on the rotor. Call this 
torque Te. 

 

 
Turbine 

 
Generator 

Tm 

Te 

 
Fig. 2b 

So these two torques are in opposite directions. 

If they are exactly equal, then Newton’s first 
law tells us that this system is not accelerating. 

This is the case when the machine is in 
synchronism, i.e., 

em TT        (4) 

Let’s define the accelerating (or net) torque as: 

ema TTT        (5) 

Note that Ta0 when TmTe. 
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Given that the machine is initially operating in 
synchronism (Tm=Te), what kinds of changes 

can occur to cause Ta0? 

There are basically two types of changes that 

can cause Ta0. 

1.Changes in Tm. 
a. Intentionally through steam valve, with Tm 

either increasing or decreasing and 
generator either accelerating or 

decelerating, respectively. 
b.Disruption to steam flow, typically a 

decrease in Tm, with generator 
decelerating. 

2.Changes in Te. 
a. Increase in load or decrease in generation 

of other units; in either case, Te increases, 
and the generator decelerates. 

b.Decrease in load or increase in generation 
of other units; in either case, Te decreases, 

and the generator accelerates. 
 

But all of the above changes are typically slow. 
Therefore the turbine-governor, together with 
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the automatic generation control (AGC) loop 
(will study AGC later in this course), can re-

adjust as necessary to bring the speed back. 
But there is one more type of change that should 

be listed under #2 above.  
c. Faults. This causes Te to decrease. We will 

see why in the next section. 
 

2.0 Effect of faults 
 

Recall, from EE 303, the following circuit 
diagram representing a synchronous generator. 
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Zload 

 
Fig. 3 

You may also recall that the power output of the 
synchronous generator is given by 
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     (6) 

where δ is the angle by which the internal 
voltage Ef leads the terminal voltage Vt. 

 
Now consider a three-phase fault at the 

generator terminals. Then, |Vt|=0. According to 
(6), if |Vt|=0, then Pe=0. 

 
Now the electrical torque is related to the 

electrical power through 

m

e
e

P
T




      (7) 

Therefore, when Pe=0, Te=0. By (5), then, this 
causes 

mema TTTT       (8) 

In other words, when a three-phase fault occurs 
at the terminals of a synchronous generator, 

none of the mechanical torque applied to the 
generator (through the turbine blades) is offset 

by electromechanical torque.  
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This means that ALL of the mechanical torque 
is used in accelerating the machine. Such a 

condition, if allowed to exist for more than a 
few cycles, would result in very high rotational 

turbine speed and catastrophic failure.  
So this condition must be eliminated as fast as 

possible, and this is an additional reason 
(besides effect of high currents) why protective 

systems are designed to operate fast. 
 

Of course, most faults are not so severe as a 
three-phase fault at a generator’s terminals. 

Nonetheless, we know from our previous work 
in fault analysis that faults cause network 

voltages to decline, which result in an 
instantaneous decrease in the electrical power 

out of the generator, and an initial acceleration 
of the machine. The questions are: 

 How much of a decrease in electrical power 
occurs and 

 How much time passes before the faulted 
condition is cleared. 
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This discussion leads us to study the 
relationship between the mechanical dynamics 

of a synchronous machine and the electric 
network. 

 
3.0 Analytical development 

 
The relationship between the mechanical 

dynamics of a synchronous machine and the 
electric network begins with (3) 

J

T

J

T a
      (3) 

where T is the net torque acting on the turbine-
generator shaft, which is the same as what we 

have called the accelerating torque Ta. 
 

Let’s define the angle θ as the absolute angle 
between a reference axis (i.e., fixed point on 

stator) and the center line of the rotor north pole 
(direct rotor axis), as illustrated in Fig. 4. 

(Ignore the angle α in this picture). It is given by 

00 t)t(       (9a) 
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Here, ω0 is the shaft rated mechanical angular 
velocity, in rad/sec, and θ0 is the initial angle (at 

t=0). When we account for deviations of the 
rotor position due to changes in speed, we get 

)()( 00 ttt      (9b) 

where Δθ(t) is the deviation of the rotor position 

due to changes in speed. This is (14.1) in  your 
text. 

 
Fig. 4 
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The angle θ clearly describes the position of the 

rotor. If the rotor is moving, then ω=dθ/dt0. If 

the rotor is accelerating, then α=d
2
θ/dt

2
0. 

Using the “dot” notation for differentiation, we 

can write this expression for acceleration as  

        (10) 
But by eq. (3), we have that: 

J

Ta
      (11) 

In the appendix of these notes, I derive (A-15) 

which shows that the internal voltage of a 
synchronous machine is given by   

 2/cos 000max'   tNeaa  (A-15) 

This is also derived in Section 6.3 of your text, 

resulting in (6.6) of your text:  

 2/tcosEe 00max'aa     (6.6) 

which is the same as (A-15), where 

0maxmax NE   

When we account for deviations in the rotor 
position due to changes in speed, then (A-15) 

becomes 
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 2/)t(tcosNe 000max'aa    

Here, we will define the phase angle of the 

internal voltage of a synchronous machine as 
δ(t), given by 

2
)()( 0


  tt

    (12) 

Comparing (12) to (9b), we see that if we 

subtract off ω0t-π/2 from (9b), that we get 

)t(2/)t(

2/t)t(t2/t)t(

0

0000








 (13) 

What this says is that whereas θ(t) is an absolute 

angle, δ(t) is a relative angle, where the 
reference frame to which it is relative is a frame 

rotating at synchronous speed ω0. 
 

From (9b), we have that 

dt

td
t

)(
)( 0







    (14) 

2

2 )(
)(

dt

td
t







    (15) 

From (12), we have 
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dt

td
t

)(
)(







     (16) 

2

2 )(
)(

dt

td
t







     (17) 

From (15) and (17), we have that  

  )(t      (18) 

Substitution of (18) into (11) results in 

J

T
t a)(

      (19) 

or, multiplying by J, we obtain: 

aTtJ )(       (20) 

Recall that torque and power are related via  

m

P
T




      (21) 

Therefore we can write (20) in terms of power 
as 

0

)(


 aP
tJ 

      (22) 
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Recall here that ω0 is the rated mechanical speed 
of the machine.  

 
Multiply both sides by ω0, we get 

aPtJ )(0 
     (23) 

The angular momentum of the machine at rated 

speed is: 

01 JM       (24) 

Substitution of (24) into (23) results in 

aPtM )(1


     (25) 

Let’s per-unitize by the machine MVA base. 

mach

a

mach S

P
t

S

M
)(1 

    (26) 

Notice that the right hand-side is the 
accelerating power in per-unit. Therefore: 

pua

mach

Pt
S

M
,

1 )( 
    (27) 

Now multiply and divide the left-hand-side by 
2/ω0 to get: 
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pua

mach
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,
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























   (28) 

We define what is in the brackets as H. 

machmach S

J

S

M
H

2

001
2

1

2

1



    (29) 

What is in the numerator on the right-hand-side? 

It is the stored kinetic energy when the machine 
is rotating at synchronous speed ω0. If J is given 

in units of 1E6 kg-m
2
, then the numerator on the 

right-hand-side of (29) has units of MWsec, i.e., 

machmach

2
0

mach

01

S

sec]MW[

S

J
2

1

S

M
2

1

H 


 (30) 

where [MWsec] denotes a machine parameter 
called “the MWsec of the machine” in units of 

MWsec (called Wkenetic in your text).  
Some comments about H: 
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 Some transient stability programs require input 
of the MW-sec of each machine, but some also 

require input of the H for each machine. 
 If a program requires H, you need to make sure 

that you provide it on the proper MVA base.  
- Equation (30) expresses H on the machine 

MVA base. When expressed on the machine 

MVA base, H tends to be between 1 and 10 
with low end for synchronous condensers 

(no turbine!), high-end for steam generators 
(high ω0very fast), and middle range for 

hydro generators (low ω0very slow). 
- H may also be given on any other base, e.g., 

100 MVA. In this case, 

100

sec

100

2

1

100

2

1 2

001 MW
JM

H 


(31) 

When performing transient stability studies 
for multi-machine systems, you have to 

represent H on the system MVA base, and in 
this case, it is typical to use 100 as the base. 

- To convert H from one base to another, 
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new

old
oldnew

S

S
HH 

    (32) 

The table below provides some typical values of 

H on different bases. 
Unit Srated (MVA) MWsec Hmach=MWsec/Srated Hsys=MWsec/100 

H1 9 23.5 2.61 0.235 
H9 86 233 2.71 2.38 

H18 615 3166 5.15 31.7 

F1 25 125.4 5.02 1.25 

F11 270 1115 4.13 11.15 

F21 911 2265 2.49 22.65 

CF1-HP 128 305 2.38 3.05 

CF1-LP 128 787 6.15 7.87 

N1 76.8 281.7 3.67 2.82 

N8 1340 4698 3.51 47.0 

SC1 25 30 1.2 0.3 

SC2 75 89.98 1.2 0.9 

 

Note finally that from 

machS

M
H

01
2

1



 

we can write 

machmach

machmach

MSS
f

H

S
f

H
S

H
M





0

00

1
2

22





 (33) 
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where M is a parameter used in your book (see 
pg. 534), and defined as 

0f

H
M




     (34) 

Last comment about representing machine 
inertia is that if you order a new machine from 

GE, then you will most likely obtain the 
machine inertia as WR

2
, which is 

[weight of rotating parts][radius of gyration]
2
 

in units of lb(m)*ft
2
. Conversion is: 

MWsec=2.31E-10(WR
2
)(nR)

2
 

where nR is the rated speed of rotation of the 

machine in units of rev per minute. 
 

Substituting H into eqt. (28), we obtain: 

puaPt
H

,

0

)(
2





    (35) 

Equation (35) is given for a two-pole machine 

where angular measure is the same as electrical 
measure.  
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But if we want to use eq. (35) for machines that 
have more than 2 poles, then we need to convert 

from mechanical measure to electrical measure 
according to: 

em
p


2


      (36) 

Likewise, 

em
p


2


      (37) 

em
p
  2


      (38) 

We prefer to work in electrical angular measure, 
because it is easier then to compare angular 

measures from one machine to another.  
 

Substitution of (38) into (35) yields: 

puae Pt
p

H
,

0

)(
22





   (39) 

Then use eq. (36) to substitute for ω0: 
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puae

e

Pt
p

p

H
,

0

)(
2

2

2






    (40) 

which simplifies to 

puae

e

Pt
H

,

0

)(
2





     (41) 

From now on, we will drop the “e” subscript on 

the angle, understanding that we are always 
working in electrical angles. But we will retain 
it on ωeo to distinguish from ω0 (the mechanical 

rated speed of rotation). This results in: 

pua

e

Pt
H

,

0

)(
2





     (42) 

Let’s compare eq. (42) to (14.19) in your text. 
0)()()( MG PPtDtM   

  (14.19) 

From eq. (34), M=H/πf0=2H/ωe0, and so we see 
that the first terms are the same, and eq. (42) 

may be expressed as 
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puaPtM ,)(       (43) 

The accelerating power Pa,pu on the right-hand-

side of eq. (43) is just 

GMpua PPP  0

,     (44) 

and so eq. (43) may be expressed as 
0)( MG PPtM      (45) 

Now we can see that eq. (45) and (14.19) are 
almost exactly the same, with the only 

significant difference being the term )(tD . This 
term is one that we did not include in our 
development and captures the effect of windage 

and friction, which is proportional to speed. 
One question is how to express PG. This is the 

pu electrical power out of the generator. 
 

Your textbook provides eq. (14.7), which is 

 2sin
11

2
sin)(

2


















dqd

a

G
XX

V

X

VE
P  (14.7) 

The first term in this equation is familiar from 

EE 303, but the second term is not. The second 
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term is actually a term that is necessary when 
the reactance associated with flux path along the 

main rotor axis (the d-axis) differs from that 
along the perpendicular axis (the q-axis). This is 

the case for salient pole machines but is not the 
case for smooth rotor machines. But for salient 

pole machines, we can use just the first term as 
a reasonable approximation. Therefore we will 

represent the power out of the machine as 

 sin)(
d

a

G
X

VE
P       (46) 

Therefore, our eq. (45) becomes: 

 sin)( 0

d

a

M
X

VE
PtM 
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Appendix 
1.0 Analytical model: open circuit voltage 

 
We will develop an analytical model for the 

open circuit voltage of a synchronous generator. 
We begin with Fig. A-1 (Fig. 6.1 from text). 

 
Fig. A-1 

In this figure, note the following definitions: 

 θ: the absolute angle between a reference axis 
(i.e., fixed point on stator) and the center line 

of the rotor north pole (direct rotor axis). 
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 α: the angle made between the reference axis 
and some point of interest along the air gap 

circumference.  
Thus we see that, for any pair of angles θ and α, 

α-θ gives the angular difference between the 
centerline of the rotor north pole and the point 

of interest. 
 

We are using two angular measurements in this 
way in order to address  

 variation with time as the rotor moves; we 
will do this using θ (which gives the rotational 

position of the centerline of the rotor north 
pole) 

 variation with space for a given θ; we will do 
this using α (which gives the rotational 

position of any point on the stator with 
respect to θ) 

We want to describe the flux density, B, in the 
air gap, due to field current iF only. 
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Assume that maximum air gap flux density, 
which occurs at the pole center line (α=θ), is 

Bmax. Assume also that flux density B varies 
sinusoidally around the air gap (as illustrated in 

Figs. 9 and 10). Then, for a given θ,  

)cos()( max   BB     (A-1) 

Keep in mind that the flux density expressed by 

eq. (A-1) represents only the magnetic field 
from the winding on the rotor.  

 
But, you might say, this is a fictitious situation 

because the currents in the armature windings 
will also produce a magnetic field in the air gap, 

and so we cannot really talk about the magnetic 
field from the rotor winding alone.  

 
We may deal with this issue in an effective and 

forceful way: assume, for the moment, that the 
phase A, B, and C armature windings are open, 

i.e., not connected to the grid or to anything 
else. Then, currents through them must be zero, 

and if currents through them are zero, they 
cannot produce a magnetic field. 
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So we assume that ia=ib=ic=0. 

 
So what does this leave us to investigate? Even 

though currents in the phases are zero, voltages 
are induced in them. So it is these voltages that 

we want to describe. These voltages are called 
the open circuit voltages. 

 
Consider obtaining the voltage induced in just 

one wire-turn of the a-phase armature winding. 
Such a turn is illustrated in Fig. A-2 (Fig. 6.2 of 

the text). We have also drawn a half-cylinder 
having radius equal to the distance of the air-gap 

from the rotor center. 
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Fig. A-2 

Note in Fig. A-2 that the current direction in the 
coil is assumed to be from the X-terminal (on 

the right) to the dot-terminal (on the left).  
 

With this current direction, a positive flux 
direction is established using the right-hand-rule 

to be upwards. We denote a-phase flux linkages 
associated with such a directed flux to be λaa’. 

Our goal, which is to find the voltage induced in 
this coil of wire, eaa’, can be achieved using 

Faraday’s Law, which is: 
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dt

d
e aa

aa

'

'




     (A-2) 

So our job at this point is to express the flux 

linking the a-phase λaa, which comes entirely 
from the magnetic field produced by the rotor, 

as a function of time.  
 

An aside: The minus sign of eq. (A-2) expresses 
Lenz’s Law [1, pp. 27-28], which states that the 

direction of the voltage in the coil is such that, 
assuming the coil is the source (as it is when 

operating as a generator), and the ends are 
shorted, it will produce current that will cause a 

flux opposing the original flux change that 
produced that voltage. Therefore  

 if flux linkage λaa’ is increasing (originally 
positive, meaning upwards through the coil a-

a’, and then becoming larger),  
 then the current produced by the induced 

voltage needs to be set up to provide flux 
linkage in the downward direction of the coil,  

 this means the current needs to flow from the 
terminal a to the terminal a’ 
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 to make this happen across a shorted terminal, 
the coil would need to be positive at the a’ 

terminal and negative at the a terminal, as 
shown in Fig. A-3. 

 
 

I I 

 
Fig. A-3 

To compute the flux linking with the coil of 

wire a-a’, we begin by considering the flux 
passing through the small slice of the cylinder, 

dα. The amount of flux through this slice, 
denoted by dφaa’, will be the flux density at the 
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slice, as given by eq. (A-1), multiplied by the 
area of that slice, which is (length) × (width) = 

(l) × (r dα), that is: 





dlrB

lrdBd aa

)cos(

)cos(

max

max'





    (A-3) 

We can now integrate eq. (A-3) about the half-

cylinder to obtain the flux passing through it 
(integrating about a full cylinder will give 0, 

since we would then pick up flux entering and 
exiting the cylinder). 
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(A-4) 

Define φmax=2lrBmax, and we get 
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 cosmax' aa      (A-5) 

which is the same as eq. (6.2) in the text. 
 

Equation (A-5) indicates that the flux passing 
through the coil of wire a-a’ depends only on θ. 

That is,  
 given the coil of wire is fixed on the stator, 

and  
 given that we know the flux density occurring 

in the air gap as a result of the rotor winding,  
 we can determine how much of the flux is 

actually linking with the coil of wire by 
simply knowing the rotational position of the 

centerline of the rotor north pole (θ). 
 

But eq. (A-5) gives us flux, and we need flux 
linkage. We can get that by just multiplying flux 

φaa’ by the number of coils of wire N. In the 
particular case at hand, N=1, but in general, N 

will be something much higher. Then we obtain: 

 cosmax'' NN aaaa     (A-6) 
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Now we need to understand clearly what θ is. It 
is the centerline of the rotor north pole, BUT, 

the rotor north pole is rotating!  
 

Let’s assume that when the rotor started 
rotating, it was at θ=θ0, and it is moving at a 

rotational speed of ω0, then 

00   t     (A-7) 

Substitution of eq. (A-7) into eq. (A-8) yields: 

 
00max' cos   tNaa    (A-8) 

Now, from eq. (A-2), we have 

  
00max

'
' cos 





 tN

dt

d

dt

d
e aa

aa    (A-9) 

We get a –sin from differentiating the cos, and 
thus we get two negatives, resulting in: 

 
000max' sin   tNeaa   (A-10) 

Define 

0maxmax NE     (A-11) 

Then 

 
00max' sin   tEeaa     (A-12) 

We can also define the RMS value of eaa’ as  
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2

max

'

E
Eaa       (A-13) 

which is the magnitude of the generator internal 

voltage.  
 

We have seen internal voltage before, in EE 
303, where we denoted it as |Ef|. In EE 303, we 

found it in the circuit model we used to analyze 
synchronous machines, which appeared as in 

Fig. A-4.  
 

Note that internal voltage is the same as 
terminal voltage on the condition that Ia=0, i.e., 

when the terminals are open-circuited. This is 
the reason why internal voltage is also referred 

to as open-circuit voltage. 

 

Ef 

jXs 

Vt 

Ia 

Zload 

 
Fig. A-4 
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We learned in EE 303 that internal voltage 
magnitude is proportional to the field current if. 

This makes sense here, since by eqs. (A-11) and 
(A-13), we see that 

22

0maxmax

'

NE
Eaa     (A-14) 

and with N and ω0 being machine design 

parameters (and not parameters that can be 
adjusted once the machine is built), the only 

parameter affecting internal voltage is φmax, 
which is entirely controlled by the current in the 

field winding, if. 
 

One last point here: it is useful at times to have 
an understanding of the phase relationship 

between the internal voltage and the flux 
linkages that produced it. Recall eqs. (A-8) and 

(A-10): 

 
00max' cos   tNaa    (A-8) 

 
000max' sin   tNeaa   (A-10) 

Using sin(x)=cos(x-π/2), we write (A-10) as: 

 2/cos 000max'   tNeaa  (A-15) 
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Comparing eqs. (A-8) and (A-15), we see that 
the internal voltage lags the flux linkages that 

produced it by π/2=90° (1/4 turn). 
 

This is illustrated by Fig. A-5 (same as Fig. E6.1 
of Example 6.1). In Fig. A-5, the flux linkage 

phasor is in phase with the direct axis of the 
rotor. 

 

Reference Axis 

θ0=π/4 

Reference Axis 

Flux Linkage Phasor Λaa’ 

Internal Voltage Phasor Eaa’ 

a-phase armature winding 

 
Fig. A-5 

Therefore, the flux linkages phasor is 
represented by 

00

'
max

'
2

 j

aa

j

aa ee
N


   (A-16) 

and then the internal voltage phasor will be 
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   2/

'

2/0max
'

00

2

 


j

aa

j

aa eEe
N

E
  (A-17) 

Let’s drop the a’ subscript notation from Eaa’, 

just leaving Ea, so that: 

   2/2/0max 00

2

 


j

a

j

a eEe
N

E
   (A-18) 

Likewise, we will get similar expressions for the 
b- and c-phase internal voltages, according to: 

 3/22/0  


j

ab eEE    (A-19) 
 3/22/0  


j

ac eEE    (A-20) 
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