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LU Decomposition 

 

1.0 Introduction 

 

We have seen how to construct the Y-bus 
used in the matrix equation  

VYI       (1) 
If we are given the bus voltages, we can 

construct Y and then very easily find I. 
Unfortunately, this is not generally what we 

know. Rather, we typically know I (because 
we know generation and load), and then we 

must find V. This is easy enough, using 
matrix inverses, i.e.,  

IYV
1

      (2) 
However, there is a very practical problem 
with this. A model of the eastern US 

interconnection can be 50000 buses. This 
means that the Y-bus for this model is a 

50000×50000 matrix. Direct matrix 
inversion for this dimensionality is 

computational suicide. 
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Fortunately, there is an alternative to direct 
matrix inversion. We will never actually get 

the inverse, but we will solve for V given I 
in eq. (1).  

 
The method that allows us to do this is 

called LU decomposition. It is actually a 
very widely known and used method in 

many different disciplines.  
 

In fact, using it to solve eq. (1) is not the 
most common application in power systems. 

A much more common application of LU 
decomposition is in the numerical, iterative 

algorithm used to solve the power flow 
problem. But we will come to this later. For 

now, let’s learn LU-decomposition on the 
generic problem A x=b, motivated by the 

specific application Y V=I. 
 

If you have taken a linear algebra course 
(from Math), this is familiar to you. If you 

have not taken such a course, you should. 
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2.0 Forward-backward substitution 

 

Consider that you are able to obtain A (or Y) 
as the product of two special matrices, i.e.,  

ULA       (3) 
that satisfy the following: 

 Both L and U are square matrices of the 
same dimension as A. 

 U is an upper-triangular matrix, meaning 
that all elements below the diagonal are 0. 

 L is a lower-triangular matrix, meaning 
that all elements above the diagonal are 0. 

 All diagonal elements of U are 1. 
So, for a 3×3 case, we would have: 
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For the moment, let’s not worry about how 

to obtain L and U. Rather, let’s think about 
what we can do if we get them. 

 

What we know at this point is that ULA  , 

and bxA  . Therefore,  

bxUL        (5) 
Define: 

xUw        (6) 
Substitution of (6) into (5) results in 

bwL        (7) 
The situation is the following. We want to 

find x. It appears that (6) and (7) are not 
very helpful, because solving them for x and 
w, respectively, will require an inverse. But 

let’s take a closer look at eqs. (6) and (7), in 
terms of the fully expressed matrix relations 

and see if we can get x and w without matrix 
inversion. If so, then our procedure will be 

to use (7) to find w and then (6) to find x. 
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Observe that  

 Equation (9) can be solved for w without 
inverting L and 

 Equation (8) could then be solved for x 
without inverting U.  

Let’s start with (9). We see that we can 
begin with the row 1 equation and proceed 

as follows: 

11111111 / lbwbwl     (10) 

22
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wbwlwl




 (11) 

33

2321313

33333232131
l

wlwlb
wbwlwlwl




 (12) 



 6 

This procedure is called forward 

substitution. Consideration of the pattern of 

calculation introduced by eqs. (10)-(12) 
suggests a generalized formula for forward 

substitution, useful for computer 
programming, as follows: 
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     (13) 

Now that we have w, we can use (8) to find 
x. We see that we can begin with the row 3 

equation and proceed as follows: 

33 wx       (14) 

3232223232 xuwxwxux   (15) 

3132121113132121 xuxuwxwxuxux 

 (16) 
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This procedure is called backward 

substitution. Consideration of the pattern of 

calculation introduced by eqs. (14)-(16) 
suggests a generalized formula for forward 

substitution, useful for computer 
programming, as follows: 





n

kj

jkjkk xuwx
1

    (17) 

where n is the dimension of the matrix. 
 

3.0 Factorization using Crout algorithm 

 

So we see that if we have L and U, we can 
solve A x=b for x. So natural question at this 

point is: How to find L and U?  
 

The method of finding L and U from A is 
called the LU factorization of A, otherwise 

known as the LU-decomposition of A. You 
will enjoy factorization . 

 
To motivate it, let’s first look back at eq. (4). 
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Based on eq. (4), we see that the following 

sequence of calculations may be performed. 
 Row 1 of A and L, across columns of U. 

1111 la   

111212121112 / lauula   

111313131113 / lauula   

 Row 2 of A and L, across columns of U. 

2121 la   

1221222222122122 ulallula   

22

132123
232322132123

l

ula
uulula
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 Row 3 of A and L, across columns of U: 

3131 la   

1231323232123132 ulallula   

233213313333332332133133 ululallulula 

The above is convincing evidence that we 
will be able to perform the desired 

factorization. Although we have done so for 
only a 3×3 case, it is easy to see that the 

procedure would also work for a matrix of 
any dimension. 

If you study closely the pattern of 
calculation, you can convince yourself that 

the following generalized formula can be 
used in computer programming [1]. 
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Use of eqs. (18,19) comprise what is known 
as the Crout algorithm. 
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4.0 Method of Bergen & Vittal (Dolittle) 
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 Row 1 of A and L, across columns of U. 

1111 ua   

1212 ua   

1313 ua   

 Row 2 of A and L, across columns of U. 

11

21
21112121

u

a
lula 

 

1221222222122122 ulauuula   

1321232323132123 ulauuula   

 Row 3 of A and L, across columns of U: 

11
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22
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233213313333332332133133 ululauuulula 

 

 
5.0 Factorization using Gaussian 

elimination 

Trick: Augment A matrix before you begin 

the below algorithm by adding the vector b 
as the n+1 column. Then, when you finish 

the algorithm, you will have the vector w in 
the n+1 column. 

 
The algorithm is as follows: 

1. Perform Gaussian elimination on A. Let 
i=1. In each repetition below, row i is the 

pivot row and aii is the pivot. 
a. Lji=aji for j=i,…,n. 

b.Divide row i by aii. 
c. If [i=n, go to 2] else [go to d]. 

d.Eliminate all aji, j=i+1,…,n. This 
means to make all elements directly 
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beneath the pivot equal to 0 by adding 
an appropriate multiple of the pivot 

row to each row beneath the pivot. 
e. i=i+1, go to a. 

2. The matrix U is what remains. 
 

Example: Use LU decomposition to solve 
for x in the below system of equations. 
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In matrix form, the above is: 
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Form the augmented matrix. 



 13 



















 13101

26521

31431

19633

 

 

Now perform the algorithm.  
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Divide first row by 3 and then add multiples 
of it to remaining rows so that first element 

in remaining rows gets zeroed. 
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Divide second row by 2 and then add 
multiples of it to remaining rows so that 

second element in remaining rows gets 
zeroed. 
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Divide third row by 2 and then add multiples 

of it to remaining rows so that third element 
in remaining rows gets zeroed. 
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Divide third row by 3. 
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[1] Vlach and Singhal, “Computer Methods for Circuit Analysis and 
Design,” 2nd edition, 1994. 


