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AGC 2 

1.0 Introduction  

In the last set of notes, we developed a model of 
the speed governing mechanism, which is given 

below: 
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In these notes, we want to extend this model so 
that it relates the actual mechanical power into 

the machine (instead of ΔxE), so that we can 
then examine the relation between the 

mechanical power into the machine and 
frequency deviation.  

 
What lies between ΔxE, which represents the 

steam valve, and ΔPM, which is the mechanical 
power into the synchronous machine? 

 
2.0 Extended model 

Your text (p. 381) does not go into great detail 
in regards to the turbine model but rather argues 

that it responds much like the speed governing 
system, which is a single time-constant system.  
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Being a single time-constant system implies that 

there is only one pole (the characteristic 
equation has only one root). Thinking in terms 

of inverse LaPlace transforms, this means that 
the response to a step change in valve opening 

will be exponential (as opposed to oscillatory). 
In these notes, we simply confirm that this is the 

case. 
 

Analytically, this means that the relation 
between the change in valve opening ΔxE and 

the change in mechanical power into the 
generator ΔPM is given by: 
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Substituting (1) into (2) results in 
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which is 
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Let’s assume that KT and KG are chosen so that 
KTKG=1, then eq. (4) becomes: 
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A block diagram representing eq. (5) is given in 
Fig. 1 (Fig. 11.4 in text). 
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Fig. 1 

3.0 Mechanical power and frequency 

 

Let’s expand (5) so that 
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Consider a step-change in power of ΔPC and in 
frequency of Δω, which in the LaPlace domain 

is: 
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Substitution of (7a) and (7b) into (6) results in: 
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One easy way to examine eq. (8) is to consider 
ΔPM(t) for very large values of t, i.e., for the 

steady-state. 
 

To do this, recall that the variable ΔPM in eq. (8) 
is a LaPlace variable. To consider the 

corresponding time-domain variable under the 
steady-state, we may employ the final value 

theorem, which is: 
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Applying eq. (9) to eq. (8), we get: 
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Therefore, when considering the relation 
between steady-state changes, 
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This is eq. (11.6) in your text.  
 

Make sure that you understand that in eq. (11), 
ΔPM,  ΔPC, and Δω in eq. (11) are  

 Time-domain variables (not LaPlace variables) 
 Steady-state values of the time-domain 

variables (the values after you wait along time) 
Because we developed eq. (11) assuming a step-

change in frequency, you might be mislead into 
thinking that the frequency change is the 
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initiating change that causes the change in 
mechanical power ΔPM.  

However, recall Fig. 3 of AGC1 notes, repeated 
below for convenience as Fig. 2 in these notes. 

 
Fig. 2 

The frequency change expressed by Δω in eq. 
(11) is the frequency deviation at the end of the 

simulation. The ΔPM in eq. (11), associated with 
Fig. 2, is  

 not the amount of generation that was outaged,  
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 but rather the amount of generation increased 
at a certain generator in response to the 

generation outage. 
So ΔPM and Δω are the conditions that can be 

observed at the end of a transient initiated by a 
load-generation imbalance. They are conditions 

that result from the action of the primary 
governing control.  

 
In other words, the primary governing control 

will operate (in response to some frequency 
deviation caused by a load-generation 

imbalance) to change the generation level by 
ΔPM and leave a steady-state frequency 

deviation of Δω. 
 

Although we have not developed relations for ω, 
PM, and PC (but rather Δω, ΔPM, and ΔPC), lets 

assume we have at our disposal a plot of PM vs. 
ω for a certain setting of PC=PC1. Such a plot 

appears in Fig. 3. (The text makes the following 
assumption on pg 383 (I added the italicized 

text): “…the local behavior (as characterized by 
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eq. (11)) can be extrapolated to a larger 
domain.”) 
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Fig. 3 

An important assumption behind Fig. 3 is that 

the adjustment to the generator set point, 
designated by PC=PC1, is done by a control 

system (as yet unstudied), called the secondary 
or supplementary control system, which results 

in ω=ω0. The plot, therefore, provides an 
indication of what happens to the mechanical 

power PM, and the frequency ω, following a 
disturbance from this pre-disturbance condition 

for which PM=PC1 and ω= ω0.  
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It is clear from Fig. 3 that the “local” behavior is 

characterized by R
PM


 . 

If we were to change the generation set point to 

PC=PC2, under the assumption that the secondary 
control that actuates such a change maintains 

ω0, then the entire characteristic moves to the 
right, as shown in Fig. 4.  
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Fig. 4 

 

We may invert Fig. 3, so that the power axis is 
on the vertical and the frequency axis is on the 

horizontal, as shown in Fig. 5. 
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Fig. 5 

 

Fig. 6 illustrates what happens when we change 
the generation set point from PC=PC1 to PC=PC2,  
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Fig. 6 
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It is conventional to illustrate the relationship of 
frequency ω and mechanical power PM as in 

Figs. 5 and 6, rather than Figs. 3 and 4. 
(Regardless, however, be careful not to fall into 

the trap that it is showing PM as the “cause” and 
ω as the “effect.” As repeated now in different 

ways, they are both “effects” of the primary 
control system response to a frequency 

deviation caused by a load-generation 
imbalance).   

 
From such a picture as Figs. 5 and 6, we obtain 

the terminology “droop,” in that the primary 
control system acts in such a way so that the 

resulting frequency “droops” with increasing 
mechanical power.  

 
The R constant, previously called the regulation 

constant, is also referred to as the droop setting.  
 

 

 

 



 12 

4.0 Units 

Recall eq. (11), repeated here for convenience. 
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With no change to the generation set point, i.e., 
ΔPC=0, then 
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where we see that 
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We see then that the units of R must be 
(rad/sec)/MW. 

 
A more common way of specifying R is in per-

unit, where we per-unitize top and bottom of eq. 
(13), so that: 

Mpu

pu

rM

pu
PSP

R












/

/ 0

     (14) 

where ω0=377 and Sr is the three-phase MVA 

rating of the machine. When specified this way, 
R relates fractional changes in ω to fractional 

changes in PM. 
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It is also useful to note that  
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Thus, we see that per-unit frequency is the same 
independent of whether it is computed using 

rad/sec or Hz, as long as the proper base is used.  
 

Therefore, eq. (14) can be expressed as 
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5.0 Example 

 
Consider a 2-unit system, with data as follows: 

Gen A: SRA=100 MVA, RpuA=0.05 
Gen B: SRB=200 MVA, RpuB=0.05 

The load increases, with appropriate primary 
speed control (but no secondary control) so that 

the steady-state frequency deviation is 0.01 Hz. 
What are ΔPA and ΔPB? 
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Solution:  
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Note!!! Since RpuA=RpuB (and since the steady-

state frequency is the same everywhere in the 
system), we get ΔPpuA=ΔPpuB, i.e., the 

generators “pick up” the same amount of per-
unit power (given on their own base). 

 
But let’s look at it in MW: 

MWSPP RApuAA 33.0)100(0033.0   
MWSPP RBpuBB 66.0)200(0033.0   

Conclusion: When two generators have the 
same per-unit droop, they “pick-up” 

(compensate for load-gen imbalance) in 
proportion to their MVA rating. 
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In North America, droop constants for most 
units are set at about 0.05 (5%).  

 
6.0 Multimachine case 

 
Now let’s consider a general multimachine 

system having K generators. From eq. (16), for 
a load change of ΔP MW, the i

th
 generator will 

respond according to: 
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The total change in generation will equal ΔP, so: 
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Solving for Δf results in 
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Substitute eq. (19) back into eq. (17) to get: 
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If all units have the same per-unit droop 

constant, i.e., Rpui=R1pu=…=RKpu, then eq. (20) 
becomes:   
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which generalizes our earlier conclusion for the 

two-machine system that units “pick up” in 
proportion to their MVA ratings. This 

conclusion should drive the way an engineer 
performs contingency analysis of generator 

outages, i.e., one should redistribute the lost 
generation to the remaining generators in 

proportion to their MVA rating, as given by eq. 
(21). 


