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Abstract—The work described in this paper was motivated by
a perceived increase in the frequency at which power system op-
erators are encountering high stress in bulk transmission systems
and the corresponding need to improve security monitoring of
these networks. Online risk-based security assessment provides
rapid online quantification of a security level associated with an
existing or forecasted operating condition. One major advantage
of this approach over deterministic online security assessment is
that it condenses contingency likelihood and severity into indices
that reflect probabilistic risk. Use of these indices in control room
decision making leads to increased understanding of potential
network problems, including overload, cascading overload, low
voltages, and voltage instability, resulting in improved security-re-
lated decision making. Test results on large-scale transmission
models retrieved from the energy-management system of a U.S.
utility company are described.

Index Terms—Cascading, control center, decision making, op-
erations, overload, probabilistic risk, security assessment, uncer-
tainty, voltage instability.

I. INTRODUCTION

I N MANY countries today, the introduction of competitive
supply and corresponding organizational separation of

supply, transmission, and system operation has resulted in
more highly stressed and unpredictable operating conditions,
more vulnerable networks, and an increased need to monitor
the operational security level of the transmission system. These
conditions, brought on by natural load growth coupled with a
significant increase in long-distance transmission usage, often
result in heavy transmission circuit loadings, depressed bus
voltage magnitudes, and closer proximity to voltage instability.
As a result, operators are frequently finding that they are
required to make complex decisions regarding whether or
not to take action in order to alleviate stressed conditions in
their networks, and if so, which actions to take and to what
extent. Usually, such actions increase the cost of supply, and
therefore, the decision-making process requires trading off
security against economics. Since this process most often
takes place in the control room, we refer to it as control-room
security-economy decision making.

Existing energy-management systems (EMS) enable op-
erators and control room engineers to monitor network
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conditions through supervisory control and data acquisition
(SCADA), state estimation, and deterministic contingency
analysis. Although useful and necessary, use of these tools
in the decision-making process requires a significant amount
of subjective assessment regarding questions like: How many
overloads or voltage violations are there and how severe are
they? How close to voltage instability? Is cascading possible?
What is the likelihood of occurrence for each contingency? We
believe that risk indices may be used to more efficiently address
these types of questions. This paper describes such indices and
the computations required to obtain them online. We refer to
these computations as online risk-based security assessment
(OL-RBSA).

OL-RBSA provides the ability to compute online proba-
bilistic risk associated with conditions up to several hours in the
future. A significant advantage of this tool is that distinguishes
it from predecessor EMS security assessment technology in
that it uses probabilistic modeling of uncertainty. Specifically,
this modeling accounts for uncertainty in loading conditions
and in outage conditions that, when combined with severity
assessment that results from analysis of the power system
performance, yields indices that indicate the risk.

One feature of OL-RBSA is that it performs security assess-
ment on anear-future condition. This is in distinct contrast to
traditional online security assessment, which always performs
security assessment on a past condition (i.e., the last state-es-
timation). The great advantage of this feature is that informa-
tion on which the decision is based, from the assessment, corre-
sponds to the time frame in which the decision is effective.

In this paper, Section II gives the conceptual thrust of
OL-RBSA. Section III provides its computational description.
In Section IV, the test results on a large-scale transmission
model retrieved from the EMS of a U.S. utility company are
described. The benefits of applying OL-RBSA are verified and
illustrated by comparing deterministic results in Section V.
Section VI summarizes the unique features of OL-RBSA and
provides a discussion on the potential application of OL-RBSA
in control-room security-economy decision making, and
conclusions are given in Section VII.

II. CONCEPTUAL THRUST OFOL-RBSA

A. Concept of Risk

Our implementation of OL-RBSA includes overload security
(flow violations and cascading overloads) and voltage security
(voltage magnitude violations and voltage instability). It does
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Fig. 1. Illustration of basic OL-RBSA calculation.

not include dynamic security assessment.1 The risk index is an
expectation of severity, computed by summing over all possible
outcomes the product of the outcome probability and its severity.
In Fig. 1, if we assign probabilities to each branch, then the prob-
ability of each terminal state is the product of the probabilities
assigned to the branches that connect the initial state to that ter-
minal state.

If we assign severity values to each terminal state, the risk can
be computed as the sum over all terminal states of their product
of probability and severity, as shown in (1)

(1)

Here

• is the forecasted condition at time. It is typically
predicated on the last state estimation result together with
a forecast of how these conditions change during the time
between the last state estimation result and. is limited
by the time associated with the unit commitment and the
accuracy of the load forecast.

• is the th possible loading condition. It provides
that load forecast uncertainty be included in the assess-
ment. is the probability of this condition,
obtained from a probability distribution for the possible
loading conditions. In Section II-C, we introduce a fast
calculation procedure to translate the distribution on
loading to distributions on performance measures.

• is the th contingency and is its probability.
Here, we assume the existence of a contingency list.

• quantifies the severity, or consequence, of
the th contingency occurring under theth possible op-
erating condition. It represents the severity for overload,
low voltage, voltage instability, and cascading overloads.

1Dynamic security assessment (DSA) is not within the scope of this paper,
but a modification to the given expression enables DSA applicability. For over-
load and voltage security, the severity is completely determined once the out-
aged component and the operating conditions are specified. For DSA, this is not
the case because the severity (loss of synchronism at a plant) also depends on
additional, but generally uncertain, information pertaining to the contingency,
including fault type, fault location on the circuit, and clearing time [1]–[5].

B. Modeling of Severity Function

Severity provides a quantitative evaluation of what would
happen to the power system in the specified condition in terms
of severity, impact, consequence, or cost. CIGRE Task Force
38.02.21 [6] identified it as a difficult problem in probabilistic
security assessment.

We have identified criteria for a good severity function to
be used in OL-RBSA. First, the severity function should re-
flect the consequence of the contingency and loading condition,
rather than the consequences of an operator’s decision. For ex-
ample, operator-initiated load curtailment or redispatch reflects
the consequence of the operator’s decision to interrupt load or
modify the dispatch, respectively. Thus, use of a load-interrup-
tion based index, such as LOLP or EUE, familiar to planners,
or an index based on cost of redispatch, is inappropriate for use
in control-room security-economy decision making. This is be-
cause the assessment is being used to facilitate the operator’s
decision making; to construct the index based on load interrup-
tion presupposes the very decision the index is supposed to fa-
cilitate.2 Second, the severity for contingencies should reflect
consequences that are physically understandable in terms of net-
work parameters by the operator. This criterion ensures that the
resulting indices provide engineering insight and intuition to op-
erators with respect to the problems they face. It also rules out
the use of an economic severity function for control-room secu-
rity-economy decision making. Economic-based severity func-
tions, although attractive because they may be easily combined
with other economic-based indices, are highly uncertain, and
most important, they do not intuitively translate into network
performance measures. Third, the severity functions should be
tied to deterministic decision criteria, to the extent possible, in
order to facilitate the transition that their use requires of op-
erators. Fourth, the severity functions should be simple. Fifth,
the severity functions should reflect relative severity between
different problems to enable calculation of composite indices.
Finally, the severity function should measure the extent of a
violation.

In what follows, we describe several severity functions, each
of which has strengths and weaknesses with respect to the above
criteria. Our basic approach is to use functions of network per-
formance measures.

1) Severity Function for Low Voltage:The severity function
for low voltage is defined specific to each bus. The voltage mag-
nitude of each bus determines the low-voltage severity of that
bus. We define the following three kinds of severity functions.

a) Discrete Severity Function:Severity is assigned a
value 1 if the voltage magnitude is lower than the low voltage
rating, and 0 otherwise [see Fig. 2(a)]. Therefore, when discrete
severity functions are used, the resultingrisk computed by (1)
reveals the expectation of the number of buses that will have
low-voltage violations in the next time period. The advantages
of this severity function are that it is simple, no estimation is
required, and it enjoys strong coupling with the deterministic
approach. Its disadvantage is that it does not reflect the extent
of the violation.

2The exception to this is when an action such as load interruption occurs au-
tomatically and is therefore not a result of an operator’s decision.
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Fig. 2. Severity function for low voltage.

b) Percentage of Violation Severity Function:This
severity function uses the percentage of violation to define the
severity of a low-voltage problem. The severity function is
defined as

(2)

Although this severity function does measure the extent of
the violation, it does not compose with risk indices for other
security problems.

c) Continuous Severity Function:The continuous
severity function for low voltage is illustrated in Fig. 2(b). For
each bus, the severity evaluates to 1.0 at the deterministic limits
(0.95 p.u.) and increases linearly as voltage magnitude falls
below the limit. This severity function measures the extent of
the violation, and it is composable. In addition, its use results in
nonzero risk for performance close to, but within a performance
limit, reflecting the realistic sense that such a situation is, in
fact, risky.

2) Severity Function for Overload:The severity function
for overload is defined specific to each circuit (transmission
lines and transformers). The power flow as percentage of rating
( ) of each circuit determines the overload severity of that
circuit. The discrete and continuous severity functions for
overload are shown in Fig. 3, and the percentage of violation
severity function is defined as

(3)

3) Severity Function for Voltage Instability:The severity
function of voltage instability is a system severity func-
tion rather than a component severity function. We use the
loadability corresponding to the system bifurcation point to
determine the voltage instability severity. Here we define
“ margin” as the percentage difference between the fore-
casted load and loadability, as expressed in (4)

margin
Loadability Forecasted Load

Forecasted Load
(4)

For the voltage instability problem, we use “margin ” to
define two kinds of severity functions: discrete and continuous.
They are illustrated in Fig. 4. If margin 0, a voltage collapse
will occur for the given contingency state at the particular oper-
ating condition. The actual effects of such an outcome are quite
difficult to identify, as the system dynamics play a heavy role.
Nonetheless, it is safe to say the consequence is very severe and

Fig. 3. Severity function of overload.

Fig. 4. Severity function of voltage instability.

generally unacceptable under any condition. We therefore as-
sign severity to it, where depends on the decision maker’s
valuation of a voltage collapse relative to a violation of the de-
terministic criteria.3

4) Severity Function for Cascading Over-
loads: “Cascading” is a sequential succession of dependent
events. The types of events that may contribute to cascading
phenomena vary widely. In this paper, we only consider
the cascading caused by high flows, and we refer to the
corresponding index as “cascading overload risk.” This index
reflects an important kind of security risk that is not captured
by our other indices. We make the following assumption for
the purpose of assessing the cascading overload security:
A circuit will be outaged if its MVA flow exceeds times
its emergency overload rating.A conservative choice of
is 1.0, reflecting that a circuit outages when its flow exceeds
its emergency overload rating. To remain consistent with our
first requirement on severity functions, the assessment is made
assuming no operator action (such as redispatch) occurs.

Our analysis algorithm is simple. Given a contingency state
(the post-contingency power-flow solution for a certain contin-
gency in the contingency list)

1) identify all circuits having flow exceeding times its
emergency overload rating;

2) remove these circuits, and resolve the power flow;
3) repeat Steps 1) and 2) until one of the following conditions

are met:

a) no circuits are identified in step 1).
b) the power-flow solution procedure diverges in step 2).
c) the procedure exceeds a prespecified number of iterations

of steps 1) and 2).
Thecascading levelis the number of iterations of steps 1) and

2). Severity index depends on the stopping criteria in step 3).

• If the algorithm terminates as a result of criterion 3-a,
then the severity function is given as a function of the

3The severity functions are, in fact, value functions, in that they assign a
unique number to each consequence [7]. Value functions like this are also used
to quantify severity for probabilistic risk assessment within other industries as
well, and a good example is process control [8]–[10].
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total number of outaged circuits found in level 2 or higher.
Therefore, the severity function used for cascading over-
load risk is a linearly increasing function with the number
of outaged circuits. We do not include outaged circuits in
level 1 because this impact is reflected in the overload risk
index.

• If the algorithm terminates as a result of criterion 3-b or
3-c, then we assume the system collapses. Thus, we assign
the same severity as for voltage instability B.

Whereas the overloading risk index reflects the number of and
the extent to which level 1 circuits are overloaded following an
initial contingency, the cascading risk index reflects the number
of circuits that will cascade if the level 1 overloaded circuits are
opened.

C. Modeling of Uncertainty

From (1), we can see that two kinds of uncertainties are con-
sidered, one is uncertainty of contingencies , and the
other is uncertainty of operating conditions .

1) Uncertainty of Contingency:In traditional deterministic
security assessment, the impact of each contingency is consid-
ered, but not the probability of each contingency. Decisions
based on deterministic assessment are driven by the most se-
vere credible contingency. This results in an inconsistent action
trigger and selection of less effective actions [11]. Therefore, we
characterize contingency uncertainty using probabilistic repre-
sentation. In (1), is the probability of contingency in
the next time interval. The events are assumed to be Poisson
distributed so that

(5)

Here, is the occurrence rate of contingencyper unit time.
2) Uncertainty of Operating Condition:We desire to eval-

uate the security level at a future timegiven that the fore-
casted operating condition in time periodis . The oper-
ating condition, in terms of the load and dispatch, of the future
time is uncertain. It is appropriate to model the probability
distribution of given with a normal distribution having
a mean equal to the forecast. Under this assumption, the bus
voltage magnitudes and branch flows of follow the multi-
variate-normal (MVN) distribution [12], [13], and system load-
ability (for measuring voltage instability performance) follows
the normal distribution. The task here is to give the probability
distributions of voltage magnitude ; branch flow

; and loadability , where is a
contingency state.

We capture the uncertainty in operating conditions by identi-
fying specific operating parameters that cause this uncertainty.
These include load distribution factors among load buses, load
power factors, and generation participation factors. We assume
that these parameters are random in the future, and that they
follow an MVN distribution around their expected values, and
their deviations, although random, are small such that linear ap-
proximation of these measures (voltage magnitude, branch flow,
and loadability) with respect to these parameters is valid.

Fig. 5. Voltage instability risk calculation for a given contingency.

We denote these random parameters as, their expectation
as , and their variance-covariance matrix as. Denote
specific performance measures (loadability, voltage magnitude,
and branch flow) as and the sensitivity of performance mea-
sures with respect random parameters as. Then, it can be
proven [21] that , a linear function of the MVN distributed

, also follows a Normal distribution:

(6)

In (6), the expectation of and its sensitivities can be ob-
tained from the standard load-flow Jacobian (for bus voltage
magnitude and for line loading) and the continuation power flow
(CPF) [14]–[20] (for voltage instability).

III. OL-RBSA CALCULATION STRUCTURE

The calculation of OL-RBSA includes two main steps.
1) Calculate the risk indices for each contingency. In this

step, the risk indices of each contingency are calculated for a
given contingency state (i.e., a post-contingency power-flow so-
lution). Therefore, contingency uncertainty has no effect in this
step.

2) Combine the risk of all contingencies. In this step, for
each security problem, the risk indices of each contingency are
weighted by the corresponding probability of contingency and
then summed, providing the total risk of each security problem.
In this step, the uncertainty of the contingency is considered.

Fig. 5 illustrates the procedures for computing voltage insta-
bility risk indices for a certain contingency, where is the
loadability;, denotes the expected load level; and de-
notes the expected loadability. Procedures for computing risk
indices associated with low voltage, overload, and cascading
overload are similar.

For a given contingency, we use the CPF to obtain .
The variance of the loadability is calculated by the method de-
scribed in Section II-C. To quantify the voltage instability risk,
the margin , which is the difference between the forecasted
load and loadability, is used. The probability distribution func-
tion of margin is given in the third block. Then we use the dis-
crete and/or continuous severity function to calculate the voltage
instability risk of the system under this contingency.
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Fig. 6. Low-voltage risk of serial cases.

IV. NUMERICAL RESULTS

In this section, the results of OL-RBSA from 18 cases are
given. These cases represent two days’ (July 3, 2000 and July 6,
2000) over certain hours (6:00A.M., 8:00A.M., 10:00A.M., 12:00
P.M., 2:00 P.M., 4:00 P.M., 6:00 P.M., 8:00 P.M., and 10:00P.M.).
These cases were retrieved from one utility company’s EMS.
The model includes all of the generators, transformers and trans-
mission lines over 49-kV voltage level and also some compo-
nents in surrounding areas. The system has approximately 1600
buses and 2600 circuits. The contingency set used in this test
contains 17 contingencies: One N-3, two N-2 and 14 N-1, con-
sisting of generator, transmission line, and transformer outages.
This set was chosen because it serves as a reference set for the
utility; our software allows for a larger number of contingencies
as well.

Using the 18 serial cases, we calculate the risk indices by
OL-RBSA. The results are shown using risk-time curves. From
these curves, we can see how the indices vary with time.

A. Low-Voltage Risk

The total low-voltage risks of the system for the 18 cases are
shown in Fig. 6.

These curves disclose that cases 2, 5, and 12 are the three
most risky cases in terms of low voltage. Observations about
these figures are as follows:

When using the discrete and continuous severity function,
the most risky case is case 5. However, the second most risky
cases are not the same; for discrete severity function, it is case
12, while for continuous severity function, it is case 2. This is
because the discrete severity function only captures the viola-
tion of the bus voltage, while the continuous severity function
reflects the extent of a violation and also nonzero severity when
attributes (voltage magnitude, circuits flow, and loadability) are
close to a violation.

When using the percentage of violation severity function,
the most risky case is case 12 and the second most risky case is
case 2. This (case 12, case 2) ordering differs from the (case 5
and case 12) ordering of the discrete severity function because
the percentage of violation severity function captures the extent
of a violation, and the discrete severity function does not. This
(case 12, case 2) ordering is also different from the (case 5, case
2) ordering of the continuous severity function because the con-
tinuous severity function reflects nonzero severity when perfor-

Fig. 7. Overload risk of serial cases.

Fig. 8. Voltage instability risk of serial cases.

mance measures are close to a violation, and the percentage of
violation severity function does not.

The results show that when we adopt different severity func-
tions, the conclusions may be different. So the selection of an
appropriate severity function is a crucial issue in risk calcula-
tion. From the result presented before, we can see that the con-
tinuous severity function is the most desirable, as it can capture
effects that the other two severity functions cannot. So in what
follows, we only give the risk indices obtained by using the con-
tinuous severity function.

B. Overload and Voltage Instability Risk

The total overload risks and voltage instability risks of the
system for the 18 cases are shown in Figs. 7 and 8, respectively,
using the continuous severity function. High risk for case 14 is
observed for both overload and voltage instability.

C. Cascading Risk

The total cascading risks of the system for the 18 cases are
shown in Fig. 9. From this figure, we see that cases 12 to 16
have the most serious cascading problem among the 18 cases.

V. BENEFITS OFUSING OL-RBSA

In this section, we compare the information obtained from
the OL-RBSA indices to several other indices that reflect the
thinking embedded in traditional security assessment, for low-
voltage and voltage instability. We provide a convenient sum-
mary regarding definition of these indices in what follows. The
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Fig. 9. Cascading risk of serial cases.

indices are ordered from the “most deterministic” index to the
“most risk-based” index.

1) Worst-caseindex: The worst-case index is different for low
voltage than it is for voltage instability.

• Low voltage: If there is one or more violations, risk1.0;
otherwise, risk 0.

• Voltage instability: It is given as the maximum value of the
ratio Forecasted_Load/Loadability over all contingencies.

This index does not consider either form of uncertainty, it does
not consider the severity level of the violation, and it does not
reflect the number of violations.

2) Violation-count index: Here, we simply count the number
of violations for a particular contingency. Violations for low
voltage and for overloads are familiar. A voltage instability vi-
olation is defined as when themargin falls below a prespec-
ified level. This index does not consider either form of uncer-
tainty, and it also does not consider the severity level of the vi-
olation, but it does reflect the number of violations.

3) Expected violationscount index: This index is the summa-
tion over all contingencies of the contingency probability and
the violation count for that contingency. So this index does not
consider uncertainty in operating condition or the severity level
of the violation, but it does account for the uncertainty in con-
tingency, and it reflects the number of violations.

4) Expected violations (EV): This is the risk index using the
discrete severity function. It does not consider the severity level
of the violation, but it does account for the uncertainty in the
contingency, and it additionally accounts for the uncertainty in
the operating conditions.

5) Expected weighted violations (EWV): This is the risk
index using the continuous severity function. It not only ac-
counts for uncertainty in contingency and operating condition,
but also reflects the severity of each violation.

The attributes of these indices are summarized in Table I.
We compute the five indices for low voltage and voltage insta-

bility, respectively, for all 18 operating cases, and we compare
their information content.

A. Low-Voltage Risk

Fig. 10 shows the low voltage risk for the 18 cases for index
1 and index 4. From this figure, it is clear that the deterministic
index 1 identifies cases 1, 2, 3, 5, 10, 11, 12, and 15 as equiva-
lent, implying that each of these cases has at least one violation,

TABLE I
SUMMARY OF INDICES USED

Fig. 10. Low-voltage risk for serial cases—1.

Fig. 11. Low-voltage risk for serial cases—2.

but the risk-based index 4 clearly shows significant differences
between these cases.

To gain more appreciation for why these differences arise,
Fig. 11 shows the low-voltage risk for the 18 cases for Indices
2–5. From this plot, we make the following observations:

Comparison between indices 2 and 3 indicates the effect of
modeling uncertainty in contingency. Index 2 identifies the most
risky case as case 12, and it ranks case 5 as the fifth most risky
among all cases. In considering the contingency probability, as
does index 3, we see that cases 5 and 12 are identified as equally
risky. The reason for this difference is relative to the results indi-
cated by index 2 is that most of the violations in case 5 occur due
to high-probability contingencies, whereas violations in other
cases, although more numerous, occur from contingencies that
are lower in probability.

Comparison between the indices 3 and 4 indicates the effect
of including uncertainty in operating condition. In case 5, for
example, we see that index 4 results in significantly higher risk
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Fig. 12. Voltage instability risk for serial cases—1.

Fig. 13. Voltage instability risk for serial cases—2.

than index 3. The reason for this is that contingencies that are
close to a violation reflect no risk in index 3, but they do in index
4 because of uncertainty in operating conditions.

B. Voltage Instability Risk

Fig. 12 shows the voltage instability risk for the 18 cases for
indices 1, 4, and 5. From this figure, the deterministic index 1
shows that cases 12 to 16 all have a serious voltage instability
problem. But after considering the probability of contingencies
and the uncertainty of operating conditions (indices 4 and 5),
the voltage instability risk of case 13 and case 16 is very low.
So the decision made based on the deterministic index will be
very conservative.

To gain more appreciation for why these differences arise,
Fig. 13 shows the voltage instability risk for the 18 cases for
iIndices 2–5. From index 3, we can see that in only one con-
tingency in case 12 does the load exceed the loadability. In all
other cases and contingencies, there is no such deterministic vi-
olation. But from indices 4 and 5 we can see that the case that
has the most serious voltage instability problem is not case 12,
but case 14. This is because in case 12, only one contingency has
the voltage instability problem, in other contingencies, the loads
are much less than the loadability. But in case 14, though there
is no contingency having a deterministic violation, in all contin-
gencies, the loads are very near the loadability. If we consider
the uncertainty of the operating condition, part of the probability
distribution of the load will exceed the loadability mean value.
So case 14 has the most serious voltage instability problem.

VI. DISCUSSION

Some salient features of OL-RBSA not available with
the traditional, deterministic approach to control-room secu-
rity-economy decision making are

Leading Indicator: The risk index is a leading indicator for
security level, in that assessment is done for the conditions under
which the action is taken. It performs security assessment on a
near-future condition.

Full Decision Space: The modeling of severity function
should not depend on a presupposed operator decision as this
constrains the decision space, which is the space of investiga-
tion. LOLP, EUE, cost of redispatch, as indices for use in con-
trol room security-related decision making, each presuppose a
decision and are therefore inappropriate.

Quantitative Index: It provides a quantitative index that re-
flects security level in a condensed fashion. This not only allows
efficient comprehensibility by the operator but also facilitates
inclusion in formal decision-making paradigms.

Decomposability:Since the index is decomposable, the
index provides efficient means to quickly identify and investi-
gate specific high-risk situations localized at any level.

More Complete Portrayal of Security Level: OL-RBSA
provides an assessment that appropriately reflects the additional
risk from high-probability outages, from highly severe outages,
from nonlimiting problems, and from uncertainty in future
loading conditions.

We indicated in Section I that all of the work related to this
paper is in support of a decision problem, and we referred to this
decision problem as control room security-economy decision
making. This decision problem is a continuous one that occurs
in the control room to balance the level of security with the eco-
nomic costs of achieving it. This problem has typically been ad-
dressed heuristically based entirely on the intuition of humans.
We do not intend to eliminate the human involvement in this
decision problem. However, we believe that there are tools that
could significantly aid the human. Several such kinds of deci-
sion-making tools have been proposed [22]–[25]. Most of the
methods that we have investigated are multicriteria decision-
making (MCDM) methods. These methods generally require
that each criterion used in the decision making be quantifiable.
Thus, OL-RBSA enables security to be included in these deci-
sion-making methods. Other criterion includes variance, costs,
and regret. Some of the methods that we have considered in-
clude risk-based optimal power flow, sensitivity-based methods,
weighted MCDM, outranking methods such as ELECTRE IV,
and methods based on evidential theory. We have yet to identify
a single method that appears superior to all others, so we envi-
sion that we would produce a toolbox of methods, and that the
solution(s) produced by each method would comprise a list of
suggestions made to the operator. We believe that this is a very
rich area of research made possible by OL-RBSA.

VII. SUMMARY AND CONCLUSIONS

OL-RBSA computes indices based on probabilistic risk for
the purpose of performing online security assessment of high-
voltage electric power transmission systems. The indices com-
puted are for use by operators and operational engineers in the
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control room to assess system security levels as a function of ex-
isting and near-future network conditions. Uncertainties in near-
future loading conditions and contingency conditions are mod-
eled. Severity functions are adopted to uniformly quantify the
severity of network performance for overload and voltage secu-
rity. The overload security indices include probabilistic expec-
tations of the severity associated with high circuit flows and the
severity associated with cascading overloads. The voltage secu-
rity indices include probabilistic expectations of the severity as-
sociated with low bus voltages and the severity associated with
voltage instability. OL-RBSA can provide high-level system or
regional views of security and, when risk is high, allows the user
to efficiently hone in on specific regions, components, problem
types, or contingencies that cause or incur the risk, because the
risk is decomposable.

Control-room security-economy decision making has re-
cently taken on an increased level of visibility as a result of
more frequently encountered stressed conditions. This trend
drives the need for a quantitative measure that accurately re-
flects security level and can be used in formal decision-making
paradigms. The index described in this paper is appropriate for
this purpose, as it reflects risk. We believe that the use of this
index will improve control-room security-economy decision
making and, therefore, in the long run, result in more economi-
cally efficient energy supply at higher system reliability levels.
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