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A Bayesian Approach for Short-Term Transmission
Line Thermal Overload Risk Assessment

Jun Zhang, Jian Pu, Student Member, IEEE, James D. McCalley, Senior Member, IEEE, Hal Stern, and
William A. Gallus, Jr.

Abstract—An on-line conductor thermal overload risk assess-
ment method is presented in this paper. Bayesian time series
models are used to model weather conditions along the transmis-
sion lines. An estimate of the thermal overload risk is obtained by
Monte Carlo (MC) simulation. We predict the thermal overload
risk for the next hour based on the current weather conditions
and power system operating conditions. The predicted risk of
thermal overload is useful for on-line decision making in a stressed
operational environment.

Index Terms—Bayesian analysis, Markov Chain Monte Carlo
(MCMC), security assessment, transmission line thermal overload
risk assessment.

I. INTRODUCTION

T HE power industry is experiencing deregulation world-
wide. To survive in this environment, a successful com-

petitor must offer high-quality service to customers and keep
costs low. The market environment has changed the way power
systems are planned and operated. Competition in the market
requires more long distance deliveries than before and a dereg-
ulated market introduces high uncertainty into power systems.
Current deregulated power systems are often operated in highly
stressed operating conditions. Traditionally, engineers use de-
terministic methods with large safety margins to maintain rela-
tively high security, which requires high costs for the competi-
tors in the market. Improved measures of risk are needed for ap-
propriate decision-making in the market environment [1]–[3].

Since the security of power systems depends on the avail-
ability of transmission lines, on-line tools for predicting the
short-term thermal overload risk are useful in making decisions
involving tradeoffs between economy and security. We present
a framework to predict the next hour’s transmission line thermal
overload risk. This framework includes stochastic weather
models and models pertaining to the thermal behaviors of
transmission lines. An estimate of the thermal risk is obtained
by Monte Carlo (MC) simulation.

Power engineers traditionally use a deterministic method to
compute the thermal ratings for conductors [4], [5]. A set of se-
vere weather conditions are assumed, and conservative thermal
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ratings are obtained. An alternative that has drawn much atten-
tion during the past few years is dynamic thermal circuit rating
(DTCR) technologies, which require a real-time monitoring
system. These monitoring systems may be weather-based,
temperature-based, and/or sag/tension-based [6]. We do not
attempt here to compare the merits of these monitoring systems,
recognizing only that a company’s decision to deploy one of
them for a particular line is influenced by the investment and
maintenance cost together with the expected benefit.

Deployment of weather-based monitors, as in [11], have been
hampered by the need to monitor the weather conditions at many
locations along a line. If the weather monitoring and communi-
cating equipment cost is high, then this approach may not be
cost effective, particularly for long lines. However, there is ev-
idence that these costs are declining, as indicated in [7] and
also at several web sites [8]. For example, one particularly in-
teresting wind monitor is the sonic anemometer [9]; unlike cup
anemometers with moving parts, the sonic anemometer has no
stall speed and can therefore measure very low wind velocities.
In addition, it is more accurate, and it can simultaneously mea-
sure wind speed and direction. It is highly likely that new de-
velopments in weather sensing technologies will continue [10]
as high-quality weather information is useful in operating many
kinds of power system equipment.

In this paper, we describe and illustrate an approach for
utilizing weather-based monitoring systems to aid in making
operational decisions that affect line loading. A key feature
of this approach is that it is predictive, i.e., it utilizes a novel
probabilistic weather prediction method to indicate transmis-
sion line risk for a future time period. Probabilistic methods
for assessing weather conditions associated with transmission
line ratings have been used in the past [12], [13], but these
methods have been mainly used for providing seasonal ratings;
in constrast, we focus on providing information based on very
recent measurements for predicting near-term weather and thus
relevant to near-term operating conditions.

We assume that hourly recordings of wind speed, wind direc-
tion, and ambient temperature are available for the last six days
at multiple sites along the transmission line of interest. Teleme-
tering data from weather meter stations capable of monitoring
temperature, wind speed, and wind direction along the line is
the most accurate means of gathering this information. An al-
ternative, if appropriate real-time data are not available, is to
use a very conservative, deterministic, estimate for wind speed,
and to use temperature data obtained from the National Weather
Service (NWS) observations available from the Internet. We
approach the problem assuming that weather station measure-
ments at appropriate locations are available as this results in the
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most general solution and can be applied in a degenerate form
to the simpler alternative approach of using a conservative wind
speed estimate with NWS temperature data. We have used NWS
temperature and wind data to illustrate, recognizing the limita-
tions of the latter,1 as other data were not available to us.

This general solution approach uses Bayesian time series
models to model the weather conditions. The models related
the current weather conditions to those in the previous hour.
We compute the parameters of the weather models from the
most recent six days’ (144 h) weather data. Then, using the
current hour’s weather data, we predict the next hour’s weather
conditions. With the predicted weather conditions, we compute
the thermal overload risk for the next hour with MC simulation.

We describe the weather models in Section II. The next hour’s
ambient temperature, wind speed, and direction may be pre-
dicted with time series models. Solar radiation is computed with
a deterministic model. A current–temperature model for over-
head bare transmission lines is presented in Section III.

The spatial problem of relating temperature data from ob-
serving stations to transmission line environments is addressed
in Section IV. An example in Section V illustrates how the
weather models and current–temperature model are used in a
MC simulation to identify the transmission line risk.

II. WEATHER MODELS

A transmission line’s temperature depends on ambient tem-
perature, wind speed, wind direction, and solar radiation. Time
series models for wind direction, wind speed, and ambient tem-
perature are developed to predict the next hour’s weather con-
ditions. Bayesian analysis is used to obtain the posterior distri-
bution of the parameters in the wind direction model and the
ambient temperature model. The wind speed model is a mix-
ture model for which Bayesian analysis can be difficult. For that
model, we obtain maximum-likelihood estimates (MLE) via the
expectation–maximization (EM) algorithm.

We do not build a statistical model for solar radiation. Be-
cause solar radiation depends on the sizes, positions, and types
of the clouds in the sky, a stochastic model for solar radiation
would be very complex. Another reason for not building such
a model is that detailed cloud data are not typically available.
Therefore, a conservative deterministic model for solar radia-
tion is used. Fortunately, the conductor temperature is not very
sensitive to solar radiation at elevated temperatures [14].

A. Statistical Methods

Our basic approach is to construct a probability model
relating current weather conditions to earlier conditions and
unknown parameters. Depending on the model, we obtain
inference for the unknown parameters using either the method
of maximum-likelihood or Bayesian methods. Here, these
approaches are reviewed briefly.

1The Internet provides access to NWS surface observations, which thor-
oughly cover the United States, with a typical station spacing of 50 km–100 km,
but more dense in urbanized areas. Use of the temperature data with this station
spacing is appropriate, as spatial variation of temperature can be captured using
this kind of station spacing, indeed, meterologists do it regularly. However,
wind speeds and directions incur spatial variation too great to be captured from
data obtained at this level of station spacing.

Let be the observed variables, andbe model parame-
ters. Let denote the probability model for the observed
data. When viewed as a function of the unknown parameters,

is known as the likelihood function. The MLE is the
value that maximizes . MLEs have a number of
nice statistical properties in large samples. The maximum-like-
lihood approach is used for the wind speed model.

For the ambient temperature and wind direction models,
we use the Bayesian approach to analyze the data. For the
Bayesian approach, we introduce a prior distribution
on the unknown parameters. Combined with the likelihood
function , this yields a joint distribution

(1)

and then using Bayes’ rule, the distribution ofgiven

(2)

We call the posterior distribution of. This describes
uncertainty about given the observed data. In most applica-
tions, an analytic expression for is very dif-
ficult to obtain, i.e., we cannot obtain the posterior distribution
in closed form in most cases. However, noticing in (2) that the
factor does not depend onand is fixed, we can con-
sider as a constant and focus on the unnormalized poste-
rior distribution

(3)

The unnormalized posterior distribution is sufficient for devel-
oping algorithms to study the normalized posterior distribution.

Working with the unnormalized posterior distribution
, we can use Markov Chain Monte Carlo (MCMC)

simulation to obtain a numerical approximation to the posterior
distribution . In the MCMC approach, a Markov chain
with stationary distribution equal to the posterior distribution is
constructed. The Markov chain is simulated until the simulated
values are judged to be representative of the stationary distri-
bution (that is the target posterior distribution). At that point
the simulated values are treated as a collection of samples from
the desired posterior distribution. These samples can be used
to estimate any summary of the posterior distribution, e.g., the
posterior mean. The Metropolis-Hasting (MH) algorithm is
one algorithm for constructing Markov chains to draw samples
from the Bayesian posterior distribution. It proceeds as follows
[15]:

• Generate starting value .
• For

— Sample a candidate from the
jumping distribution 2

— Compute the importance ratio:

— Generate from the Uniform distri-
bution Unif(0,1)

— If , then , else

2J (� j� ) means the parameters ofJ are defined by� . Details about
jumping distribution can be found in [15].
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• Stop when recent values of appear to
represent draws from the stationary
distribution. 3

The Gibbs sampler, also known as alternating conditional
sampling, is a special case of the MH algorithm with the im-
portance ratio always 1 [15]. Denoting the parameter vector

, the Gibbs sampling algorithm can be de-
scribed by the following pseudocode [15]:

• Generate starting value .
• For

— generate from
.

— generate from
.

—
— generate from

.
• Stop when recent values of appear to

represent draws from the stationary
distribution.

When sampling from all of the conditional posterior distribu-
tions in the second step of the Gibbs sampler is impossible, we
can embed MH algorithm steps to sample from some of con-
ditional distributions.4 The Gibbs sampler can be used in the
ambient temperature model. The Gibbs sampler with embedded
MH steps is required for the wind direction model.

The Bayesian approach has several attractive features. First,
it yields reasonable inference without requiring large sample
theory for justification. Second, the use of simulation based in-
ference makes it easy to compute a number of summaries, in-
cluding a predictive distribution for future weather conditions.
We prefer the Bayesian approach but have used maximum-like-
lihood for the wind speed model because the likelihood function
there can be difficult to study with Bayesian methods.

B. Wind Direction Model

Conventional distributions can only be used to fit data on the
real line. For wind direction data, the Von Mises (VM) distri-
bution is more suitable since it has a range of 0–. Let de-
note the random variable representing wind direction. The prob-
ability density function (pdf) of the VM for is [16]

(4)

where , , and is

(5)

3Some methods in [15] can be used to monitor the convergence. For example,
we can run several Markov chains and monitor them to see if they all converge
to the same stationary distribution.

4MH algorithm is not restricted to known distributions. Therefore, we can use
MH to sample from the unknown conditional posterior distribution.

is the normalizing constant that makes the VM integrate
to 1; it is a modified Bessel function of order 0 and can be ex-
pressed as

(6)

The parameters of this distribution areand .
Here, the wind direction at time is to be related to

the wind direction in the previous hour . Conventional
time series models for defining such relationships include:
autoregressive (AR), moving average (MA), and autoregressive
moving average (ARMA) [17]. Our wind direction model is a
first-order autoregressive Bayesian time series model. Suppose
we have observed circular data and the corre-
sponding random variables come from the VM distribution,
then our model assumes that the random variableshould
also come from the VM distribution . In this VM
distribution, the variation is assumed constant. The location
parameter or expectation of is related to the previous
measurement through the link function

(7)

where is a suitable function. Fisher [16] suggested the arc-
tangent function is a feasible choice for the functionin (7).
Therefore, our AR(1) model is

Norm

Norm

Gam

where stands for “described by distribution” and and
are wind directions for time and , respectively. The last
three rows are prior distributions of the parameters. The normal
distributions for and and the gamma distribution for
have large variance so that the data (rather than the prior dis-
tribution) determines the relevant parameter values in the poste-
rior distribution. The unnormalized full joint distribution for the
model parameters is (with for 6-day data)

From the joint distribution, we obtain the unnormalized con-
ditional distribution for every parameter and express them as
log-posteriors
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Fig. 1. Convergence of all Markov chains over the sample space(� ; � ; �).

The Gibbs sampler with embedded Metropolis steps is ap-
plied to obtain the simulations from the posterior distributions.
Fig. 1 illustrates how the Markov chains converge to the sta-
tionary distribution in our wind direction model, and Fig. 2
shows the posterior distributions of the parameters.

Having obtained samples from the posterior distributions, we
need to check the fitness of the model. In [15], a variety of model
checking approaches are reviewed. We do not describe them in
detail here. The checking results indicate that our wind direction
model fits the data.

Once we obtain samples from the posterior distributions, we
can use them to obtain the posterior predictive distribution of the
wind direction. The process is straightforward. First, load wind
direction model parameters and the most recent wind
direction from disk to memory; then, for every simulated
set of , draw a from . This gives not
just a single estimate for , but a full predictive distribution.

C. Wind Speed Model

Researchers generally model wind speed data with the
Weibull distribution. However, histograms of some wind speed
data reflect a “spike” located at a low wind speed corresponding

Fig. 2. Posterior distributions of� , � , and �. The number of
samples= 2000.

Fig. 3. Six days’ wind speed data and its histogram.

to the stall speed of the wind speed measuring instrument, as
in Fig. 3. A simple Weibull model will not be able to fit the
data in this case. To deal with this truncated data problem, a
logistic regression mixture time series model is developed to
fit the wind speed data. We use two distributions in this model.
A normal distribution with mean equal to the stall speed and a
very small variance is used to fit the observed data with values
around the stall speed. A Weibull distribution is used to model
wind speeds greater than the stall speed. We also introduce

as an unobserved indicator of the distribution responsible
for the observed wind speed. If , the wind speed is
from the Weibull distribution; if , it is from the Normal
distribution. The s are not an integral part of the analysis;
they are used to facilitate computation. The joint distribution of
the wind speed and the unobserved indicator is

Weib

Norm
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where

observed wind speed

The logistic regression model for is used to allow the prob-
ability of a stall speed measurement to depend on the most re-
cent wind speed . The model for is the portion of the
Weibull model that links the current wind speed to the most re-
cent value (as was done in the VM model for wind direction). As

is the only observable random variable, we should integrate
(or sum) over the unobservedto get the cumulative distribu-
tion function (cdf) function for the marginal model

Weib

Norm

Therefore, the marginal pdf for is

Weib

Norm

The joint likelihood for the observations is then

Weib

Norm

(8)

For six days and one sample/h, there are observations.
To follow the Bayesian approach, one would combine the

likelihood (8) with a prior distribution for the parameters as was
done for wind direction. It is difficult to perform a Bayesian
analysis of the mixture model however so we instead estimate
the parameters by maximum-likelihood. For mixture models it
is especially convenient to estimate the parametes for this mix-
ture model using the EM algorithm with thes included as
missing variables.

Let be the parameter vector andbe the
observed variable. We need to findthat maximizes ,
averaging over the unobserved indicators, thes. We do this by

referring back to the joint likelihood for and ,
. The EM algorithm works as follows:

• Estimate a starting value for the pa-
rameters

• For step :
— -step: get where

the expectation is with respect to
the conditional distribution of the
latent indicators given the current
estimate of the parameters and the
observed data . This is the
expected value of the complete data
( and ) likelihood (hence the name
“expecation step”).

— -step: set the value of as
the value of that maximizes the

computed in the
-step. Note that the result of the
-step includes and with re-

placed by its expected value (see
below). It is this result that we
now maximize of (hence the name
“maximization step”).

We briefly describe a few details associated with theand
steps in the current case. In-step,

depends only on for . This is easily
obtained for the mixture model as

Weib

Weib Norm
(9)

where

and

In the -step, we use the Newton–Raphson algorithm to maxi-
mize the Weibull and normal portions of the complete data
likelihood. Once again, diagnostics indicate that the model fits
the original wind speed data.

D. Ambient Temperature Model

The ambient temperature model is a first-order autoregressive
Bayesian time series model. We difference the original data be-
fore analysis to remove the 24-h periodic component. Ifis the
temperature at time, we then define . The 24-h
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Fig. 4. Solar altitude, azimuth, direct beam radiation, and diffuse radiation for
July 1, 1998, in Ames, IA.

temperature change is used for statistical analysis. The model
for temperature is very similar to the wind direction model. As
a result, we only list the assumed likelihood and prior distribu-
tions for it

Norm

Inverse

Norm

Norm

Gam

One noteworthy point is that in this case all of the Gibbs sam-
pling conditional distributions are known distributions that can
be sampled from directly.

E. Solar Radiation Model

The solar radiation model is a deterministic model. When
we compute solar heating gain for a conductor line, we need
to know the hourly direct beam radiation , diffuse radiation

, solar altitude , and solar azimuth . These variables can
be computed directly with a set of equations [14]. The results of
calculations using these equations are shown in Fig. 4.

III. CURRENT–TEMPERATURE(CT) MODEL

The current-temperature (CT) model is used to compute the
conductor temperature given a certain current value and a set of
predicted weather conditions. The CT model is a dynamic cur-
rent–temperature model based on the IEEE Standard [4]. Joule
heating , solar heating , convective cooling , and
radiative cooling are considered in the CT model. There-
fore, we have

(10)

where is conductor temperature; is mass; and is specific
heat.

Fig. 5. Simulation of conductor temperature.

Fig. 6. MC simulation for conductor temperature.

Equation (10) is used to simulate the thermal behavior of the
conductor by numerical integration. Normally, the thermal time
constant of most conductors is about 10–30 min. Therefore, we
only need to simulate for 1 h. The conductor temperature after
1 h (3600 s) is very near to steady state and will not change very
much, as observed in Fig. 5. From Section II, we obtain predic-
tive distributions for wind speed , wind direction , and
ambient temperature —although it should be noted that our
notation for some of these quantities is different than the nota-
tion in Section II. For solar radiation , we use a single deter-
ministic value in the computation for the next hour. For current

we estimate its distribution from state estimation programs
and sensitivity calculations assuming multivariate normal distri-
bution of operating conditions[2]. With these predictive weather
and current distributions for the next hour, we use MC simula-
tion to obtain the predictive distribution of conductor tempera-
ture. For a given set of values , we assume condi-
tions remain unchanged for the next hour. With this assumption,
we perform a numerical integration over a 1-h period to obtain
the steady-state conductor temperature. We use the temperature
at 1 h h as the conductor temperature for this set of
weather and current conditions, assuming, conservatively, that
sag follows temperature decreases instantaneously. This process
is repeated for each set of values , yielding a col-
lection of different values of h . Repeating the procedure
with a large number of samples of , we obtain
the predictive conductor temperature distribution, as shown in
Fig. 6.
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We assume that we may select a conductor critical temper-
ature within which the operation of the line is safe, in
that the line will not violate its minimum clearance require-
ment as defined by National Electrical Safety Code (NESC).
This choice could be made conservatively as , where is
the maximum steady-state design temperature of the conductor,
and is chosen accounting for the condition of the line, with

. The probability is an indicator of
the risk associated with this situation. When we use MC simu-
lation, we estimate by the fraction of simulations
with h greater than . Therefore

(11)

where is the number of simulations which obtain a h
greater than , and is the total number of simulations.

IV. SPATIAL CORRELATION FORAMBIENT TEMPERATURE

A. Temperature Regions

Transmission lines may extend several hundred miles over
several states. This can be problematic because the approach de-
scribed in Section II and Section III requires data on wind speed,
wind direction, and temperature all along the line. A simple way
to implement the approach described in this paper is to assume a
constant (and very conservative) value for the wind speed com-
ponent and just predict temperature. The simulation approach
would then always use the same wind speed and only temper-
ature and current would vary. If this is done, then it is possible
to utilize temperature data from the internet rather than from
on-site weather monitors, as it is usually possible to obtain data
from observing stations relatively close to the line. We should
set up a grid over the area we are studying. For each cell in the
grid, there should be an observing station in the cell. The more
observing stations we have, the more cells will be in the grid,
and the more accurate will be our results. We assume the tem-
perature is uniform in a cell. Once the grid is set up, we can
check how many cells a transmission line will traverse.

B. Correlations

Weather conditions at different locations are correlated.
When we generate values for ambient temperature, wind speed,
or wind direction, we obtain independent samples from the
marginal distributions at every location. In fact, these random
variables have some dependencies among them. The rank order
correlation method is adopted to pair the random variables.
This method is not limited by the type of distribution, and we
only need use the one-dimensional marginal distributions. In
this method, we first obtain marginal distributions for each
random variable. Next, each random variable is generated
independently from the corresponding marginal distribution. In
the last step, we pair the generated random variables. Our goal
is to make the generated random variables have a correlation
matrix similar to that computed from the raw weather data.

We obtain the correlation matrix from raw data by evaluating
Spearman’s [18] for each pair of variables

(12)

Fig. 7. Line risk variation with time.

where is the number of data pairs, and is the difference
of ranks of a pair.

After we obtain the by ( is the number of the vari-
ables) correlation matrix , we want to generate random vari-
ables which have the same correlation matrix. To do this, we
produce an by matrix in which each column contains
randomly mixed Van Waerdon scores [18]. Van Waerdon scores
are normal scores, , , where

is the inverse function of the standard normal distribution
cdf function. We use the Cholesky factorization to decompose
the matrix , where is an upper triangular ma-
trix. Then, we multiply and to obtain . The

matrix is an by order matrix which will be used to pair
the samples independently generated from the marginal distri-
butions. It is the the order in each column ofthat contains the
correlation information. Now, we have anby matrix of sam-
ples , where the columns of are random variables generated
independently from the marginal distribution of each random
variable. We sort each column inwith the order corresponding
to the same column in matrix . Having been sorted, matrix
will have a correlation matrix which is nearly equal to. Each
row of will be used as a sample forrandom variables; the
random variables are no longer independent.

V. EXAMPLE

A transmission line runs from Castana to Ames in Iowa. We
utilize only two weather monitors on the line; one at Castana
and one at Ames, in order to illustrate the method in a simple
fashion, realizing that actual implementation would require
more than this. The conductor type is Drake (26/7). The critical
conductor temperature is selected as 100 C.

A. Risk Variation With Time

We fix a distribution for the line current as a normal distribu-
tion with mean of 992 A and standard deviation of 5 A, where
the uncertainty in line flow is caused by uncertainty in loading
condition [2]. Simulations to determine risk variation with time
provide the probability that the conductor temperature exceeds
the critical value for Castana, as shown in Fig. 7. Results for
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Fig. 8. Observed wind speeds and ambient temperature at Ames and Castana
on July 1, 1998.

Fig. 9. Line risk variation with current.

Ames are similar. From 5:00 AM to 5:00 PM, the thermal over-
load risk is relatively low. During evening and night, the risk is
high. This is because, although the ambient temperatures are low
at night, the wind speeds are also very low at night. We verify
this from the observed wind speed and ambient temperature data
at Ames and Castana in Fig. 8. This confirms that transmission
line risk is highly sensitive to wind speed, as is well known.

B. Line Risk Variation With Current

To assess the effect of current we fix two times of interest,
2:00 PM and 8:00 PM, to see how risk varies with current mean
value (assuming standard deviation is 5 A). Fig. 9 shows how
current values affect the risk. Note at 8:00 PM there is a sub-
stantial increase of risk for this line when current value rises
from 900 A to 1000 A. Overload risk can be very sensitive to
loading when the wind speed is low.

C. Line Risk With and Without Correlation

We consider the effect of critical temperature and the impor-
tance of modeling correlation. We fix the current distribution as

Fig. 10. Line risk with or without considering correlation.

normal with mean 992 A and standard deviation of 5 A, and we
consider the time 2:00 PM. Critical conductor temperatures are
varied from 50 C to 100 C. Naturally, if the critical tempera-
ture is low, the risk is greater. If we do not consider the correla-
tion between ambient temperature and wind speed, we find that
the risk is overestimated (see Fig. 10). This is because the MC
simulations include many unrealistic scenarios when no corre-
lation is considered. Therefore, the correlations should be in-
cluded in risk computation for better estimation.

VI. CONCLUSION

A transmission line risk assessment algorithm has been devel-
oped for the purpose of making operating decisions. Statistical
models are applied to provide effective predictions for ambient
temperature, wind speed, and wind direction of the next hour. A
mixture model is used to solve a truncated data problem in the
wind speed model. The risk assessment tool offers an improved
decision-making tool for operators than the traditional method
in that risk associated with near-future operating conditions may
be assessed.
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