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Abstract: A robust, adaptive control scheme is 
presented which stabilises a nonlinear model of a 
power system to disturbances anywhere in the 
power system. The control is local, in the sense 
that the control of each machine depends only on 
information available at the machine. Simulation 
results are presented which show that the control 
is very effective against instabilities of current 
importance such as sustained oscillations follow- 
ing a major system disturbance. 

1 Introduction 

Over the last decade, the interconnected power system in 
the United States has become less stable. As a result, the 
large interconnected subsystems that coordinate their 
activities have begun to detect sustained oscillations in 
their simulation analysis. Real oscillations have also been 
observed. These oscillations usually follow a major dis- 
turbance, for instance, removal of a fault or the loss of a 
major transmission line. One of the more prominent 
examples of this phenomenon is the 0.7 Hz oscillation 
that arises in the Western System Coordinating Council 
(WSCC) following the loss of one of the AC or DC inter- 
ties between the Pacific Northwest and California [l]. 
Preventing this sustained oscillation is of great interest 
since the potential for an oscillation causes lower oper- 
ational limits to be set on transfer levels on the interties. 
Oscillations can also arise during ‘normal’ steady-state 
operation. 

The damping of these oscillations has been studied by 
a number of investigators. However, the majority of exist- 
ing literature on power system control is based on linear- 
ised generator models, using eigenvalue analysis and pole 
placement techniques [?-41, model reduction techniques 
[SI, and some modern control theory (adaptive, robust, 
etc.) [6-lo]. Since these control schemes are derived from 
linearised generator models, they are suitable for small 
disturbances about a steady-state operating point. Some 
authors have declared that the controls so designed are 
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also effective for transient stability under certain circum- 
stances [3, 111, but these claims cannot be proved. only 
substantiated by numerical simulation. 

The very nonlinear nature of the generator and system 
behaviour following a severe disturbance precludes the 
use of classical linear control techniques. Some authors 
have tried to bypass the nonlinearity problem by using 
identification techniques [12, 131 (i.e. observe the data of 
system inputs and local terminal state variables to estab- 
lish a linear dynamic equivalent model, and then base the 
control on the equivalent model). This technique is very 
hard to apply to the transient problems, because tran- 
sient periods only last a few cycles, and the identification 
will further delay the control action. 

Many investigators have tried to design controls 
directly based on nonlinear generator models. Differen- 
tial geometric theory is the approach used to design these 
controls [14]. Another technique seen in the literature is 
exact feedback linearisation [ 151. Unfortunately, both 
techniques need global information of the system, which 
is still impractical in a real power system. Although the 
authors of Reference 14 tried to decouple the control, it 
seems impossible when the system is large. 

In a previous paper [16] we developed a global robust 
control that stabilised a power system for any dis- 
turbance, anywhere in the power system. The motivation 
for this control was the problem of damping the sus- 
tained oscillations that now arise in many power systems 
following severe disturbances. The robust control devel- 
oped [16] is, so far as we know, the only decentralised 
robust control, with global stability, that has been formu- 
lated for a nonlinear model of a power system. Thus, the 
control applies to the transient and midterm stability 
problems as well as the steady-state stability problem. 
The control has the additional advantage of requiring 
only local linear feedback. 

Although the control [16] guarantees asymptotic sta- 
bility, it does not provide much insight as to how to 
determine the local feedback gains. Thus, the tuning of 
the control becomes a separate problem. This tuning is 
important, because we would like to shape both the tran- 
sient response of the system and the control. Shaping the 
control (through time) is particularly important. Since 
research on this type of control is quite new, it is too 
much to expect that the shape of the control can be 
‘optimised’ in any sense. However, we would like the 
control to be feasible. We will have more to say about 
this when we discuss the simulation results. 

In this paper, we propose a new adaptive control 
scheme for providing global robust control of a power 
system. The control is once again from the mechanical 
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side and the power system model remains quite simple. 
However, as shown by the simulation results, the use of 
adaptive control overcomes the tuning problem discussed 
above. The adaptive control law frees us from having to 
specify the local feedback: gains. We can set these gains to 
arbitrary initial values and let the adaptation tune the 
control through time. Further, as shown by the simula- 
tion results, the adaptive control gives a very acceptable 
transient response for the power system, while yielding a 
reasonable control. 

The simplicity of the machine model used in the proof 
of robustness is a consequence of using Lyapunov's 
direct. Even with simple machine models, the Lyapunov 
function of the overall power system is still algebraically 
complicated. If more detailed machine models are used, 
the construction of the Lyapunov function proceeds 
along exactly the same path as described in the paper, 
but the algebraic complexity becomes increasingly more 
difficult. Towards the end of the paper, we will discuss 
the feasibility of extending this approach to more detailed 
machine models. Our goal in this paper is to take the 
next logical steps beyosnd [16], namely to solve the 
tuning problem, improve the transient response and 
make the control feasible. 

Despite the simplicity of the machine models used to 
establish the robustness of the control, we believe the 
results are worthwhile and give new insight into the 
problem of global control of a power system. As shown 
by the simulations, the control typically stabilises the 
system in less than 10 seconds. Thus, the control does its 
work primarily in the 'transient period'. The proposed 
control is global in the sense that it can respond to any 
disturbance, but, in the simulations, we will concentrate 
on the phenomenon currently of most interest in the 
utility industry, namely sustained oscillations. These 
oscillations are important because they limit the transfer 
levels on major bulk transmission lines. 

2 Problem formulation 

In formulating the power system model for constructing 
and analysing a robust control strategy, one would obvi- 
ously want as detailed ar machine model as possible. In 
particular, for 20 s response times, we would like to con- 
sider the effects of excitation systems and turbine/ 
governor control. The machine models used in the proof 
of robustness of the proposed adaptive control do not 
explicitly model either the turbine/governor or exciter 
dynamics. However, the following points should be 
noted. The form of the proposed control does allow exci- 
tation dynamics to be included in the machine models 
used in the simulations presented later. Further, the 
analysis and proof of robustness of the adaptive control 
does implicitly account for the effects of excitation. 

A final observation iis the following. As mentioned 
earlier, both the previous paper [16] and the present 
paper represent essentially the only extant efforts made at 
determining a robust, global control scheme for a nonlin- 
ear model of a power system. Hence, at this juncture, it is 
desirable to keep the development of control schemes as 
clear and constructive as possible. This is impossible with 
the machine model chos,en for this paper. Including the 
dynamics of the turbine,/governor and excitation system 
leads to extremely complex algebraic expressions that 
obscure the design of t.he control. Thus, the machine 
models chosen are consistent with the present state of 
this research area. Howiever, an adaptive control based 
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on a more detailed machine model is currently under 
consideration. 

In this paper, we consider a power system of n gener- 
ators, where the model of machine i, i = 1, . . . , n is given 
by 

(1) M i  8; + D i  si + Pgi = Pmj 

where Si is the angle of machine i relative to the 
synchronous angle of the system, and M i ,  Di, Pgj, and 
Pmi, are the inertia constant, damping coefficient, electri- 
cal output power, and mechanical input power, respec- 
tively, of machine i. 

The coupling of the machine dynamics arises through 
power conservation in the related network equations. 
More specifically, the electrical power outputs Pgi, i = 1, 
. . . , n, of the generators, satisfy the power flow equations: 

Pgi = P,; + P,,  

Pei = EZG,, + Ei 1 Ej(Gij  cos S j j  + Bij sin Si j )  

6.. = S. - 6 .  

(2) 
j e m ( i l  

11 I 1 

with the variables in the powerflow equations defined as 
follows. Ei is the magnitude of the voltage behind tran- 
sient reactance of the ith machine, P,, is the electrical bus 
output power at machine i: Pli is the local electrical load 
power at machine i: G j j  is the driving point conductance 
at machine i; Gi j  is the mutual conductance between the 
machines i and j ;  Bij is the mutual susceptance between 
the machines i and . j :  m(i) is the set of busses which are 
directly connected to bus i. 

It is worth observing at this point that when exciter 
dynamics are included in the machine model, Ei is time- 
varying, and < Ei < Eimax .  In the proof of robustness 
we will not require E; to be fixed, only that E; be 
bounded below and above. Thus, the stability proof does 
account implicitly for the effect of excitation. 

Letting S i  = CO;, eqn. 1 can be rewritten in state form 
as 

6. = 
I Wi 

(3) 

Let the equilibrium point of eqn. 3 be characterised by 
6:. w:,  Fm,, and PLL. That is, S:, CO:, f;,, and PLL are the 
solutions of the following equations. 

s : = W : = O  

6!. = gr - 6' 

P:, = EfGii + E i  

U I J 

EXG, cos S:, + Bij  sin 
j e n ( i )  

Because the system parameters G i j ,  Gij and B j j  are 
assumed to be unknown, in the sense that they are not 
known exactly, the equilibrium point cannot be found 
explicitly. In the next Section, we design a controller 
which controls the power system smoothly to a desired 
steady state operating point. The desired steady-state 
operating point is not necessarily equal to the actual 
steady-state operating point. In general, the desired oper- 
ating point is a 'best guess' of the actual operating point, 
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based on imperfect knowledge of the system parameters 
and topology. In most actual cases the operating points 
will be 'close' together. We emphasise that the actual 
steady-state operating point does not need to be known 
to implement the proposed control. It is introduced as a 
mathematical convenience to facilitate the proof of 
robustness. 

It is worth noting that not knowing the precise steady- 
state operating point is not a practical limitation. In 
practice, once the disturbance has been controlled, the 
system operators can move the system to the exact oper- 
ating point they desire, just as they routinely move this 
operating point many times per day. 

3 A robust adaptive controller 

The control developed in this paper will stabilise the 
power system to an arbitrary major disturbance any- 
where in the power system. It is in this sense that we 
mean the control is global. One of the system dis- 
turbances that we correct in simulation is a sustained 
oscillation that arises after the disturbance is removed. 
However, we emphasise that this is not the only potential 
postdisturbance system instability that the control can 
operate against. To that end we also consider a case 
where the system is unstable without control. 

The overall control consists of n local controllers, one 
at each machine, with each local controller using only 
information available locally, that is at the machine. 
Before we introduce the controller, we define the error 
states: 

X l i  = aq - 6, X Z i  = w; - (0, (4) 
The variables x l i  and x Z i  represent the errors between the 
states of the power system and the desired trajectory. 
Since we wish to drive the system to steady state, we 
must have = 0, so that eqn. 4 becomes 

X l i  = s: - a i  x 2 i  = - w i  ( 5 )  
The proposed robust, adaptive, local, controller for the 
ith machine is given by 

ui = P,, - Pmt 

= -kI i (6q  - Si) - k2i(wp - mi) - e i ( t )g i  - AB&) 

= - k l i x l i  - k Z i x 2 ,  - ci(t)gi(xli,xzi) ~ AP,,(t)  (6) 
or 

Pmi = Pii + k I i x l i  

+ k z i X z i  + e X t ) g i ( x l i ,  x z i )  + @,i(t) (7) 
where 

s i x l i ,  x z i )  = sign ( x l .  ' + :; x 2i> 

Several comments need to be made at this point. We will 
ultimately replace the sign function in eqn. 8 with a con- 
tinuous approximation. Our motivation is to first present 
the proof of robustness based on the sign function, 
because the proof is simple and easy to follow. We will 
then replace the sign function by its continuous approx- 
imation. The proof in this case proceeds in the same way, 
but the algebraic complexity is much greater. It is hoped 
that the first proof will make the second-easier to follow. 
At this juncture the role of the term Ci(t) is not at all 
clcar. However, it will become clear as we proceed. 
AP,i(t) is the estimate of the so-called mechanical power 
mismatch defined shortly. 
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The closed-loop dynamics of the ith machine in terms 

i l i  = X Z i  

of x l i  and x2i are 

X Z i  = -wi  

1 
= _ -  (P,[  - P,j - Diui) 

Mi 

1 - _  - [ (Pa j  - P,,) - (PLj - Put) - D,(O: - mi)] Mi 

= - [ ( P i <  - P,J + (Plj - Pi , )  
Mi 
- (P;# - P,,)  ~ DXO; - mi)] 

Mi 

1 

1 
= - C - k i i x l i -  kzixzi  - ei(t)dxii,x2i) 

- AP,,(t) + AP,, - (P;: - P,) - D i x 2 J  

1 

Mi 
- e i ( t )g i (x , ,  , xzi)  + Apmi - AB,i(t)l 

= - C-ki ixI i  - (k2i + Di)~zi +A(x) 

where 

APmL = P$ - 

f i (x)  = Pii - Pgj 

= P:, + P,; - Pe, - P,, 

= P:, - Pee 

Thus, the error equation of the ith machine can be 
described by the following dynamic equations: 

ii = Ai x i  + B, fi(x) - Bi Ci( t )g i (x i )  - Bi $i (9) 
where 

and 

$i ( t )  = AB,i(t) - AP,, 

The mechanical power mismatch is defined as AP,,,, = pl,, 
- Pi i .  Since Pk,  is an unknown constant, APm, is an 

unknown constant as well. Fig. 1 is the block diagram of 

0 th 
generator *Xi 

k l i  .h - 

Fig. 1 Block diagram of individual machine control 
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ith generator under the proposed local control. The error 
dynamics of the whole system can be written in the fol- 
lowing form: 

(11) i = AX + BF(x)  - BG(x) - BY 

where 

x = [x:, x;, . . . , x:;y 
A = diag [A,, A,,  . .  ., A,] 

B = diag [E,, E,, . . ., E,] 
F(x) = CfI(X),  fr(xb . . . > f"(X) l '  
G(x) = CCl(t)sl(xl)> Cz(t)g,(x,), '.. > m 9 " ( x " ) l T  

y = C$l(t), $,(t), , . . 9 $.(t)l' 
The functions 1;. contain the parameters and steady-state 
information about the power system and therefore 
cannot be determined. Ctmsequently, they are treated as 
uncertainties in the following analysis. To bound the ji 
we write 

h(x) = p:, - Pec 

- E?Gii - Ei >; E,(Gij cos d i j  + Bij sin 6,) 
j t m(i) 

= ( (El ) ,  - EZ)G,, 

+ G,(EiE? COS S;j - Ei Ej COS Sij) 
j E m ( i )  

+ 1 B&E;E; sin 4, - E i  E, sin Sij) 
j t m(i)  

Although the fi are unknown, it is easy to see that 

I h(x) I i ci (12) 

where Ci = ( E L s  - EiL,,)Gii + maxjem(i)[2Eimx Ej,J I G, 1 
+ I E, I ) ]s i  are unknown constants, i = 1, 2, . . . , n, and si 
is the number of buses directly connected to bus i. 

We now come to the main result of this paper. 

Theorem I: The error system (eqn. 11) is guaranteed to 
be asymptotically stable, if, for every i, i = 1, 2, . . . , n, 

(i) k I i  > 0, k Z i  > 0 

eit) 2 Cimx 
with &) < Cimx, where Cimr is any constant greater 
than the upper bound of Ci 

(14) 

More specially, the states xli and x Z i ,  i = 1, 2, ..., n, 
approach zero asymptotically, and consequently any pos- 
sible oscillation in the power system decays to zero 
asymptotically. 

Proof: The proof uses Lyapunov's direct method. Under 
the assumptions of the theorem, choose the Lyapunov 
function candidate to be 

(15) 

M -  
(iii) Abmi(?) = x l i  + x Z i  

Di 

v = fx'Px + +@Tal + fY'Y 

with 

Q = c91, . . . 1 4J"I' y := [ $ I >  . . . 1  $"I' 
432 

where 

+i = Ci(t) - C i  $ i  = AP,,(t) - AP,, 
If we choose 

P = diag {PI P, . . .  P.} 

M. D, + k2i + k I i  Mi 

p i = [  Mi Di -1 
it is easy to see that P is positive definite, and 

v = L( = 1 [QX'P,X, + 44; + f$f] (16) 
i = 1  i = l  

We must establish that V ! s  at least negative semidefinite. 
or sufficiently, that the K ,  i = I, ..., n, are all negative 
semidefinite. The derivative of V, with respect to time can 
be written as 

fi = +$Pixi + f X T P i i i  + 4 J i &  + * i * i  (17) 
Substituting the right-hand side of eqn. 3 for ii, and 
noting that 

M .  
$Pi Bi = x l i  + xZi 

Di 
yields 

fi = fxT(A'P + Pi  Ai)xi +fi(x)xTP Bi 

- ei(t)gi(xi)xTPi Bi - $i xTP Bi + 4Ji $i + $i $i 

Given the definition ofg,, we note that 

This allows us to write 

+ 4Ji 4i + $i  *i 

C,(t) = c,mx 
where the last two steps are based on the definition of 
eit) given in the statement of the theorem. 
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Since (Czmx - C , ) ]  x,, + (MJD,)x,, I 2 0, i = 1, 2, .  . ., n, 

t i t )  < - xTQ, X, (18) 

we finally have 

for all e,(t), where 

proof using a continuous approximation to the sign func- 
tion. We provide an outline of the proof, since it follows 
almost identically the proof we have just completed. 

To smooth the mechanical power, we choose g i  to be: 

The Q, are positive definite, thus we have Lmin(Qi) > 0. 
Now we separate V,  into two parts, Vli and VZi ,  that is 
V,  = Vli + VZi, where VIi = ixYPixi and VZi = 44; 
+ ;$; respectively. It is easy to see that Vli and VZi are 

both positive definite, and 

Vli < im,dPi)llxil12 
Using eqn. 18 and this last expression, we can write 

c(t) < -xTQ; xi 

< - ~ m i A Q i ) I I ~ i I 1 2  

(20) 
dcf 
= Vii 

Integrating eqn. 20 on both sides and rearranging yields 

l'li(t) + A I  i i l ' ~ i ( z )  d T  < v(to) 

I-. m [ 1: 1 

(21) 

Taking the limit as t approaches infinity on both sides of 
eqn. 21, we have 

lim V l i ( t )  + J., V ( T )  ds < vi(to) < +CO (22) 

Thus, it follows from the continuity of the solution and 
from the continuity and positive definiteness of Vli that 
lim,-m Vli(l lxi/I)  = 0. Since VIi is positive definite, we 
have Iim,+- IjxJ = 0. 

Several remarks are worth making at this point. 
(i) The control consists of linear feedback terms and 

two adaptive terms. The first adaptive term e,(t)qdx,, , 
x l i ) ,  is the adaptive tuning of the linear feedback gains, 
which, associated with the linear feedback gains, guar- 
antees robustness of the system stability. The second 
adaptive term ApmJt) ,  changes continuously according to 
the local error states, i t  smoothes the transient trajector- 
ise of the system. 

(ii) The control guarantees that the system approaches 
the postdisturbance steady state, chosen arbitrarily by 
the system operator, asymptotically. 

(iii) The only constraint placed on the robust gains, k I i  
and k,i, is that they must be positive. Thus no tuning is 
required. 

(iv) Since the proposed control uses adaptation, it is 
not necessary to know the system parameters. This is 
extremely important in a large power system model 
where, under the best of circumstances, we have only 
good estimates of these parameters. 

(v) The proof of robustness, using Lyapunov's direct 
method only guarantees system stability; it does not 
provide any information about the transient behaviour of 
the system or the shape of the control. That is the next 
issue to be addressed. 
As we will subsequently see from the simulations, the 
definition of yi used in the proof results in a very unsatis- 
fying control. To correct that problem we now repeat the 

IEE ProL.-Gener. T'runsm. Distrib., Vol. I l l ,  No. 5 ,  September 1994 

where the exponential term should be reset at the time 
the fault is cleared. 

We use the same Lyapunov function and the same 
adaptive laws. The proof is as follows. 

433 



Using the same 'separatiosn' approach we used earlier, we 
can write 

c(t) < -A1vli + ~ ~ ~ ~ , , e - f l ~ *  (24) 

15~r !look P 
3- ,," ," ,'.\ ,?,, ,- 

50 

e 
0 I I I 

5 10 15 20 

time, 5 

0 

75 r 

'\,.,,-'\\_,I -.__,.----*- 

0 

0 60 
e 

55 I I I 
0 5 10 15 20 

"0 5 10 15 20 

lime, s 

C 

Fig. 2 
(I rotor ang l s  of machines 6 and 7 with no control 
b rotor angles of machines 6 and 7 with primitive control 
c mechanical power of machines 6 and 7 with primitive control 

System response to disturbance 1 

Integrating inequality eqn. 24 on both sides and 
rearranging, we have 

Taking the limit as r approaches infinity on both sides of 
inequality eqn. 25, yields 

r f r  1 

< +cc (26) 

Thus, it follows from the continuity of the solution and 
from the continuity and positive definiteness of V l i  that 
l i m l + ~  Vli(l~xiJ) = 0. Since V l i  is positive definite, we 
have lim,+m  xi^^ = 0. 

In the above discussion, we assumed that the ratio of 
machine inertia and damping constant is known. It is 

Ei Cimox e .- DitD < W O )  + __ 
11 
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well known that this ratio is approximately the same for 
all machines, and a common simplifyng assumption in 
power system analysis is to assign the same ratio to  all 

, '-2 

5 10 15 20 

time, s 
0 

r 

--___.__._....__.. 

60 

50 
0 5 10 15 20 

time, 5 

b 

:I 
2---- 
0 5 10 15 20 

time, s 

C 

Fig. 3 
(1 rotor angles of machines 6 and 7 without control 
h rotor angles of machines 6 and 7 using adaptive control 
L mechanical power of machines 6 and 7 under adaptive control 

System response to disturbance / 

machines. However, this assumption is not necessary in 
the present analysis, that is the proposed control can still 
be proved to be valid with a minor change of the condi- 
tion of the theorem. 

We write the damping coefficient 0; as a nominal, 
known part D i ,  plus an unknown part di. That is 

Dl = Di + d ,  (27) 
Replacing Di in eqn. 27 by D:. and using the same control 
eqn. 6, the ith subsystem becomes 

ii = Aixi + Bif i (x )  - B i S i ( t ) g i ( x i )  

- Bi 3 / i  + Bi d i X Z i  (28) 
where all the definitions are the same as in eqn. 9. Choos- 
ing the same Lyapunov function, we have 

< - xTQ: xi + Cimx e ~ 

where 

di 
Q ! = r l i  ' 0 (k , i  + di) ;] i =  1,2, ..., n (29) 
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If we change the condition (i) of the theorem to k I i  > 0 
and k Z i  > I d t i ,  we know that the matrix QI is positive 
definite. Using the same argument in the above proof, we 
can get the same result. 

5000 r 

time, 5 

a 

I 1 

10 15 20 
60 

5 
time, s 

b 

lor 

0 10 15 20 

time. 5 

C 

Fig. 4 
a rotor angles of machines 8 and 9 without control 
b rotor angles of machines 8 and 9 using adaptive control 
c mechanical power of machines U and 9 under adaptive control 

System response to disturbance 2 

4 

The proposed control algorithms were tested using the 
loading of the 39 Bus New England System given [17]. 
The topology of the system and the load data are readily 
available. A two-axis machine model is used for all gener- 
ators, and every generator has excitation control with the 
exception of machine 10 which is used as the reference. 
This machine has an inertia constant ten times greater 
than that of any other machine in the system and thus is 
a good candidate for the reference. The mechanical 
power of all machines is per unit on a 100 MVA base. 

To test the control, we choose two scenarios. Dis- 
turbance I is a fault at bus 2 at time t = 0.5 s, which is 
cleared at t = 0.6 s by dropping the line from bus 2 to 
bus 1. This is a six-cycle fault, quite long by most stand- 
ards, but our goal was to produce a sustained oscillation 
using the loading given [17]. Disturbance 2 is a three 
phase fault at bus 26 initiated at t = 0.5 s and cleared 
after six cycles by dropping the line from bus 26 to 25. 

Fig. 2a shows the angle trajectories of machine 6 and 
7, the others are similar, with the simulation carried out 
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Validation of the control algorithms 

with no control. The sustained oscillation in this case is 
clearly evident. The trajectories of the other machines are 
similar. Fig. 26 is the angle trajectories of machine 6 and 
7 with the ‘primitive’ controller, that is the controller 
where gi is a sign function. The oscillations are damped, 
but take about 20 seconds to die out. The mechanical 
input power is shown in Fig. 2c, and as can be seen, the 
changes in mechanical power are frequency and abrupt, 
making the control unacceptable. 

Fig. 3b again shows disturbance 1 but with gi as given 
by eqn. 23. As can be seen in Fig. 3b, there is no oscil- 
lation and the system is near steady state after about 
three seconds. Again the rotor angles are for machine 6 
and 7. Further, the mechanical power changes are accept- 
able. More specifically, the power dips once and then 
returns to the original steady state values. This kind of 
control resembles fast valving. However, the size and 
speed of the power drop is probably beyond the capabil- 
ity of existing fast valving. The results shown in Fig. 3 
indicate that the robust adaptive controller is very effect- 
ive. 

To further test the adaptive controller, we used dis- 
turbance 2. Fig. 4a shows that the system without control 
is unstable. Fig. 46 shows the same case with control (gi 
given by eqn. 23). The system is stable and reaches steady 
state after about 10 seconds with only a few swings. The 
rotor angles shown are for machines 8 and 9, the two 
machines closest to the fault. The rotor angle deviations 
of the other machines are smaller and are omitted. Fig. 4c 
shows the changes in mechanical power. Again, the 
changes, aside from the first dip, are relatively small. The 
flat area following the first dip is a result of limiting the 
maximum mechanical power to 1.05 of the initial 
mechanical power. 

5 Summary and conclusions 

In this paper we have introduced a robust adaptive con- 
troller based on a nonlinear model of the power system. 
We have shown that the control is robust against arbit- 
rary disturbances anywhere in the power system. The 
simulation results presented show that the control is very 
effective and feasible, given that one is willing to put 
control on every machine in the system. Further, the 
transient response is quite acceptable. 

The great asset of the adaptive controller presented 
here is that it completely obviates the need to tune the 
robust controllers on each of the machines. This is a 
crucial advantage, since this tuning process could be 
quite laborious. Further, the tuning would have to be 
done ofline using a particular power system topology. 
Since the configuration of any power system changes on 
a minute-by-minute basis the best that could be done 
without adaptation would be to try to tune using a 
‘worst’ case topology and loading. This approach would 
be inferior to using adaptation which is impervious to 
changes in system topology. Another advantage of the 
adaptive controller is that it will bring the system to any 
desired steady state if there is suficient mechanical power 
available. Robust control without adaptation will always 
stabilise the system, but not to an arbitrary steady state. 

We have noted earlier that the modelling process 
accounts for the presence of excitation control in the 
sense that we do not require that the internal voltages of 
the machines remain constant, only that the voltages are 
bounded. We have not accounted, either implicitly or 
explicitly for turbine governor control. That is the next 
refinement which we will address in a future paper. 
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We make a final 0bse:rvation on the feasibility of the 
control scheme. It is unlikely that any utility will be 
willing to put the proposed control on every machine in a 
power system to guarantee that the system response is 
stable for every contingency, at least not at present. The 
interconnected grid is still relatively stable, and utilities 
can obtain satisfactory security by designing control only 
for a few specific disturbances that are viewed as ‘worst 
case’ scenarios. However, if current trends continue, the 
stability of the interconnected grid may degrade to the 
point where the system is vulnerable to many different 
disturbances. In this cas8e, a successful control strategy 
will have to be global in scope, and this paper provides 
some guidelines for developing such a strategy. 
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