EE 303, Quiz 6, Spring 2019, Dr. McCalley

20 minutes, closed book, closed notes, no calculator allowed

1. A synchronous generator having synchronous reactance of $X_{S}=2$ ohms is operating with an 18.0 kV line-to-line terminal voltage. The power out of the machine terminals is $\mathrm{P}_{\mathrm{ou}}=140$ MW, $\mathrm{Q}_{\text {out }}=0$.
a. (40pts) Show how to compute magnitude $\left|\mathrm{E}_{\mathrm{f}}\right|$ and angle $\angle \delta$ of the internal voltage.
i. Using power expressions $3\left|\mathrm{E}_{\mathrm{f}}\right| \mathrm{V}_{\mathrm{t}} \mid \sin \delta / \mathrm{X}_{\mathrm{S}}$ and $3\left|\mathrm{E}_{\mathrm{f}}\right|\left|\mathrm{V}_{\mathrm{t}}\right| \cos \delta / \mathrm{X}_{\mathrm{s}}-3\left|\mathrm{~V}_{\mathrm{t}}\right|^{2} / \mathrm{X}_{\mathrm{S}}$

Solution:

$$
\begin{aligned}
& V_{t}=\frac{18 \times 10^{3}}{\sqrt{3}}=10,392 \text { volts, } \\
& P_{\text {out }}=\frac{3 V_{t}\left|E_{f}\right| \sin \delta}{X_{s}} \Rightarrow \quad\left|E_{f}\right| \sin \delta=\frac{P_{\text {out }} X_{s}}{3 V_{t}}=\frac{\left(140 \times 10^{6}\right)(2)}{3(10392)}=8961.2 \\
& Q_{\text {out }}=0=\frac{3 V_{t}\left|E_{f}\right| \cos \delta}{X_{s}}-\frac{3 V_{t}^{2}}{X_{s}} \Rightarrow\left|E_{f}\right| \cos \delta=V_{t}=10,392 \\
& \frac{\left|E_{f}\right| \sin \delta}{\left|E_{f}\right| \cos \delta}=\tan \delta=\frac{8961.2}{10392}=0.8642 \Rightarrow \delta=40.84^{\circ}
\end{aligned}
$$

ii. Using power expression $3\left|\mathrm{~V}_{\mathrm{t}}\right| \mathrm{I}_{\mathrm{a}} \mid \cos \theta$

$$
P_{\text {out }}=3 V_{t} I_{a} \cos \theta \Rightarrow 140 E 6=3(10.392) I_{a}(1) \Rightarrow I_{a}=4490.6
$$

Because we know operation is at unity power factor $\rightarrow \bar{I}_{a}=4490.6 \angle 0^{\circ}$

$$
\begin{aligned}
& \bar{E}_{f}=\bar{V}_{t}+j X_{s} \bar{I}_{a}=10392 \angle 0^{\circ}+j 2\left(4490.6 \angle 0^{\circ}\right) \\
& =10392+j 8981.2=13735 \angle 40.83^{\circ} \Rightarrow \delta=40.83^{\circ}
\end{aligned}
$$

b. (15 pts) A large shunt capacitor is suddenly connected in parallel with the load R_{L}, and the field current is adjusted. Indicate what would happen to each of the below by checking the appropriate space:

Field current:
Reactive power out of the generator:
Current:

\qquad decrease $\sqrt{ }$ \qquad increase \qquad lead \qquad $\sqrt{ }$ decrease \qquad lag \qquad __no change neither \qquad
2. A transmission line has impedance of $\mathrm{Z}=\mathrm{R}+\mathrm{jX}=2+\mathrm{j} 5$.
a. (10 pts) Show how to compute the admittance $\mathrm{Y}=\mathrm{G}-\mathrm{jB}$.

Solution:

$$
Y=1 / Z=1 /(2+j 5)=0.69-j 0.1724
$$

$$
\mathrm{G}=0.69 ; \mathrm{B}=0.1724
$$

b. (10 pts) Is $\mathrm{G}=1 / \mathrm{R}=1 / 2=0.5$?

Solution:

No. $G=\operatorname{Re}\{Y\}=0.69$.
3. (20 pts) Consider the following model of a transmission line containing only the series elements (i.e., shunt capacitance is neglected). Observe that V_{p} and V_{q} indicate the magnitude of the corresponding voltage phasor.

We showed that $P_{p q}$ and $Q_{p q}$ may be approximated by

$$
P_{p q}=V_{p} V_{q} B\left(\theta_{p}-\theta_{q}\right) ; \quad Q_{p q}=V_{p} B\left(V_{p}-V_{q}\right)
$$

The following table gives voltage magnitudes and voltage angles for three separate operating conditions (Cases 1, 2, and 3) of the above transmission line.

1. Relative to Case 1 , which case, 2 or 3 , has the largest change in P_{pq} ? \qquad 3 \qquad
2. Relative to Case 1, which case, 2 or 3, has the largest change in Q_{pq} ?____ 2 \qquad

	V_{p}	$\theta_{\mathrm{p}}(\mathrm{deg})$	V_{q}	$\theta_{\mathrm{q}}(\mathrm{deg})$
Case 1	1.03	30	1.03	10
Case 2	1.06	30	1.03	10
Case 3	1.03	50	1.03	10

