Module D1-b
 Introduction to Distribution Systems (Continued)

Example: Determine Vs required to hold V5=11 kV (L-L)

- 1 segment $=1000 \mathrm{ft}$
- Need to use table to get impedance of each section
- All lines use 4 AWG conductors
- System is 3 phase

Load data is as follows:

bus 1: $120+\mathrm{j} 30 \mathrm{kVA}$
bus 2: $80+\mathrm{j} 20 \mathrm{kVA}$
bus 3: 40+j5 kVA
bus 4: 12,000+j4000 ohms/phase (Y)
bus 5: 10+j2 kVA

Basic algorithm for problem solution:

1. $i=5$
2. Find Ii (current flowing into bus i)

$$
\mathrm{I}=\mathrm{I}_{+1}+\mathrm{I}_{\mathrm{si}}
$$

If constant power load, $\mathrm{Isi}=\left(\mathrm{Si} / \mathrm{Vi}_{\mathrm{i}}\right)^{*}$
If constant Z load, $\mathrm{Isi}=\mathrm{Vi} / \mathrm{Zi}$
3. Find $\mathrm{Vi}_{\mathrm{i}-1}=\mathrm{Vi}+\mathrm{I}\left(\mathrm{Z}_{\mathrm{i}-1, \mathrm{i}}\right)$
4. $\mathrm{i}=\mathrm{i}-1$, if not done, go to 2

Note: powers are per phase (or pu) and voltages are $\mathrm{L}-\mathrm{N}$ (or pu)

We normally use L-N voltage as reference. This time we will use L-L voltage as reference. Our choice will only affect the angles in our calculations.

$$
\begin{aligned}
& V 5=\frac{11000 \angle-30^{\circ}}{\sqrt{3}}=6350 \angle-30^{\circ} \\
& I 5=\left(\frac{S}{V}\right)^{*}=\left(\frac{\left(\frac{10-j 2}{3}\right) \cdot 10^{3}}{6350 \angle 30^{\circ}}\right)=0.4021-j 0.3533 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
V 4 & =V 5+I 5 \cdot Z 45 \\
& =\left(6350 \angle-30^{\circ}\right)+(0.4021-j .3533)(2.65+j 0.175) \\
& =6352.3 \angle-30.002^{\circ} \\
\Rightarrow & V 4 L L=11002.44 \angle-.002^{\circ}
\end{aligned}
$$

$$
I S 4=\frac{V 4}{Z 4}=\frac{6352.3 \angle-30.002^{\circ}}{12000+j 4000}=0.33318-j 0.37575
$$

$$
I 4=I 5+I S 4=(0.4021-j 0.3533)+(0.33318-j 0.37575)
$$

$$
=(0.7353-j 0.7291)
$$

$$
\begin{aligned}
& V 3=V 4+I 4 \cdot Z 34 \\
& =\left(6352.3 \angle-30.002^{\circ}\right)+(0.7353-j 0.7291)(2.12+j 0.14) \\
& =6354.46 \angle-30.006^{\circ} \\
& \Rightarrow V 3 L L=11006.25 \angle-.006^{\circ}
\end{aligned}
$$

$$
I S 3=\frac{\left(\frac{40-j 5}{3}\right) \cdot 10^{3}}{6354.46 \angle 30.006^{\circ}}=1.6859-j 1.2765
$$

$$
I 3=I 4+I S 3=(0.7353-j 0.7291)+(1.6859-j 1.2765)
$$

$$
=(2.4212-j 2.0055)
$$

$$
\begin{aligned}
& V 2=V 3+I 3 \cdot Z 23=\left(6354.46 \angle-30.006^{\circ}\right) \\
& +(2.4212-j 2.0055)(1.59+j 0.105) \\
& =6359.44 \angle-30.0106^{\circ} \\
& \Rightarrow V 2 L L=11014.88 \angle-.0106^{\circ} \\
& I S 2=\frac{\left(\frac{80-j 20}{3}\right) \cdot 10^{3}}{6359.44 \angle 30.0106}=3.10674-j 3.00506 \\
& I 2=I 3+I S 2=(2.4212-j 2.0055) \\
& +(3.10674-j 3.00506) \\
& =(5.5299+j 5.0106)
\end{aligned}
$$

$$
\begin{aligned}
V 1 & =V 2+I 2 \cdot Z 12 \\
& =\left(6359.44 \angle-30.0106^{\circ}\right)+(5.5299-j 5.0106)(0.53+j 0.035) \\
& =6363.36 \angle-30.0158^{\circ} \\
\Rightarrow & V 1 L L=11021.66 \angle-.0158^{\circ} \\
I S 1 & =\frac{\left(\frac{120-j 30}{3}\right) \cdot 10^{3}}{6363.36 \angle 30.0158}=4.6568-j 4.50523
\end{aligned}
$$

$$
I 1=I 2+I S 1=(5.5279-j 5.0106)+(4.6568-j 4.50523)
$$

$$
=(\mathrm{T} 0.1847-j 9.5158)
$$

$V S R C=V 1+I 1 \cdot Z S 1$

$$
\begin{aligned}
& =\left(6363.36 \angle-30.0158^{\circ}\right)+(10.1847-j 9.5158)(1.06+j 0.07) \\
& =6377.97 \angle-30.0372^{\circ}
\end{aligned}
$$

$\Rightarrow V S R C, L L=11046.98 \angle-.0372^{\circ}$

$$
\begin{aligned}
& I_{S R C}=I 1 \\
& \begin{aligned}
& P_{S R C}=P_{I N}=3 \operatorname{Re}\left\{\left(V_{S R C}\right)\left(I_{S R C}\right)^{*}\right\}=\operatorname{Re}\left\{\left(\left(6377.97 \angle-30.0372^{\circ}\right)(10.1847-j 9.5158)^{*}\right)\right\} \\
& \quad=3 \operatorname{Re}\{(86,613.79+j 20025.28)\}=3(86,613.79)=259,841.4 \text { watts }
\end{aligned}
\end{aligned}
$$

Losses :

$$
I 5^{2} \cdot R 45=.7592
$$

$$
I 4^{2} \cdot R 34=2.273
$$

$$
I 3^{2} \cdot R 23=15.716
$$

$$
I 2^{2} \cdot R 12=29.502
$$

$$
I 1^{2} \cdot R S 1=205.935
$$

$$
T O T A L=3(254.19)=762.57=P_{L O S S}
$$

$$
\begin{aligned}
& \text { Efficiency }(\eta) \text { : } \\
& \eta=\frac{P_{I N}-P_{\text {LOSS }}}{P_{I N}} \times 100 \% \\
& \eta=\frac{259814.4-762.57}{259814.4} \times 100 \%=99.71 \%
\end{aligned}
$$

regulation \%reg :

$$
\begin{aligned}
& \text { \%reg }=\frac{|V L L, S R C|-|V L L, 5|}{|V L L, S R C|} \times 100 \% \\
& \text { \%reg }=\frac{11046.98-11000}{11046.98} \times 100 \%=0.425 \%
\end{aligned}
$$

Two Port Networks

A two-port network is a linear network having two pairs of terminals: input and output.

It can contain any of the following components:

- R, L, C
- Transformers
- Op-amps

But it cannot contain independent sources.

- Dependent sources

Two Port Networks

We may use two-ports to describe a number of different types of circuits including:

- Transistor circuits
- Transformers
- Transmission lines
- Distribution lines

Two ports are attractive because, no matter how complex what is inside the box, we may describe it with only four parameters! There are six "4-parameter sets" as given on the next slide.

Two Port Networks

Z (impedance) parameters $\quad\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]=\left[\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right]\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=Z\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]$

Y (admittance) parameters

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=Y\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

H (hybrid) parameters

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]=H\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

G (inverse hybrid) parameters

$$
\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=G\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]
$$

a (transmission) parameters

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]=A\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

a-parameters and ABCD parameters are the same except in ABCD , we reverse the direction of the current I_{2}.
b (inverse transmission) parameters $\left[\begin{array}{l}V_{2} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]\left[\begin{array}{l}V_{1} \\ I_{1}\end{array}\right]=B\left[\begin{array}{c}V_{1} \\ I_{1}\end{array}\right]$

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]=T\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

Two Port Networks

Given two-port equations, each different set of parameters may be determined, one parameter at a time, according to the following procedure:

1. Pull out the equation containing the parameter of interest;
2. Solve the equation for the parameter of interest.
3. Set to zero the current or voltage necessary to eliminate the remaining parameter from the equation.

Example

Consider the Y-parameters. $\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$
Let's determine y_{21}.
Step1: Pull out the equation containing the parameter of interest:

$$
I_{2}=y_{21} V_{1}+y_{22} V_{2}
$$

Step2: Solve the equation for parameter of interest:

$$
y_{21}=\frac{I_{2}-y_{22} V_{2}}{V_{1}}
$$

Step3: Set to zero the current or voltage necessary to eliminate the remaining parameter from the equation:

$$
y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0}
$$

Your turn

Consider the Y-parameters. $\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$
Let's determine y_{11}.
Step1: Pull out the equation containing the parameter of interest:

Step2: Solve the equation for parameter of interest:

Step3: Set to zero the current or voltage necessary to eliminate the remaining parameter from the equation:

Your turn

Consider the Y-parameters. $\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$
Let's determine y_{11}.
Step1: Pull out the equation containing the parameter of interest:

$$
I_{1}=y_{11} V_{1}+y_{12} V_{2}
$$

Step2: Solve the equation for parameter of interest:

$$
y_{11}=\frac{I_{1}-y_{12} V_{2}}{V_{1}}
$$

Step3: Set to zero the current or voltage necessary to eliminate the remaining parameter from the equation:

$$
y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}
$$

Another example

Consider the Z-parameters. $\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]=\left[\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right]\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]$
Let's determine z_{11}.
Step1: Pull out the equation containing the parameter of interest:

$$
V_{1}=z_{11} I_{1}+z_{12} I_{2}
$$

Step2: Solve the equation for parameter of interest:

$$
z_{11}=\frac{V_{1}-z_{12} I_{2}}{I_{1}}
$$

Step3: Set to zero the current or voltage necessary to eliminate the remaining parameter from the equation:

$$
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0}
$$

Conclusion

Repeated application of this procedure results in following relations:

$$
\begin{array}{llll}
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} & z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} & z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0} & z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} \\
y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0} \\
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0} & y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0} & y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0} & y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0} \\
g_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{I_{2}=0} & h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} & h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0} & h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0} \\
a_{11}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0} & g_{12}=\left.\frac{I_{1}}{I_{2}}\right|_{V_{1}=0} & g_{21}=\left.\frac{V_{2}}{V_{1}}\right|_{I_{2}=0} & g_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{V_{1}=0} \\
b_{11}=\left.\frac{V_{2}}{V_{1}}\right|_{I_{1}=0} & a_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0} & a_{21}=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0} & a_{22}=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0} \\
& b_{12}=\left.\frac{V_{2}}{I_{1}}\right|_{V_{1}=0} & b_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{I_{1}=0} & b_{22}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{1}=0}
\end{array}
$$

Question1: What does it mean to set a voltage to 0 ?
\rightarrow Short the two terminals across which that voltage appears! Question2: What does it mean to set a current to 0 ?
\rightarrow Open the branch through which that current flows!

Question1: What does it mean to set a voltage to 0 ?
\rightarrow Short the two terminals across which that voltage appears! How to obtain parameters: example 1.

Question1: What does it mean to set a voltage to 0 ?

\rightarrow Short the two terminals across which that voltage appears!
How to obtain parameters: example 1.

Question1: What does it mean to set a voltage to 0 ?

\rightarrow Short the two terminals across which that voltage appears!
How to obtain parameters: example 1.

Question1: What does it mean to set a voltage to 0 ?

\rightarrow Short the two terminals across which that voltage appears! How to obtain parameters: example 1.

Summary

How to obtain parameters: example 1.

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] \quad\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{2} & \frac{-1}{2} \\
\frac{-1}{2} & \frac{5}{6}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

Aside (to connect to previous work): Recall Y-bus construction: (1) off-diagonal Y-bus elements are negated admittances of lines connecting buses corresponding to Y-bus row/column nums.
(2) diagonal Y-bus elements are sum of all admittances connected to bus with corresponding bus num.
$\rightarrow 3 / 2=y_{1 \mathrm{~s}}+1 / 2 \rightarrow \mathrm{y}_{1 \mathrm{~s}}=1$
$\rightarrow 5 / 6=y_{2 \mathrm{~s}}+1 / 2 \rightarrow \mathrm{y}_{2 \mathrm{~s}}=2 / 6=1 / 3$

1/2

Summary

How to obtain parameters: example 1.
The original network

Are they the same?
\rightarrow Note the numbers in the top network are impedances whereas the numbers in the bottom network are admittances.

Question2: What does it mean to set a current to 0 ? \rightarrow Open the branch through which that current flows! How to obtain parameters: example 2.

$$
\begin{aligned}
& z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0}=3-j 4 \quad \begin{array}{l}
\text { The series combination of the } \\
3 \Omega \text { and the }-\mathrm{j} 4 \Omega \text { impedances. }
\end{array} \\
& z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0}=-j 4 \quad \begin{array}{l}
\text { The voltage across and current } \\
\text { through the }-\mathrm{j} 4 \Omega \text { impedance. }
\end{array} \\
& z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}=-j 4 \quad \begin{array}{l}
\text { The voltage across and current } \\
\text { through the }-\mathrm{j} 4 \Omega \text { impedance. }
\end{array} \\
& z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}=\quad \begin{array}{l}
j 2-j 4 \text { The series combination of the } \\
=-j 2 \quad \\
\mathrm{j} 2 \Omega \text { and the }-\mathrm{j} 4 \Omega \text { impedances. }
\end{array}
\end{aligned}
$$

a-parameters and ABCD parameters

The "a-parameters" (also called "transmission parameters" and "ABCD parameters") are useful for analysis of dist ccts because they provide the ability to compute input voltage and current as a function of output voltage and current.

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

The ABCD parameters are the same except for the direction of I_{2}.
The a-parameters are more common in circuit theory, including electronic cct design; the ABCD parameters are common in power.

ABCD parameters

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
Y & 1
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

Fig. D1.14: ABCD parameters for "I" circuit

Fig. D1.15: ABCD parameters for " T " circuit

Fig. D1.16: ABCD parameters for " π " circuit
Strong suggestion before final exam: Prove that above 3 matrices indeed give $A B C D$ parameters for the given configuration.

ABCD parameters

Below, I have done (b) for you. You should first do (a) (it is easiest) and then do (c). One of these is likely to be on the exam.

ABCD parameters - Cascading connections

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{1 a} \\
I_{1 a}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{a} & B_{a} \\
C_{a} & D_{a}
\end{array}\right]}_{T_{a}} \underbrace{\left[\begin{array}{c}
V_{1 b} \\
I_{1 b}
\end{array}\right]}_{\left[\begin{array}{c}
V_{2 a} \\
I_{2 a}
\end{array}\right]}=\underbrace{\left[\begin{array}{cc}
A_{b} & B_{b} \\
C_{b} & D_{b}
\end{array}\right]}_{T_{b}}\left[\begin{array}{c}
V_{2 b} \\
I_{2 b}
\end{array}\right]} \\
& \text { These are the same, i.e., } \\
& {\left[\begin{array}{c}
V_{2 a} \\
I_{2 a}
\end{array}\right]=\left[\begin{array}{c}
V_{1 b} \\
I_{1 b}
\end{array}\right] \begin{array}{l}
\text {..so let's substitute RHS of right } \\
\text { expression in for RHS vector of left } \\
\text { expression... }
\end{array}} \\
& {\left[\begin{array}{c}
V_{1 a} \\
I_{1 a}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
A_{a} & B_{a} \\
C_{a} & D_{a}
\end{array}\right]}_{T_{a}} \underbrace{\left[\begin{array}{cc}
A_{a} & B_{a} \\
C_{a} & D_{a}
\end{array}\right]}_{T_{b}}\left[\begin{array}{c}
V_{2 b} \\
I_{2 b}
\end{array}\right]=T_{a} T_{b}\left[\begin{array}{c}
V_{2 b} \\
I_{2 b}
\end{array}\right]}
\end{aligned}
$$

ABCD parameters - Cascading connections

So cascaded two-ports may be assessed from output (on the right) to input (on the left) by using the product of their individual ABCD parameters. Nice - $^{-}$.
We are now in position to re-work our voltage regulation problem on the 5 -bus distribution feeder...see next slide. Do this in preparation for exam as well.

- Compute I_{5}
- Get ABCD parameters
- Compute $\left[\begin{array}{ll}\mathrm{V}_{3} & \mathrm{I}_{4}\end{array}\right]^{\mathrm{T}}$

Work Problem b:

- Compute $\mathrm{I}_{\mathrm{S} 3}$ and then I_{3}
- Get ABCD parameters
- Compute $\left[\begin{array}{ll}\mathbf{V}_{2} & \mathbf{I}_{3}\end{array}\right]^{\mathbf{T}}$

Problem c

Work Problem c:

- Compute $\mathrm{I}_{\mathrm{S} 2}$ and then I_{2}
- Get ABCD parameters
- Compute $\left[\begin{array}{ll}V_{1} & I_{2}\end{array}\right]^{\mathbf{T}}$

Work Problem d:

- Compute $\mathrm{I}_{\mathrm{S} 1}$ and then I_{1}
- Get ABCD parameters
- Compute $\left[\begin{array}{ll}\mathbf{V}_{\text {SRC }} & \mathbf{I}_{1}\end{array}\right]^{\mathbf{T}}$

