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Notes on Mutual Inductance and Transformers 
J. McCalley 

1.0 Use of Transformers 
Transformers are one of the most common electrical devices. Perhaps the most familiar application 

today is for small electronic devices such as laptop computers. The circuit diagram for such an 

application is given in Fig. 1. 

 

Fig. 1 

Transformers are also used in devices with rechargeable batteries, e.g., drills, screwdrivers, cordless 

phones.  Another major transformer application is the ballast used in florescent lighting, as shown in Fig. 

2.  
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Fig. 2 

In the electric power industry, several types of transformers are utilized, including the power 

transformer and the instrument transformer. Our interest is the power transformer. Power transformers 

are used in the following ways: 

 Stepping up the voltage from a generator to high voltage transmission levels; 

 Stepping down the voltage to distribution primary voltage levels; 

 Stepping down the voltage to distribution secondary voltage levels; 

 Interconnecting different system voltage levels in the HV and EHV systems. 

2.0 Self inductance 
Consider the arrangement of Fig. 3a. 

 
Fig. 3a 

Ampere’s law is  
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ILdH 


     (1) 

Ampere’s law says that the line integral of magnetic field intensity H about any closed path equals the 

current enclosed by that path. When (1) is applied to the arrangement of Fig. 3,  

 The path is the dotted line;  

 The magnetic field intensity is along the direction of φ, which is in the same direction as dL;  

 The left hand side of (1) therefore becomes just Hl, where l is the mean length of the path 

around the core. 

 The right-hand-side of (1) is the number of turns times the current, Ni. 

Therefore, we obtain 

NiHl        (2) 

We recall from basic electromagnetics that 

HB        (3) 

where B is the magnetic flux density (webers/m2 or tesla), and μ is the permeability of the iron with units 

of Henry/m or Newtons/ampere2 (μ for a given material is the amount of flux density B that will flow in 

that material for a unit value of magnetic field strength H. For most types of iron used in transformers, 

μ=5000μ0 N/A2, where μ0=4π×10-7N/A2 is the permeability of free space). 

 We also know that flux φ (webers) is related to flux density by 

BA       (4) 

where A is the cross-sectional area of the iron core. Solving for B in (4) and substituting into (3), solving 

for H, and substituting into (2) yields 

Nil
A





      (5) 

Solving for φ results in 

Ni
l

A
        (6) 

Now we define: 

A weber is a unit of flux with 

SI base units of kg-m2/sec2/A. 
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 Magnetomotive Force, NiF  (units of ampere-turns) 

 Reluctance: 
l

A
R  (units of amperes/weber) 

Then (6) becomes 

 
F

R
      (7) 

Equation (7) should remind you of a familiar relation… Ohm’s Law! 

Ohm’s Law is I=V/R and so the analogy is 

 I  φ (flux “flows” like current) 

 V  F (MMF provides the “push” like voltage) 

 R  R (Reluctance “resists” like resistance) 

 

===================================================================================== 

Example 1 [1]: The magnetic circuit shown in the below figure has N=100 turns, a cross-section area of 

Am=Ag=40cm2, an air gap length of lg=0.5mm, and a mean core length of lc=1.2m. The relative 

permeability of the iron is μr=2500. The current in the coil is IDC=7.8 amperes. Determine the flux and 

flux density in the air gap. 
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Solution: We may think of this magnetic circuit in terms of its electric analogue, as shown below. 

 

The electric analogue makes the solution immediately clear, where 

 
F

R
 

The MMF is computed as 

100*7.8 780 ampere-turnsNI  F  

The reluctance of the air-gap is computed as 

7 2

0.5 /1000
99,472amperes/Weber

(4 10 )(40 /100 )

g

gap

g

l

A  
 


=R  

The reluctance of the core is computed as 

7 2

1.2
95,492amperes/Weber

2500(4 10 )(40 /100 )

c
core

c

l

A  
 


=R  

The flux is then computed as 

780
0.004Webers

99,472 95,492
   



F

R
 

The flux density is given by 

2

2

0.004
1 Weber/m =1Tesla

40 / (100)
B

A


    

=============================================================================== 

Now let’s return to (6) and multiply both sides by N to obtain 

F=NI 

Rcore Rgap 

-     + 
ϕ 
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Ni
l

A
    iN

l

A
N 2
       (8) 

Define: 

 Flux linkage:  

 N        (9) 

 Self inductance: 

2 2AN N
L

l


 

R
      (10) 

 

Substituting (9) and (10) into (8), we obtain 

Li       (11) 

We will introduce some additional notation that will help us later, as follows: 

1

11
11

i
L


      (12) 

And so we can see that the self-inductance L11 is the ratio of 

 the flux from coil 1 linking with coil 1, λ11 

 to the current in coil 1, i1. 

Here the first subscript of λ11, 1 in this case, indicates “links with coil 1” and the second subscript, 1 in 

this case, indicates “flux from coil 1.” 

Observe from (12) that a large L11 means that a little current i1 generates a lot of flux linkages λ11. What 

makes L11 large? Recall: 

l

AN
L

2

1
11


  

And so we see that to make self inductance large, we need to  

 make N1, μ, and A large 
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 make l small 

And so a large L11 results from  

 many turns (N1) 

 large μ (e.g., core made of iron) 

 large cross section (A) 

 compact construction (small l) 

Figure 3b illustrates a configuration that would reflect a large cross section and a compact construction. 

 

Fig 3b 

Recalling that reluctance is given by 
l

A
R , we see that a magnetic circuit characterized by a large 

self-inductance will have a small magnetic path reluctance.  

Example 2 [1]: Compute the self-inductance of the magnetic circuit given in Example 1. 

Solution: Here, we need to recognize that the magnetic field intensity, H, will be different in the iron 

core than in the air gap. We can see that this must be so because the air gap is in series with the core 

and so the flux φ in the air gap must be the same as the flux in the core. Since the cross-sectional area in 

the air gap and in the core are the same, the flux densities B must also be the same. But because B=μH, 

and the permeability of the air gap differs from the permeability of the core, the magnetic field 

intensities must differ as well. Thus, equation (2) (which is NiHl  ) will be written as:  
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c c g gH l H l Ni   

Using B=μH, we have 

c g

c g

B B
l l Ni

 
 



gc

c g

ll
B Ni

 

 
  

  
 

And using B=φ/A, we have 

gc

c g

ll
Ni

A



 

 
  

  
 

Solving for φ, we obtain 

gc c g

c g

Ni Ni

ll

A A



 

 



R R  

Using subscripted notation to identify the flux from coil 1 linking with coil 1 results in 

1 1 1 1
11

gc c g

c g

N i N i

ll

A A



 

 



R R  

Recalling that self-inductance is given by 

11
11

1

L
i


  

and that λ11=N1φ11, we can write that 

11 1 11
11

1 1

N
L

i i

 
   

Substitution for φ11 results in 

L11? The ability of a current in coil 1, i1, to 

create flux φ11 that links with coil 1.  
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2

1
11

c g

N
L 

R R
 

Recalling from Example 1 that N1=100 and  

95,492amperes/Weberc R ;     99,472amperes/Weberg R  

the self-inductance becomes: 
2

11

100
0.0513 henries

95492 99472
L  


 

3.0 Mutual inductance 
Let’s consider another arrangement as shown in Fig. 4. 

 

Fig. 4 

We have for each coil: 

1

11
11

i
L


        (13a) 

2

22
22

i
L


        (13b) 

We can also define L12 and L21. 

L12 is the ratio of  

i1 
φ 

N1 

i2 

N2 
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 the flux from coil 2 linking with coil 1, λ12 

 to the current in coil 2, i2. 

That is, 

2

12
12

i
L


        (14a) 

where the first subscript, 1 in this case, indicates “links with coil 1” and the second subscript, 2 in this 

case, indicates “flux from coil 2.” 

Here, we also have that  

2

121
1212112

i

N
LN


        (14b) 

Likewise, we have that 

1

21
21

i
L


        (15a) 

1

212
2121221

i

N
LN


       (15b) 

Now let’s assume that all flux produced by each coil links with the other coil. The implication of this is 

that there is no leakage flux, as illustrated in Fig. 5. 

 

i1 
φ 

N1 

i2 

N2 

This leakage flux is assumed to be zero. 
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Fig. 5 

Although in reality there is some leakage flux, it is quite small because the iron has much less reluctance 

than the air. With this assumption, then we can write:  

 the flux from coil 2 linking with coil 1 is equal to the flux from coil 2 linking with coil 2, i.e.,  

222212 iN
l

A
        (16a) 

 the flux from coil 1 linking with coil 2 is equal to the flux from coil 1 linking with coil 1, i.e.,  

111121 iN
l

A
        (16b) 

Substitution of (16a) and (16b) into (14b) and (15b), respectively, results in: 

1 2 2
1 12 1 2

12 1 2

2 2

A
N N i

N N NAlL N N
i i l


 

   
R

    (17a) 

2 1 1
2 21 2 1

21 2 1

1 1

A
N N i

N N NAlL N N
i i l


 

   
R

    (17b) 

Examination of (17a) and (17b) leads to  

1 2
21 12

N N
L L 

R
      (18) 

Also recall  

2N
L 
R

      (10) 

or in subscripted notation 

2

1
11

N
L 

R
      (19a) 
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2

2
22

N
L 

R
      (19b) 

Solving for N1 and N2in (19a) and (19b) results in 

1 11N L R       (20a) 

2 22N L R       (20b) 

Now substitute (20a) and (20b) into (18) to obtain 

11 22

21 12 11 22

L L
L L L L  

R R

R
      (21) 

Definition: L12=L21 is the mutual inductance and is normally denoted M. 

Mutual inductance gives the ratio of 

 flux from coil k linking with coil j, λjk  

 to the current in coil k, ik, 

That is,  












1

21

2

12

i

i
M





       (22) 

4.0 Polarity and dot convention for coupled circuits 
Consider Fig. 6 illustrating two coupled circuits. Assume the voltage v1 is DC, but you have a dial you can 

turn to increase v1. Also assume that the secondary is open (i.e., the dashed line connecting the 

secondary terminals to a load is not really there). The coil 1 has very small resistance so that in the 

steady-state, the current is not infinite.  
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Fig. 6 

Now assume that we increase the voltage v1 to some higher value.  This causes the current i1 to increase 
with time which causes the flux from coil 1, φ11, to also increase with time (which means that the flux 
linkages λ11 also increase with time). By Faraday’s Law,  

11 1 11 11 1
1 1 11

( )d d N d di
e N L

dt dt dt dt

  
        (23) 

We know the sign of the right-hand-side of (23) is positive because the self-induced voltage across a coil 

is always positive at the terminal in which the current enters, and e1 is defined positive at this terminal. 

If e1 would have been defined negative at the terminal in which the current was entering, then the sign 

of the right-hand-side of (23) would have been negative. 

Now let’s consider coil 2. Coil 2 sees that same flux increase that coil 1 saw, which we will denote by φ21 

(and correspondingly, the flux linkages are denoted as λ21). Again, by Faraday’s Law,  

21 2 21 21 1 1
2 2 21

( )d d N d di di
e N L M

dt dt dt dt dt

  
         (24) 

Question: How do we know the sign of the right-hand-side of (24)? That is, how do we know which of 

the below are correct? 

1
2

1
2

di
e M

dt

di
e M

dt

 

 
     (25) 

Here is another way to ask our question:  

i1 
φ11 

N1 

i2 

N2 
e1 

e2 

v1 

φ21 
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Does the assumed polarity of our e2 match the actual polarity of the voltage that would be induced by 

the changing current i1? If so, we should choose the equation in (25) with the positive sign. If not, we 

should choose the equation in (25) with the negative sign. 

And so what is the answer? To obtain the answer, we need to recall Lenz’s Law. This law states that the 

induced voltage e2 must be in a direction so as to establish a current in a direction to produce a flux 

opposing the change in flux that produced e2. (You can find a good explanation/illustration of Lenz’s Law 

at https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-

faradays-law/v/lenzs-law).  

When e1 increases, i1 increases, and by the right-hand-rule (RHR), φ21 increases.  

In Fig. 6, our assumed polarity of e2 would cause current to flow into the load in the direction shown. 

How do we know if this polarity is correct or not? We know it is correct because the RHR says that a 

current in the direction of i2 would cause flux in the direction opposite to the direction of the φ21 

increase (we emphasize that this is “the φ21 increase,” i.e., it is “the change in flux that produced e2” and 

not necessarily the direction of φ21 itself, although in this case, “the φ21 increase” is the same as the 

direction of φ21 itself). Thus, for the given polarity of e2, the sign of (25) should be positive, i.e.,  

1
2

di
e M

dt
   

How might we obtain a different answer? 

There are two ways. 

First way: Switch the sign of e2, as in Fig. 7. In this case, we also must switch the direction of current i2 

that would flow into the load (in using Lenz’s Law, the i2 direction must be consistent with the e2 

direction). 

 

Fig. 7 

i1 
φ11 

N1 

i2 

N2 
e1 

e2 

v1 

φ21 

https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-faradays-law/v/lenzs-law
https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-faradays-law/v/lenzs-law
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In Fig. 7, the current i2, by the RHR, would produce a flux in the same direction as the φ21 increase, which 

is in violation of Lenz’s Law. Therefore, in this case, we should use a negative sign in (25) according to 

1
2

di
e M

dt
   

Second way: Switch the sense of the coil 2 wrapping, as in Fig. 8 (while keeping the directions of e2 and 

i2 as they were in Fig. 6).  

 

Fig. 8 

In Fig. 8, the current i2, by the RHR, would produce a flux in the same direction as the φ21 increase. In 

this case, we should again use the negative sign in (25). The main point here is that we want to be able 

to know which secondary terminal, when defined with positive voltage polarity, results in using the form 

of (25) with a positive sign.  

On paper, there are two approaches for doing this. The first is to draw the physical winding and to go 

through the Lenz’s Law analysis as we have done above.  

The second approach is easier, and it is to use the so-called “dot convention.” A simplifying feature to 

the dot convention is that there is no need to be concerned with the i2 direction, a feature that is 

consistent with the fact that (25) is independent of i2. 

In the dot convention, we mark one terminal on either side of the transformer so that  

 when e2 is defined positive at the dotted terminal of coil 2 and 

 i1 is into the dotted terminal of coil 1, then 

1
2

di
e M

dt
   

i1 
φ11 

N1 

i2 

N2 
e1 

e2 

v1 

φ21 
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Example 3:  

 

So far, we have focused on answering the following question: given the dotted terminals, how to 

determine the sign to use in (25)? 

Here is another question: If you are given the physical layout, how do you obtain the dot-markings? 

There are two approaches, described below. In both approaches, we need to start with a defined 

voltage direction e2; if this is not predefined for us, then we should define it ourselves at the beginning.  

First approach: Use Lenz’s Law and the right-hand-rule (RHR) to determine if a defined voltage direction 

at the secondary produces a current in the secondary that generates flux opposing the flux change that 

caused that voltage. (This is actually a conceptual summary of the second approach.) 

Second approach: Do it by steps. (This is actually a step-by-step articulation of the first approach.) 

1. Arbitrarily pick a terminal on one side and dot it. 

2. Assign a current into the dotted terminal. 

3. Use RHR to determine flux direction for current assigned in step 2. 

4. Arbitrarily pick a terminal on the other side and assign a current out of (into) it. 

5. Use RHR to determine flux direction for current assigned in Step 4. 

6. Compare the direction of the two fluxes (the one from Step 3 and the one from Step 5). If the 

two flux directions are opposite (same), then the terminal chosen in Step 4 is correct. If the two 

flux directions are same (opposite), then the terminal chosen in Step 4 is incorrect – dot the 

other terminal.   
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This approach depends on the following principle (consistent with words in italics in above steps): 

Current entering one dotted terminal and leaving the other dotted terminal should produce fluxes 

inside the core that are in opposite directions. 

An alternative statement of this principle is as follows (consistent with words in underline bold in 

above steps): Currents entering the dotted terminals should produce fluxes inside the core that 

are in the same direction. 

Example 4: Determine the dotted terminals for the configuration below, and then write the relation 

between i1 and e2.  

 

Solution:  

Steps 1-3: 

 

Steps 4-6: 

i1 

N1 N2 
e2 

φ11 

i1 

N1 N2 
e2 



18 

 

 

Now we can write the equation for the above coupled circuits. Recall that in the dot convention, we will 

mark one terminal on either side of the transformer so that  

 when e2 is defined positive at the dotted terminal of coil 2 and 

 i1 is into the dotted terminal of coil 1, then 

1
2

di
e M

dt
   

In the above, however, although i2 is into the dotted terminal of coil 1, e2 is defined negative at the 

dotted terminal of coil 2. Therefore 

1
2

di
e M

dt
   

But note, there is another way we could have solved this problem, as follows: 

Steps 1-3: 

 

i'1 

N1 N2 
e2 

φ11 

i1 

N1 N2 
e2 

φ11 

i2 φ22 
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Steps 4-6: 

 

Now we can write the equation for the above coupled circuits. Recall that in the dot convention, we will 

mark one terminal on either side of the transformer so that  

 when e2 is defined positive at the dotted terminal of coil 2 and 

 i1 is into the dotted terminal of coil 1, then 

1
2

di
e M

dt
   

In the above, we have i'1 flowing into the dotted terminal of coil 1, and e2 is defined positive at the 

dotted terminal of coil 2. Therefore 

1
2

di
e M

dt


   

If, however, we wanted to express e2 as a function of i1 (observing that i1=-i'1) then we would have 

1
2

di
e M

dt
   

Example 5: For the configuration below, determine the dotted terminals and write the relation between 

i1 and e2. 

i'1 

N1 N2 
e2 

φ11 

i2 

φ22 
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Solution:  

Steps 1-3: 

 

Steps 4-6: Here we arbitrarily assign the dot to the upper terminal of coil 2 and then, with i2 out of 

this dotted terminal, we use the RHR to determine that the flux φ22 is in the same direction as the 

flux from coil 1. This means our choice of the coil 2 terminal location dot was wrong.   
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Therefore we know the dot must be at the other terminal, and the below shows clearly this is the case, 

since the flux from coil 2, φ22, is opposite to the flux from coil 1, φ21. 

 

Now we can write the equation for e2. Recall that in the dot convention, we mark one terminal on either 

side so that  

 when e2 is defined positive at the dotted terminal of coil 2 and 

 i1 is into the dotted terminal of coil 1, then 

1
2

di
e M

dt
   

5.0 Writing circuit equations for coupled coils 
In our treatment so far, we have focused on transformers or similar circuits having magnetic coupling 

between coils. We may also encounter other kinds of circuits having elements that are magnetically 

coupled. We are well-positioned to handle such circuits by combining our (new) knowledge of the dot 

convention with our (old) knowledge of circuit analysis. The issue here, as in all circuits with mutual 

coupling, is that when we write a voltage equation, we must account for the self-induced voltage in an 

inductor from its own current as well as any mutually-induced voltage in the inductor from a current in a 

coupled coil. 

Let’s begin with the simplest of examples. Consider the circuit illustrated in Fig. 9. 
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Fig. 9 

We know that  

1
1

d
e

dt


       (26) 

where 

1 11 12         (26) 

Here, λ1 is the total flux seen by coil 1, λ11 is the flux from coil 1 linking coil 1 (i.e., the component of λ1 

that is produced by coil 1), and λ12 is the flux from coil 2 linking with coil 1 (i.e., the component of λ1 that 

is produced by coil 2). And so to compute the voltage induced across coil 1, we apply Faraday’s Law to 

obtain 

1 11 12 11 12
1

( )d d d d
e

dt dt dt dt

    
       (26) 

Recalling that  

11 1 1 12 2         L i Mi        (27) 

we can substitute (27) into (26) to obtain 

1 1 2 1 2
1 1

( ) ( )d L i d Mi di di
e L M

dt dt dt dt
          (28) 

Observe in (28) the presence of the “±” signs preceding each term; these signs are made necessary by 

the fact we have equated the sum of the derivatives to a voltage e1 with a certain assumed polarity. The 

question we need to answer at this point is “how do we determine the sign of each of these terms?” We 

begin with the first (“self”) term because it is the easiest. 
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Rule for determining the sign of the self term: The polarity of the self term is determined entirely by 

the direction of the current i1:  

 when this current is into the positive terminal (as defined by the polarity of e1), then the sign of 

the self term is positive; 

 when this current is out of the positive terminal (as defined by the polarity of e1), then the sign 

of the self term is negative. 

Now we need to determine how to know whether to add or subtract the mutual term from the self 

term. We should not be surprised to learn that we will make this determination using the dot 

convention. 

Rule for determining the sign of the mutual term:  We assume both coils have been appropriately 

dotted. 

1. Choose reference current directions for each coil (if not chosen for you).  

2. Apply the following to determine the reference polarity of the voltage induced by the mutual 

effects: 

a. If the reference current direction enters the dotted terminal of a coil, the reference 

polarity of the voltage that it induces in the other coil is positive at its dotted terminal. 

b. If the reference current direction leaves the dotted terminal of a coil, the reference 

polarity of the voltage that it induces in the other coil is negative at its dotted terminal. 

Example 6:  

Express the voltages e1 and e2 as a function of the currents i1and i2 in the following circuit. 

 

First, let’s express e1. Here, we observe two things: 

1. i1 enters the positive terminal, and therefore the self term is positive. 

2. i2 enters the dotted terminal of coil 2, therefore the reference polarity of the voltage it induces 

in coil 1 is positive at its dotted terminal, and its dotted terminal is the positive terminal. 
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So e1 is expressed as: 

1 2
1 1

di di
e L M

dt dt
   

Now let’s express e2. Here, we observe two things: 

1. i2 enters the positive terminal, and therefore the self term is positive. 

2. i1 enters the dotted terminal of coil 1, therefore the reference polarity of the voltage it induces 

in coil 2 is positive at its dotted terminal, and its dotted terminal is the positive terminal. 

So e2 is expressed as: 

2 1
2 2

di di
e L M

dt dt
   

Example 7:  

Express the voltages e1 and e2 as a function of the currents i1and i2 in the following circuit. 

 

As in Example 6, we first express e1. Here, we observe two things: 

1. i1 enters the positive terminal, and therefore the self term is positive. 

2. i2 leaves the dotted terminal of coil 2, therefore the reference polarity of the voltage it induces 

in coil 1 is negative at its dotted terminal, and its dotted terminal is the positive terminal. 

So e1 is expressed as: 

1 2
1 1

di di
e L M

dt dt
   

Now let’s express e2. Here, we observe two things: 

1. i2 enters the positive terminal, and therefore the self term is positive. 



25 

 

2. i1 enters the dotted terminal of coil 1, therefore the reference polarity of the voltage it induces 

in coil 2 is positive at its dotted terminal, but its dotted terminal is the negative terminal. 

So e2 is expressed as: 

2 1
2 2

di di
e L M

dt dt
   

 

6.0 Derivation of turns ratio relations for ideal transformers 
Consider the circuit of Fig. 10; what is in the dashed box represents what is referred to as the ideal 

transformer.  

 

Fig. 10 

Let’s write the voltage equation for left-hand loop. Note that the current i2 is leaving the dotted 

terminal, and so the voltage it induces in coil 1 must be negative at the coil 1 dotted terminal, which is 

the positive terminal. Therefore 

1 2
1 1

di di
e L M

dt dt
       (29) 

Likewise, we obtain for the right-hand loop, given by: 

2 1
2 2 2 2

di di
e L M i R

dt dt
         (30) 

Solving (30) for the mutual term results in 

1 2
2 2 2

di di
M L i Z

dt dt
       (31) 
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We can write equations (29) and (31) in phasor representation by realizing that, for analysis of steady-

state sinusoidal quantities, differentiation in the time-domain is equivalent to multiplication by jω in the 

phasor domain. This may be a familiar notion to those who have studied Fourier transforms. For those 

who have not studied Fourier transforms, it is easy to see from calculus, as follows. Let i1(t)=I1sinωt, then 

we may express the phasor as I1=I1∟0°. We observe then that the phasor transform of i1(t) can be 

expressed as 

1 1 1 1( ) sin 0i t I t I    I      (32) 

 We can differentiate the time-domain expression for i1(t) to obtain di1(t)/dt=I1ω cosωt= I1ω sin(ωt+90°). 

Thus, we see that the phasor transform of di1(t)/dt may be expressed as 

1
1 1 1 1

( )
sin( 90 ) 90 0

di t
I t I jI j

dt
              I   (33) 

We use (32) and (33) to transform (29) and (31) into the phasor domain as follows: 

1 1 1 2j L j M  E I I      (34) 

1 2 2 2 2j M j L Z  I I I      (35) 

We solve for I2 from (35) to obtain: 

2 1

2 2

j M

j L Z







I I       (36) 

Now recall from (10) that 

2 2

2 2
2

AN N
L

l


 

R
      (10) 

l

A
R       (37) 

Let’s assume that μ is very large (the material is highly permeable). This implies that R is very small, L2 is 

very large, and so |jωL2|>>R2. Therefore (36) becomes 

2 1 1

2 2

j M M

j L L




 I I I       (38) 
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Also recall (18) that 

1 2N N
M 

R
      (18) 

Substitution of (10) and (18) into (38) results in 

1 2

1 2 1
2 1 1 1 12 2

22 2 2

N N
N N NM

NL N N
   R

R

I I I I I
   (39) 

That is,  

2 1

1 2

N

N


I

I
      (40) 

Equation (40) is an important relation. It says the ratio of the currents in the coils on either side of an 

ideal transformer is in inverse proportion to the ratio of the coils’ turns. We will use it heavily. 

We may also derive from (34) and (35) the following relation 

2 2 2

1 2 1 2
1 1

2 2

M L L j L Z

Z j L

  



  
 

 
E = I      (41) 

Using M=√(L1L2), we obtain 

1 2
1 1

2 2

j L Z

Z j L





 
 

 
E = I      (42) 

Again using |jωL2|>>|Z2|, we obtain 

1 2
1 1

2

L Z

L
E = I       (43) 

Substituting (10) and  

2

1
1

N
L 
R

      (44) 
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into (43), we obtain 

2

1
22

1 2 1
1 1 1 2 12 2

22 2

N
Z

L Z N
Z

NL N
 R

R

E = I I I
     (45) 

But from (40), we can write that 

2
1 2

1

N

N
I I        (46) 

Substituting (46) into (45) results in 

2

1 2 1
1 2 2 2 22

2 1 2

N N N
R R

N N N
E = I I       (47) 

But R2I2=E2, and so (47) becomes 

1
1 2

2

N

N
E = E        (48) 

That is, 

1 1

2 2

N

N

E
=

E
       (49) 

Like (40), (49) is an important relation. It says the ratio of the voltage across the coils on either side of an 

ideal transformer is in proportion to the ratio of the coils’ turns. We will also use this relation heavily. 

7.0 Power for ideal transformers 
Often, high voltage transformers are called “power transformers.” Do they transform power? To answer 

this question, let’s first realize that this discussion has nothing to do with losses that occur within a real 

transformer. Our device is “ideal,” and thus suffers no losses. We return to the ideal transformer of Fig. 

10 and the relations we derived for it in (40) and (49), repeated here for convenience: 

2 1

1 2

N

N


I

I
       (40) 
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1 1

2 2

N

N

E
=

E
       (49) 

We may express the power flowing into coil 1, and the power flowing out of coil 2 as 

*

1 1 1S  E I   
*

2 2 2S  E I  

From (40) and (49) we may express E2 and I2 as 

2
2 1

1

N

N
E E    

1
2 1

2

N

N
I I  

Substitution of these expressions for E2 and I2 into the power expression for S2 results in 

* * *2 1
2 2 2 1 1 1 1

1 2

N N
S

N N
  E I E I E I  

We have just proved that, for an ideal transformer, S1=S2, enabling us to conclude that “power 

transformers” do not transform power. It is a good thing, because doing so would result in a violation of 

the conservation of energy (otherwise known as the first law of thermodynamics), since “power 

transformation” would imply that we could provide one side with a certain amount of power P1 and get 

out a greater amount of power P2 on the other side. If we allowed, then, such a device to operate for an 

amount of time T, the output energy P2T would be greater than the input energy P1T, thus, the violation. 

8.0 Referring quantities 
We have heretofore referred to the two sides of an ideal transformer as “coil 1” and “coil 2”; from now 

on, we refer to these as the “primary” and “secondary” of the device.  

It is of interest to determine what impedance is “seen” looking into the primary terminals of the ideal 

transformer, i.e., what is 

1
1

1

Z 
E

I
      (50) 

But from (46) and (48), we have that 

2
1 2

1

N

N
I I     

1
1 2

2

N

N
E = E  
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Substitution of these into (50) results in 

1
2 2 2

2 1 2 1
1 22 2

2 2 2 2
2

1

N

N N N
Z Z

N N N

N

  

E
E

I
I

     (51) 

More compactly, we have 

2

1
1 2

2

N
Z Z

N

 
  
 

     (52) 

Or,  

2

1 1

2 2

Z N

Z N

 
  
 

     (53) 

This equation, together with (40) and (49), are summarized below. 

2 1

1 2

N

N


I

I
       (40) 

1 1

2 2

N

N

E
=

E
       (49) 

2

1 1

2 2

Z N

Z N

 
  
 

      (53) 

Equations (40), (49), and (53) relate currents, voltages, and impedances that exist on one side of the 

transformer, i.e., the secondary, to corresponding currents, voltages, and impedances that exist on the 

other side of the transformer, i.e., the primary.  

But from another perspective, they provide a way to refer quantities from one side of the transformer to 

the other. That is, these equations provide a way to represent on the primary side currents, voltages, 

and impedances that exist on one the secondary side. And vice-versa, i.e., these equations provide a 

way to represent on the secondary side currents, voltages, and impedances that exist on the primary 

side.  
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To clarify this, let’s introduce some new notation.  

 First, we observe that the subscripts “1” and “2” that we have been using (for turns, currents, 

voltages, and impedances) tell us whether the quantity actually exists on the primary side 

(having a subscript of “1”) or the secondary side (having a subscript of “2”).  

 Second, we will use unprimed notation, i.e., I1, E1, Z1, and I2, E2, Z2, to denote the quantity 

represented on the side on which it actually exists. Thus, we say that  

o I1, E1, Z1 are the current, voltage, and impedance of primary side quantities referred to 

the primary side, and  

o I2, E2, Z2 are the current, voltage, and impedance of secondary side quantities referred to 

the secondary side. 

 Third, we will use primed notation, i.e., I’’1, E’’1, Z’’1, and I’2, E’2, Z’2, to denote the quantity 

represented on the opposite side from where it actually exists. Thus, we say that  

o I’’1, E’’1, Z’’1 are the current, voltage, and impedance of primary side quantities referred 

to the secondary side, and  

o I’2, E’2, Z’2 are the current, voltage, and impedance of secondary side quantities referred 

to the primary side. 

With this notation, we may adapt (40), (49), and (53) to facilitate the operation of referring quantities 

from the secondary side to the primary as follows: 

2 1 2
2 2

2 2 1

N N

N N
  



I
I I

I
      (54) 

2 1 1
2 2

2 2 2

N N

N N


 

E
= E E

E
     (55) 

2 2

2 1 1
2 2

2 2 2

Z N N
Z Z

Z N N

   
     

   
    (56) 

Relations for referring quantities from the primary side to the secondary side are as follows: 

1 1 1
1 1

1 2 2

N N

N N


  

I
I I

I
      (57) 
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1 1 2
1 1

1 2 1

N N

N N
 



E
= E E

E
      (58) 

2 2

1 1 2
1 1

1 2 1

Z N N
Z Z

Z N N

   
     

    
     (59) 

It is important to note that referring quantities affects only magnitudes; it does not affect phase angles. 

Example 8:  

Find the current in the primary side of the below circuit. 

 

Solution: We can solve this problem in one of two ways. Either we refer all quantities to the secondary, 

solve for I2, and then refer this current to the primary, or else, we can refer all quantities to the primary 

and then solve for I1. Both ways will work, but the second way is a little easier.  

Referring quantities to the primary requires the following calculation: 

2 2

1
2 2

2

5 25
4 4 1

10 100

N
Z Z

N

   
       

  
 

This results in the following circuit: 

 

Use of Ohm’s Law results in 
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1 2

50 0
50 0

1

 
    I I  

Now what if we wanted to obtain I2 and E2? Then we refer I’2 and E’2 (which are quantities we obtain on 

the primary side) back to the secondary side. We already know I’2; we obtain E’2 by inspection of the 

above circuit, observing that it is the same as E1, i.e., E’2=50∟0°. We use (54) and (55) to referring back 

to the secondary as follows: 

2 1 1
2 2

2 2 2

5
50 0 25 0

10

N N

N N
        



I
I I

I
 

2 1 2
2 2

2 2 1

10
50 0 100 0

5

N N

N N


       

E
= E E

E
 

Then it is satisfying to check that 

2
2

2

100 0
4

25 0
Z

 
   

 

E

I
 

8.0 Exact and approximate transformer models 
…(see in-class notes) 

9.0 Three-phase transformers 
A three-phase transformer will have six windings: three for the primary (phases A, B, and C on the 

primary) and three for the secondary (phases A, B, and C for the secondary).  

There are two very different approaches to developing a three-phase transformer. One approach is to 

use just one “three phase bank,” where here the word “bank” refers to a single core, i.e., a single 

magnetic circuit. Figure 9 [1] illustrates, where each pair of primary and secondary windings (there are 

three pairs, one for each phase) are on the same leg. 

 

                                                           
1 http://www.gamatronic.com/three-phase-transformers/  

http://www.gamatronic.com/three-phase-transformers/
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Figure 9: A three-phase transformer bank  

The three-phase bank illustrated in Fig. 9 is utilizing a “core-type” of construction. In the core-type, 

primary and secondary windings are wound outside and surround their leg. In another type of 

construction, the so-called “shell-type,” windings pass inside the core, forming a shell around the 

windings. Figure 10 [2] illustrates the difference. 

 

Figure 10: Core type and shell type transformer construction  

The shell-type transformer requires more ferromagnetic material than does the core-type transformer 

and is therefore typically more costly on a per-MVA basis. However, its magnetic circuit provides 

multiple paths for flux to flow; this reduces flux density seen by each leg which is advantageous for 

short-circuit performance [3, 4], and so shell-type transformers are used more frequently when high 

capacity is required. Another approach to developing a three-phase transformer is to interconnect three 

single-phase transformers. This approach is illustrated in Fig. 11. 

                                                           
2https://www.quora.com/What-is-the-difference-between-a-core-type-and-a-shell-type-transformer   
[3] J. Harlow, editor, “Electric power transformer engineering,” CRC press, 2004, pp. 2-10.  
[4] B. Kennedy, “Energy efficient transformers,” McGraw-Hill, 1998, p. 16.  

https://www.quora.com/What-is-the-difference-between-a-core-type-and-a-shell-type-transformer
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Fig. 11: Single-phase transformer connections to form a three-phase transformer 



36 

 

The voltage transformation ratio for three-phase transformers is always given as the ratio of the line-to-

line voltage magnitude on either side. If a transformer is connected Y-Y or Δ-Δ, this ratio will be the 

same as the ratio of the winding voltages on either side (which is the same as the turns ratio N1/N2).  

However, for Y-Δ or Δ-Y connected transformers, the ratio of the line-to-line voltages on either side is 

not the same as the ratios of the winding voltages. This means that you can take three single-phase 

transformers, each with the same turns ratio, and connect them for a three-phase configuration such 

that the three-phase configuration will have a different line-to-line ratio than the phase-to-phase ratio! 

…see in-class examples. 

It is the line-to-line ratio that you should use in performing per-phase analysis. 

 


