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Power Transformers
1. Download/read notes on transformers from website.

2. Download HW4 on website; I will give due-date next week.

3. Read Chapters 5 and 6 in Kirtley’s text
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Power Industry Uses of Transformers

Power Transformers:
1. Step up voltage from generator to transmission (GSU)

2. Step down voltage from transmission to distribution 

primary levels

3. Step down voltage from distribution primary to distribution 

secondary

4. Interconnecting different system voltage levels in HV and 

EHV systems

Instrument Transformers:

Current (CT) and potential (PT) transformers: Step down 

quantity from power system level (gen, trans, dist) so 

that quantity is compatible at the instrument level, in 

order to perform protective relaying (you need to take 

EE 457 to learn about these).
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Magnetic circuits

Ampere’s Law:

Line integral of mag fld intensity about a closed path equals current enclosed. 

• Make the path the dotted line.

• H is along direction of ϕ, which is same direction as dL

• Let l be length of dotted path, therefore LHS is Hl

• RHS is current enclosed: Ni.

Apply it here:

NiHl 
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Magnetic circuits

Recall

HB 

BA

NiHl 

Nil
A





Ni

l

A
 
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Magnetic circuits

Ni
l

A
 

Define: magnetomotive force (MMF):

reluctance:
NiF

l

A
R

 
F

R

This looks suspiciously 

familiar. What does this 

remind you of?

Write down the relations for F, R, and ϕ. 
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Magnetic circuits

 
F

R
V

I
R



Units:

ϕ webers (kg-m2/sec2/Amp)

B webers/m2=tesla

F ampere-turns

R amperes/weber

μ = μrμ0=μr(4π×10-7)Ntn/Amp2
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Example

Compute ϕ.
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Example

 
F

R
100*7.8 780 ampere-turnsNI  F

7 2

0.5 /1000
99,472amperes/Weber

(4 10 )(40 / 100 )

g

gap

g

l

A  
 


R =

7 2

1.2
95,492amperes/Weber

2500(4 10 )(40 /100 )

c
core

c

l

A  
 


=R

780
0.004Wb

99,472 95,492
   



F

R

2

2

0.004

40 / (100)

1 Weber/m =1Tesla

B
A


 





9

Inductance

Recall: Ni
l

A
 

iN
l

A
N 2
 

Define:

Flux Linkage:

Self Inductance:

 N
2 2AN N

L
l


 

R

Li
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Inductance

Some notation that will be useful later:

1

11
11

i
L




The self inductance L11 is the ratio of

• the flux from coil 1 linking with coil 1, λ11

• to the current in coil 1, i1

Linking? … Passing through the coil interior



11

Inductance

Flux linking

Flux not linking
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Inductance

Some notation that will be useful later:

1

11
11

i
L




The self inductance L11 is the ratio of

• the flux from coil 1 linking with coil 1, λ11

• to the current in coil 1, i1

Inductance L11? The ability of a current in coil 1, i1, to 

create flux φ11 that links with coil 1. 
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Inductance

l

AN
L

2

1
11




To make large self-inductance, we need to

• make N1, μ, and A large;

• make l small

And so a large L11 results from

• many turns (N1)

• large μ (core made of iron)

• large cross section (A)

• compact construction (small l)
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And so a large L11 results from

• many turns (N1)

• large μ (core made of iron)

• large cross section (A)

• compact construction (small l)

Recalling 

l

A
R

we see that a magnetic circuit characterized by a 

large self-inductance will have a small magnetic 

path reluctance. 

l

AN
L

2

1
11




2

1

11

N
L 

R
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Example 2: Compute the self-inductance of the 

magnetic circuit given in Ex 1.

Example

We just found that 
2

1

11

N
L 

R

1 1

1

11 1 11

11

1 1 1

2

1

c g

c g

N i
N

N
L

i i i

N

 

 
   

  




R R

R R

Alternative derivation:
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Example 2: Compute the self-inductance of the 

magnetic circuit given in Ex 1.

Example

2 2

1 1

11

c g

N N
L  

R R R

95,492amperes/Weberc R 99,472amperes/Weberg R

From Ex 1, N1=100 and

2

11

100
0.0513 henries

95492 99472
L  


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Mutual inductance

i1

φ

N1

i2

N2

From our self-inductance work, we express for each coil 

1

11
11

i
L




2

22
22

i
L




where we recall the self inductance Ljj is the ratio of

• the flux from coil j linking with coil j, λjj

• to the current in coil j, ij
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Mutual inductance

The self inductance Ljj is the ratio of

• the flux from coil j linking with coil j, λjj

• to the current in coil j, ij

Likewise, mutual inductance Lij is the ratio of

• the flux from coil j linking with coil i, λij

• to the current in coil j, ij

1

11
11

i
L




2

22
22

i
L




ij

ij

j

L
i




λij

λjj
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Mutual inductance

Mutual inductance L12 is the ratio of

• the flux from coil 2 linking with coil 1, λ12

• to the current in coil 2, i2

12

12

2

L
i




λ12

Mutual inductance L21 is the ratio of

• the flux from coil 1 linking with coil 2, λ21

• to the current in coil 1, i1

21

21

1

L
i




λ21
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Mutual inductance

Recall that 

12 1 12

12

2 2

N
L

i i

 
 

21 2 21

21

1 1

N
L

i i

 
 

11 1 11N N     
Likewise

12 1 12N 

21 2 21N 

And the mutual inductances become
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Mutual inductance
Assumption: All flux produced by each coil links with 

the other coil. This implies there is no leakage flux.  

i1

φ

N1

i2

N2

This leakage flux is assumed to be zero.
In reality there is 
some leakage flux, 
it is quite small 
because the iron 
has much less 
reluctance than 
the air

With no leakage flux, it must be the case that all flux 

developed by one coil must completely link with the 

other coil.
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Mutual inductance
If all flux developed by one coil completely links with 

the other coil, then

• the flux from coil 2 linking with coil 1 is equal to the 

flux from coil 2 linking with coil 2, i.e., 

• the flux from coil 1 linking with coil 2 is equal to the 

flux from coil 1 linking with coil 1, 

222212 iN
l

A
 

111121 iN
l

A
 

Substitute above into slide 20 inductance expressions: 

1 2 2
1 12 1 2

12 1 2

2 2

A
N N i

N N NAlL N N
i i l


 

   
R

2 1 1
2 21 2 1

21 2 1

1 1

A
N N i

N N NAlL N N
i i l


 

   
R
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Mutual inductance

Comparing the above leads to

This says that the mutual inductances are reciprocal:

• The ratio of 

 flux from coil 2 linking with coil 1, λ12, to i2

1 2 2
1 12 1 2

12 1 2

2 2

A
N N i

N N NAlL N N
i i l


 

   
R

2 1 1
2 21 2 1

21 2 1

1 1

A
N N i

N N NAlL N N
i i l


 

   
R

1 2
21 12

N N
L L 

R

12 1 12

12

2 2

N
L

i i

 
 

21 2 21

21

1 1

N
L

i i

 
 

• is the same as the ratio of 

 flux from coil 1 linking with coil 2, λ21, to i1
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Mutual inductance

2

1

11

N
L 

R

We showed on slide 14 that
2

2

22

N
L 

R
Solve for N1 and N2:

1 11N L R 2 22N L R

Substitute into slide 22 mutual inductance expression:

11 221 2

21 12 11 22

L LN N
L L L L   

R R

R R
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Mutual inductance

It is conventional to denote mutual inductance as M:

11 221 2

21 12 11 22

L LN N
M L L L L    

R R

R R
Mutual inductance gives the ratio of:

 flux from coil k linking with coil j, λjk

 to the current in coil k, ik,












1

21

2

12

i

i
M




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Polarity & dot convention for coupled ccts

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

DC voltage
Open cct

We have a dial 

to increase v1

Coil 1: very small resistance 

so in steady-state, i1≠∞

Increase voltage v1 to some higher value 
 current i1 increases with time 

 flux from coil 1, φ11, increases with time 
 flux linkages λ11 increases with time. 

Who speaks when you have dλ/dt (=d(Nϕ)/dt)≠0?
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Polarity & dot convention for coupled ccts

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

Who speaks when you have dλ/dt (=d(Nϕ)/dt)≠0?

11 1 11 11 1
1 1 11

( )d d N d di
e N L

dt dt dt dt

  
   

But what about the sign of the right-hand-side (RHS)? 

Is it positive or negative?

Faraday! 
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Polarity & dot convention for coupled ccts

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

The sign of RHS is positive because self-induced voltage across a coil is always 

positive at terminal the current enters, & e1 is defined positive at this terminal. 

But what about the sign of the right-hand-side (RHS)? 

Is it positive or negative?

If e1 would have been defined negative at terminal in which the current 

entered, then sign of RHS would be negative.

1

1 11

di
e L

dt
 
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Polarity & dot convention for coupled ccts

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

If e1 would have been defined negative at terminal in which the current 

entered, then sign of RHS would be negative.

1

1 11

di
e L

dt
 



i1

φ11

N1

i2

N2
e1

e2

v1

φ21

30

Polarity & dot convention for coupled ccts

Now consider coil 2… it sees same flux that coil 1 sees 

which we denote by φ21 (and correspondingly, the flux 

linkages are denoted as λ21). Considering our action of using 

the dial to increase v1, we again have, by Faraday’s Law, 

21 2 21 21 1 1
2 2 21

( )d d N d di di
e N L M

dt dt dt dt dt

  
    

Is the sign of RHS positive or negative?
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Polarity & dot convention for coupled ccts

21 2 21 21 1 1
2 2 21

( )d d N d di di
e N L M

dt dt dt dt dt

  
    

Is the sign of RHS positive or negative?

That is, how do we know which of below are correct?

1 1

2 2                           
di di

e M e M
dt dt

   

i1

φ11

N1

i2

N2
e1

e2

v1

φ21
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Polarity & dot convention for coupled ccts

That is, how do we know which of below are correct?

Alternatively: Does assumed e2 polarity match actual 

polarity of voltage induced by changing current i1? 

1 1

2 2                           
di di

e M e M
dt dt

   

If yes, we choose positive sign. 

If not, we choose negative sign.

i1

φ11

N1

i2

N2
e1

e2

v1

φ21
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Polarity & dot convention for coupled ccts

That is, how do we know which of below are correct?
1 1

2 2                           
di di

e M e M
dt dt

   

Use Lenz’s Law: induced voltage e2 must be in a direction
so as to establish a current in a direction to produce a flux
opposing the change in flux that produced e2.
See www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-faradays-law/v/lenzs-law

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

http://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-faradays-law/v/lenzs-law
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Polarity & dot convention for coupled ccts

When e1 increases, i1 increases, and by the right-hand-rule
(RHR), φ21 increases.

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

Assumed polarity of e2 causes current to flow into the load 
in direction shown. How do we know e2 polarity is correct?
Use Lenz’s Law: induced voltage e2 must be in a direction
so as to establish a current in a direction to produce a flux
opposing the change in flux that produced e2.
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Polarity & dot convention for coupled ccts

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

We know e2 polarity is correct because RHR says that a 
current in direction of i2 causes flux in direction opposite 
to the direction of the φ21 increase.

This is “the φ21 increase,” i.e., it is “the change in flux that 
produced e2” and not necessarily the direction of φ21 itself 
(in this particular case, “the φ21 increase” is the same as the 
direction of φ21 itself). 
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Polarity & dot convention for coupled ccts

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

We know e2 polarity is correct because RHR says that a 
current in direction of i2 causes flux in direction opposite 
to the direction of the φ21 increase.

1
2

di
e M

dt
 

Question: How might we obtain a different answer?
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Polarity & dot convention for coupled ccts

There are two ways. 
First way: Switch sign of e2, as above. Here, we also must 
switch current i2 direction, because, in using Lenz’s Law, the 
i2 direction must be consistent with the e2 direction.

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

Here, the current i2, by RHR, produces a flux in the same 
direction as the φ21 increase, in violation of Lenz’s Law:

1
2

di
e M

dt
 
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Polarity & dot convention for coupled ccts

There are two ways. 
Second way: Switch the sense of the coil 2 wrapping, while 
keeping the directions of e2 and i2 as they were originally.

1
2

di
e M

dt
 

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

The current i2, by RHR, produces flux in same direction as 
the φ21 increase. Therefore
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Polarity & dot convention for coupled ccts

Let’s articulate what we are trying to do:
We want to know which secondary terminal, when defined 
with positive voltage polarity, results in using Faraday’s Law 
with a positive sign. 

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

1
2

di
e M

dt
 

On paper, there are 2 approaches for doing this.
1. Draw the physical winding go through Lenz’s Law analysis
as we have done in previous slides.
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Polarity & dot convention for coupled ccts

i1

φ11

N1

i2

N2
e1

e2

v1

φ21

On paper, there are 2 approaches for doing this.
1. Draw the physical winding; go through Lenz’s Law

analysis as we have done in previous slides.
2. Use the “dot convention.”
In dot convention, we mark 1 terminal on each coil so that
 when e2 is defined positive at dotted terminal of coil 2
 and i1 is into the dotted terminal of coil 1, then

1
2

di
e M

dt
 
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Ex 3: Express the voltage for each pair of coils below.

Example

33

i1

e2

33

i1

e2

33

i1

e2

33

i1

e2

1
2

di
e M

dt
 

1
2

di
e M

dt
 

1
2

di
e M

dt
 

1
2

di
e M

dt
 

From previous slide: In dot convention, we
mark 1 terminal on each coil so that
 when e2 is defined positive at dotted

terminal of coil 2, and
 i1 is into the dotted terminal of coil 1, then

1
2

di
e M

dt
 

(1) Recall the sign on the RHS is determined 

not by direction of flux flow (or current i1 flow) 

but by direction of change in flux flow (or current 

i1 flow). (2) Our above dot convention seems to 

depend only on direction of current (i1) flow and 

not on direction of change in current flow. 

Question: How can our dot convention give 

correct sign if it does not account for direction of 

change in current i1 flow?

Answer: It does account for direction of change 

in current flow in that the above e2 equation 

implies positive direction of change (di1/dt is 

positive).
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A second question

So far, we have focused on answering this question:
Given dotted terminals, how to determine the sign to 
use in Faraday’s law?

A second question: 
If you are given the physical layout, how do you obtain 
the dot-markings? 

Approach 1: Use Lenz’s Law and the right-hand-rule 

(RHR) to determine if a defined voltage direction at the 

secondary produces a current in the secondary that 

generates flux opposing the flux change that caused that 

voltage. (This is actually a conceptual summary of 

Approach 2 below.)
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A second question
If you are given the physical layout, how do you obtain 
the dot-markings? 
Approach 2: Do it by steps. (This is actually a step-by-

step articulation of the first approach.)
1. Arbitrarily pick a terminal on one side and dot it.
2. Assign a current into the dotted terminal.
3. Use RHR to determine flux direction for current assigned in step 2.
4. Arbitrarily pick a terminal on the other side and assign a current out of (into) it.
5. Use RHR to determine flux direction for current assigned in Step 4.
6. Compare the direction of the two fluxes (the one from Step 3 and the one from Step 5). If 

the two flux directions are opposite (same), then the terminal chosen in Step 4 is correct. If 
the two flux directions are same (opposite), then the terminal chosen in Step 4 is incorrect 
– dot the other terminal.  

This approach depends on the following principle (consistent with words in italics in above 
steps): Current entering one dotted terminal and leaving the other dotted terminal should 
produce fluxes inside the core that are in opposite directions.
An alternative statement of this principle is as follows (consistent with words in underline 
bold in above steps): Currents entering the dotted terminals should produce fluxes inside 
the core that are in the same direction.
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Example
Example 4: Determine the dotted terminals for the configuration below, and then write the 

relation between i1 and e2. 

i1

N1 N2

e2

Remember: Current 
entering one dotted terminal 
and leaving the other dotted 
terminal should produce 
fluxes inside the core that 
are in opposite directions.
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Example
Example 4: Determine the dotted terminals for the configuration below, and then write the 

relation between i1 and e2. 

i1

N1 N2

e2

φ11

Solution: Steps 1-3:

Steps 4-6:

i1

N1 N2

e2

φ11

i2
φ22

Remember: Current 
entering one dotted terminal 
and leaving the other dotted 
terminal should produce 
fluxes inside the core that 
are in opposite directions.
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Example
Example 4: Determine the dotted terminals for the configuration below, and then write the 

relation between i1 and e2. 

Solution:

i1

N1 N2

e2

φ11

i2
φ22

Now write equation for the coupled circuits. Recall that in dot
convention, we mark 1 terminal on either side of transformer so that
 when e2 is defined positive at the dotted terminal of coil 2 and
 i1 is into the dotted terminal of coil 1, then

1
2

di
e M

dt
 

Here, however, although i1
is into the coil 1 dotted 

terminal, e2 is defined 

negative at the coil 2 dotted 

terminal. Therefore

1
2

di
e M

dt
 
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Example
Example 4: Determine the dotted terminals for the configuration below, and then write the 

relation between i1 and e2. 

Solution: there is another way we could have solved this problem, as follows

Steps 1-3:

i'1

N1 N2

e2

φ11

i'1

N1 N2

e2

φ11

i2

φ22

Steps 4-6:
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Example
Example 4: Determine the dotted terminals for the configuration below, and then write the 

relation between i1 and e2. 

Solution: There is another way we could have solved this problem!

i'1

N1 N2

e2

φ11

i2

φ22

Write equation for the coupled circuits. Recall that in dot convention,
we mark 1 terminal on either side of transformer so that
 when e2 is defined positive at the dotted terminal of coil 2 and
 i1 is into the dotted terminal of coil 1, then

1
2

di
e M

dt
 

Here,  i’2 is into the coil 1 

dotted terminal, e2 is 

defined positive at the coil 2 

dotted terminal. Therefore
1

2

di
e M

dt


 

If, however, we wanted to express 

e2 as a function of i1 (observing 

that i1=-i'1) then we would have 1
2

di
e M

dt
 
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Example
Example 5: For the configuration below, determine the dotted terminals and write the 

relation between i1 and e2.

Note: Problems 1a,b,c,d 

are very similar to this one.
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Example
Example 5: For the configuration below, determine the dotted terminals and write the 

relation between i1 and e2.

Solution:

Steps 1-3:

Steps 4-6: Here we arbitrarily assign dot to upper 
terminal of coil 2; then, with i2 out of this dotted 
terminal, we use RHR to determine flux φ22 is in 
same direction as coil 1 flux. This means our 
choice of coil 2 terminal location dot is wrong. 

Therefore we know dot must be at other 
terminal, and the below shows clearly this 
is the case, since the flux from coil 2, φ22, is 
opposite to the flux from coil 1, φ21.
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Example
Example 5: For the configuration below, determine the dotted terminals and write the 

relation between i1 and e2.

Solution:

Now we can write the equation for e2. Recall that in the dot convention, we mark one

terminal on either side so that

 when e2 is defined positive at the dotted terminal of coil 2 and

 i1 is into the dotted terminal of coil 1, then 1
2

di
e M

dt
 

1
2

di
e M

dt
 
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Writing circuit equations for coupled coils
We have so-far focused on transformers or similar circuits having 

magnetic coupling between coils. We may also encounter other kinds of 

circuits having elements that are magnetically coupled. 

We are well-positioned to handle such circuits by combining our (new) 
knowledge of the dot convention with our (old) knowledge of circuit analysis. 
Issue: When we write a voltage equation, we must account for 
• the self-induced voltage in an inductor from its own current 
• as well as any mutually-induced voltage in the inductor from a current in a 

coupled coil.

Example: In this paper, the feasibility of 

resonant electrical coupling as a wireless 

power transfer technique is studied.

Published 2015 in IEEE Transactions 

on Microwave Theory and…

Example
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Writing circuit equations for coupled coils
Consider below circuit, where there may be currents in both windings:

What does Faraday’s law say about e1 as a function of λ1? 

1
1

d
e

dt




Let’s  define  λ1 as the sum of
• λ11, the flux from coil 1 seen by coil 1
• λ12, the flux from coil 2 seen by coil 1.
Therefore:

1 11 12   

 11 12d

dt

 


11 12d d

dt dt

 
 

But from slides 12 and 25: 11 1 1 12 2,    L i Mi  
1 2

1 1

di di
e L M

dt dt
 
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Writing circuit equations for coupled coils
Consider below circuit, where there may be currents in both windings:

1 2

1 1

di di
e L M

dt dt
 

But wait… we have equated the sum of the derivatives 

to e1, where e1 has a certain assumed polarity. How

can we be sure that the sign of both of those derivative 

terms is indeed positive? Until we can be sure of that, I 

want to write the above equation as:

1 2

1 1

di di
e L M

dt dt
  
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Writing circuit equations for coupled coils
Consider below circuit, where there may be currents in both windings:

Let’s begin with the first (“self”) term (it is easiest!):

1 2

1 1

di di
e L M

dt dt
  

Rule for determining the sign of the self term: The polarity of the
self term is determined entirely by the direction of the current i1:
 when this current is into the positive terminal (as defined by the

polarity of e1), then the sign of the self term is positive;
 when this current is out of the positive terminal (as defined by the

polarity of e1), then the sign of the self term is negative.
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Writing circuit equations for coupled coils
Consider below circuit, where there may be currents in both windings:

Now we need to determine how to know whether to add or subtract the mutual term from 

the self term. We should not be surprised to learn that we will make this determination 

using the dot convention.

1 2

1 1

di di
e L M

dt dt
  

Rule for determining the sign of the mutual term:  Assume both coils correctly dotted.

1. Choose reference current directions for each coil (if not chosen for you). 

2. Apply following to determine reference polarity of voltage induced by mutual effects:

a. If reference current direction enters dotted terminal of a coil, the reference 

polarity of voltage that it induces in other coil is positive at its dotted terminal.

b. If reference current direction leaves dotted terminal of a coil, the reference 

polarity of voltage that it induces in other coil is negative at its dotted terminal.
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Writing circuit equations for coupled coils

1 2

1 1

di di
e L M

dt dt
  

Example 6: Express voltages e1 and e2 as a function of currents i1and i2 in the following circuit.

2 1

2 2

di di
e L M

dt dt
  

Then, what is e2?

First, let’s express e1. Here, we observe two things:
1. i1 enters the positive terminal, and therefore the self term is positive.
2. i2 enters the dotted terminal of coil 2, therefore the reference

polarity of the voltage it induces in coil 1 is positive at its dotted
terminal, and its dotted terminal is the positive terminal.

1 2
1 1

di di
e L M

dt dt
 
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Writing circuit equations for coupled coils
Example 6: Express voltages e1 and e2 as a function of currents i1and i2 in the following circuit.

2 1

2 2

di di
e L M

dt dt
  

1 2
1 1

di di
e L M

dt dt
 

Now let’s express e2. Here, we observe two things:
1. i2 enters the positive terminal, and therefore the self term is positive.
2. i1 enters the dotted terminal of coil 1, therefore the reference

polarity of the voltage it induces in coil 2 is positive at its dotted
terminal, and its dotted terminal is the positive terminal.

2 1
2 2

di di
e L M

dt dt
 
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Writing circuit equations for coupled coils
Example 6: Express voltages e1 and e2 as a function of currents i1and i2 in the following circuit.

1 2
1 1

di di
e L M

dt dt
 

2 1
2 2

di di
e L M

dt dt
 
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Writing circuit equations for coupled coils
Example 7: Express voltages e1 and e2 as a function of currents i1and i2 in the following circuit.

2 1

2 2

di di
e L M

dt dt
  

Let’s express e1. Here, we observe two things:
1. i1 enters the positive terminal, therefore the self term is positive.
2. i2 leaves the dotted terminal of coil 2, therefore the reference 

polarity of the voltage it induces in coil 1 is negative at its dotted 
terminal, and its undotted terminal is the positive terminal.

1 2

1 1

di di
e L M

dt dt
  

1 2
1 1

di di
e L M

dt dt
 
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Writing circuit equations for coupled coils
Example 7: Express voltages e1 and e2 as a function of currents i1and i2 in the following circuit.

2 1

2 2

di di
e L M

dt dt
  

Now let’s express e2. Here, we observe two things:
1. i2 enters the positive terminal, and therefore the self term is positive.
2. i1 enters the dotted terminal of coil 1, therefore the reference 

polarity of the voltage it induces in coil 2 is positive at its dotted 
terminal, but its dotted terminal is the negative terminal.

1 2
1 1

di di
e L M

dt dt
 

2 1
2 2

di di
e L M

dt dt
 
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Writing circuit equations for coupled coils
Example 7: Express voltages e1 and e2 as a function of currents i1and i2 in the following circuit.

1 2
1 1

di di
e L M

dt dt
 

2 1
2 2

di di
e L M

dt dt
 
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Writing circuit equations for coupled coils
HW problem 4: Write a set of mesh current equations that describe the circuit below in

terms of i1, i2, and i3.

Number of nodes=4; 

number of branches where current not known=b=6

b-(n-1)=6-3=3.

We need three mesh equations.

We write these for the three “windows” in the cct. above.
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Writing circuit equations for coupled coils
HW problem 4: Write a set of mesh current equations that describe the circuit below in

terms of i1, i2, and i3.

24
di

dt


Focus on top loop. Apply KVL starting from Node 1 moving clockwise. 

With i2 in direction shown, we assume voltage polarity of 4H inductor is 

defined positive at its dotted end. With i2 into the 4H inductor, the self 

term is positive. But the KVL moves across 4H inductor from positive to 

negative, therefore the first term in the mesh equation is negative.

32 14 4.5
didi di

dt dt dt

 
   

 

The mutually induced term of 4H 

inductor is also negated by this KVL 

movement. Also, observe the 

coupled current i1 is into dotted side 

of 9H inductor, but i3 is out of it. So:

   32 1

3 2 1 24 4.5 6 8 0
didi di

i i i i
dt dt dt

 
        

 

The rest of the top loop is easy.

Node 1
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Writing circuit equations for coupled coils
HW problem 4: Write a set of mesh current equations that describe the circuit below in

terms of i1, i2, and i3.

Focus on left loop. Apply KVL starting from Node 2 moving clockwise. 

The first two parts are easy.

The next part is the self-induced term 

of the 9H inductor. With i1 in direction 

shown, we assume voltage polarity of 

9H inductor is defined positive at its 

dotted end. With i1 into the 9H inductor, 

the self term is positive. But the KVL 

moves across 9H inductor from positive 

to negative, therefore the self term in 

the mesh equation is negative. Note it 

is comprised of current i1 into the dot 

(positive) and i3 out of the dot 

(negative)

We still need the mutual term from 

the 4H inductor. It would be positive 

since i2 is into the dot of the 4 H 

inductor and out voltage is defined 

positive at the dot of the 9H inductor, 

but it is also influenced by the KVL 

direction of movement.

  31 2

1 28 9 4.5 0g

didi di
v i i

dt dt dt

 
      

 

Node 2

 1 28gv i i 

  31

1 28 9g

didi
v i i

dt dt

 
    

 
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Writing circuit equations for coupled coils
HW problem 4: Write a set of mesh current equations that describe the circuit below in

terms of i1, i2, and i3.

  31 2

1 2Left Loop:   8 9 4.5 0g

didi di
v i i

dt dt dt

 
      

 

   32 1

3 2 1 2Top Loop:   4 4.5 6 8 0
didi di

i i i i
dt dt dt

 
        

 

 31 2

3 2 3Right Loop:   9 4.5 6 20 0
didi di

i i i
dt dt dt

 
      

 
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Development of turns ratio relations for ideal xfmr

Dashed box: 

The “ideal” xfmr

Voltage equation for left-hand-loop:

1 2

1 1                (*)
di di

e L M
dt dt

 

Voltage equation for right-hand-loop:
2 1

2 2 2 2

di di
e L M i Z

dt dt
   

Remember: 

• Self term: when same-side 

current enters its positive 

terminal, self term is positive. 

• Mutual term: when opposite-

side current enters its dotted 

terminal, mutual term is 

positive at its dotted terminal.

So we have equations (*) and (**):

1 2

2 2 2              (**)
di di

M L i Z
dt dt

 

1 2

1 1        (*)
di di

e L M
dt dt

  1 2

2 2 2       (**)
di di

M L i Z
dt dt

 

Objective: See how 

• i1 and i2 are related

• e1 and e2 are related

in the steady-state.
N1 N2 

Ideal xfmr: No Losses, infinite permeability.
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Development of turns ratio relations for ideal xfmr

Dashed box: 

The “ideal” xfmr

1 2

1 1        (*)
di di

e L M
dt dt

  1 2

2 2 2       (**)
di di

M L i Z
dt dt

 

Objective: See how 

• i1 and i2 are related

• e1 and e2 are related

in the steady-state.

Important concept (see xfmr HW prob #6):
• Differential equations: characterize electrical relationships for 

• any time periods

• under any type of excitation.

• Phasor equations: characterize electrical relationships for

• time periods where conditions are in a steady-state

• under sinusoidal excitation  
We may convert differential equations to phasor equations.

How?...

N1 N2 

Ideal xfmr: No Losses, infinite permeability.
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Development of turns ratio relations for ideal xfmr

Dashed box: 

The “ideal” xfmr

1 2

1 1        (*)
di di

e L M
dt dt

  1 2

2 2 2       (**)
di di

M L i Z
dt dt

 

Objective: See how 

• i1 and i2 are related

• e1 and e2 are related

in the steady-state.

We may convert differential equations to phasor equations.

How?... Observe what we get when we differentiate a sinusoid:

i(t)=|I|sint

di/dt=|I|costOriginal function scaled by 

ω; rotated forward by 90°.

di/dt=|I|sin(t+90) 

Time Domain Phasor Domain
I=|I|0

|I|90

=|I|090=jI

Differentiation in time domain is multiplication by jω in phasor 

(Fourier) domain! Let’s use this to transform (*) and (**)…

N1 N2 

Ideal xfmr: No Losses, infinite permeability.
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Development of turns ratio relations for ideal xfmr

Dashed box: 

The “ideal” xfmr

1 2

1 1        (*)
di di

e L M
dt dt

  1 2

2 2 2       (**)
di di

M L i Z
dt dt

 

Objective: See how 

• i1 and i2 are related

• e1 and e2 are related

in the steady-state.

1 1 1 2         (&)j L j M  E I I 1 2 2 2 2j M j L Z  I I I

2 1

2 2

        (#)
j M

j L Z







I I

N1 N2 

Recall:
2 2

2 2
2

AN N
L

l


 

R
l

A
R

Assume: μ is very large (infinite permeability). 

Then R is very small. 

Then L2 is very large.

Then |jωL2|>>|Z2|.

So (#) becomes 2 1

2

j M

j L




I I

1

2

M

L
 I

Ideal xfmr: No Losses, infinite permeability.
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Development of turns ratio relations for ideal xfmr

Dashed box: 

The “ideal” xfmr

1 2

1 1        (*)
di di

e L M
dt dt

  1 2

2 2 2       (**)
di di

M L i Z
dt dt

 

Objective: See how 

• i1 and i2 are related

• e1 and e2 are related

in the steady-state.

1 1 1 2         (&)j L j M  E I I

N1 N2 

2 1

2

       (!!)
M

L
I I

Ideal xfmr: No Losses, infinite permeability.

Recall, slide 25: Recall, slide 14:1 2N N
M 

R

2

2

22 2

N
L L 

R

Substitution into (!!)
1 2

1 2 1
2 1 1 1 12 2

22 2 2

N N
N N NM

NL N N
   R

R

I I I I I 1

2 1

2

N

N
I I

ratio of currents in coils 

on either side of an ideal 

transformer is in inverse 

proportion to the ratio of 

the coils’ turns
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Development of turns ratio relations for ideal xfmr

Dashed box: 

The “ideal” xfmr

1 2

1 1        (*)
di di

e L M
dt dt

  1 2

2 2 2       (**)
di di

M L i Z
dt dt

 

Objective: See how 

• i1 and i2 are related

• e1 and e2 are related

in the steady-state.
N1 N2 

1 1 1 2       (&)j L j M  E I I

Ideal xfmr: No Losses, infinite permeability.

2 1

2 2

     (#)
j M

j L Z







I I

Substitute (#) into (&); obtain common denominator; simplify:
2 2 2

1 2 1 2

1 1

2 2

M L L j L Z

j L Z

  



  
 

 
E = I

Use 1 2M L L 
1 2

1 1

2 2

j L Z

j L Z





 
 

 
E = I

1

2 1

2

    (#*)
N

N
I I
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Development of turns ratio relations for ideal xfmr

Dashed box: 

The “ideal” xfmr

1 2

1 1        (*)
di di

e L M
dt dt

  1 2

2 2 2       (**)
di di

M L i Z
dt dt

 

Objective: See how 

• i1 and i2 are related

• e1 and e2 are related

in the steady-state.
N1 N2 

1 1 1 2       (&)j L j M  E I I

Ideal xfmr: No Losses, infinite permeability.

2 1

2 2

     (#)
j M

j L Z







I I

1 2

1 1

2 2

j L Z

j L Z





 
 

 
E = I Use |jωL2|>>|Z2|.

1 2

1 1

2

L Z

L
 E = I

1

2 1

2

    (#*)
N

N
I I

Recall, slide 14:
2 2

1 2

1 2  
N N

L L 
R R

2

1
22

1 2 1

1 1 1 2 12 2

2 2 2

N
Z

L Z N
Z

L N N
  R

R

E = I I I

From (#*)
2

1 2

1

N

N
I I

Substitute:
2

1 2 1

1 2 2 2 22

1 22

N N N
Z Z

N NN
E = I I

Use Z2I2=E2: 
1

1 2

2

N

N
E = E

ratio of voltage across  

coils on either side of an 

ideal transformer is in 

proportion to the ratio of 

the coils’ turns
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Development of turns ratio relations for ideal xfmr

Dashed box: 

The “ideal” xfmr

1 2

1 1        (*)
di di

e L M
dt dt

  1 2

2 2 2       (**)
di di

M L i Z
dt dt

 

Objective: See how 

• i1 and i2 are related

• e1 and e2 are related

in the steady-state.
N1 N2 

2 1

1 2

N

N


I

I

Ideal xfmr: No Losses, infinite permeability.

1 1

2 2

N

N

E
=

E

ratio of voltage across  

coils on either side of an 

ideal transformer is in 

proportion to the ratio of 

the coils’ turns

ratio of currents in coils 

on either side of an ideal 

transformer is in inverse 

proportion to the ratio of 

the coils’ turns
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Power for ideal xfmr

Dashed box: 

The “ideal” xfmr

Objective: Does ideal 

“power transformer” 

transform power?

N1 N2 

2 1 1

2 1

1 2 2

N N

N N
  

I
I I

I

Ideal xfmr: No Losses, infinite permeability.

1 1 2

2 1

2 2 1

N N

N N
 

E
= E E

E

Preliminary comment: This discussion has nothing to do with losses 

in a real xfmr. We are still considering an ideal xfmr (no losses).

Express power on both sides of transformer:

*

1 1 1S  E I *

2 2 2S  E I
Substitute expressions for E2 and I2 into expression for S2:

* * *2 1
2 2 2 1 1 1 1

1 2

N N
S

N N
  E I E I E I *

2 1 1 1S S  E I
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Power for ideal xfmr

Dashed box: 

The “ideal” xfmr

Objective: Does ideal 

“power transformer” 

transform power?

N1 N2 

2 1

1 2

N

N


I

I

Ideal xfmr: No Losses, infinite permeability.

1 1

2 2

N

N

E
=

E

We have just proved that, for an ideal transformer, S1=S2, enabling us to conclude that “power 
transformers” do not transform power. It is a good thing, because doing so would result in a 
violation of the conservation of energy (otherwise known as the first law of thermodynamics), 
since “power transformation” would imply that we could provide one side with a certain 
amount of power P1 and get out a greater amount of power P2 on the other side. If we allowed, 
then, such a device to operate for an amount of time T, the output energy P2T would be greater 
than the input energy P1T, thus, the violation.

2 1S S

IDEAL TRANSFORMER
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Referring Quantities
Objective: Can we somehow “move” Z2 to the 

primary side of the ideal xfmr and then do all 

analysis there, so that our analysis need not 

have to account for the effect of the ideal xfmr?

N1 N2 

Primary 

side

Secondary 

side

Closely-related question: What impedance is 

“seen” looking into the primary terminals of the 

ideal xfmr? In other words, what is Z1=E1/I1?

From our turns ratio relations:

2
1 2

1

N

N
I I1

1 2

2

N

N
E = E

Substitution into the expression for Z1:

1
2 2 2

2 1 2 1
1 22 2

2 2 2 2
2

1

N

N N N
Z Z

N N N

N

  

E
E

I
I

2

1

1 22

2

N
Z Z

N
 

Answer to closely-related question: 

Looking into the primary terminals 

of an ideal xfmr supplying Z2

across its secondary terminals, we 

“see” the impedance Z2 scaled by 

the turns ratio squared.
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Referring Quantities
Objective: Can we somehow “move” Z2 to the 

primary side of the ideal xfmr and then do all 

analysis there, so that our analysis need not 

have to account for the effect of the ideal xfmr?

N1 N2 

Primary 

side

Secondary 

side

2 1

1 2

N

N


I

I

1 1

2 2

N

N

E
=

E

2 1S S

IDEAL TRANSFORMER

2

1 1

2 2

Z N

Z N

 
  
 

These equations relate currents, voltages, impedances, and powers that
• exist on one side of the transformer, i.e., the secondary (primary), to
• corresponding currents, voltages, impedances, and powers, that exist

on the other side of the transformer, i.e., the primary (secondary).

Closely-related question: What impedance is 

“seen” looking into the primary terminals of the 

ideal xfmr? In other words, what is Z1=E1/I1?
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Referring Quantities
Objective: Can we somehow “move” Z2 to the 

primary side of the ideal xfmr and then do all 

analysis there, so that our analysis need not 

have to account for the effect of the ideal xfmr?

N1 N2 

Primary 

side

Secondary 

side

2 1

1 2

N

N


I

I

1 1

2 2

N

N

E
=

E

2 1S S

IDEAL TRANSFORMER

2

1 1

2 2

Z N

Z N

 
  
 

Relating quantities on one side of the xfmr to quantities on the other
side is fine, but does that accomplish our above main objective?
Can we “move” Z2 to the primary side of the ideal xfmr?

Closely-related question: What impedance is 

“seen” looking into the primary terminals of the 

ideal xfmr? In other words, what is Z1=E1/I1?

I think we can, based on our answer to the “closely-related question” if
we move it scaled by the turns ratio squared. Let’s see how this looks…
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Referring Quantities
Objective: Can we somehow “move” Z2 to the 

primary side of the ideal xfmr and then do all 

analysis there, so that our analysis need not 

have to account for the effect of the ideal xfmr?

N1 N2 

Primary 

side

Secondary 

side

Closely-related question: What impedance is 

“seen” looking into the primary terminals of the 

ideal xfmr? In other words, what is Z1=E1/I1?

2

1

1 22

2

N
Z Z

N


i1

e1

1 1

1 2

1 1

22

2

e e
i

Z N
Z

N

 

Equivalent ccts
2

1

1 1

1

2 2

N
e

N N
i

N Z


2 2

2 2

2 2

e e
i Z

Z i
  

Write Ohm’s law on primary side: 

What is this telling us? It is taking the answer to the “closely related question” 

(which is that we “see” Z1=(N1/N2)
2 Z2 from the primary side) and showing that it is 

equivalent to “seeing” Z2 looking into the load terminals from the secondary.
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Referring Quantities
Objective: Can we somehow “move” Z2 to the 

primary side of the ideal xfmr and then do all 

analysis there, so that our analysis need not 

have to account for the effect of the ideal xfmr?

N1 N2 

Primary 

side

Secondary 

side

Closely-related question: What impedance is 

“seen” looking into the primary terminals of the 

ideal xfmr? In other words, what is Z1=E1/I1?

What is this telling us? It is taking the answer to the “closely related question” 

(which is that we “see” Z1=(N1/N2)
2 Z2 from the primary side) and showing that it is 

equivalent to “seeing” Z2 looking into the load terminals from the secondary.

The point is that we can “see” Z2 on the primary side, but it looks like Z1=(N1/N2)
2 Z2. 

This means that the below circuit gives us everything we need to know about 

primary-side quantities when the secondary side is loaded with Z2. 

2

1

1 22

2

N
Z Z

N
e1

This is actually what we set out to achieve in our 

objective! The circuit to the left is the circuit we 

need! We have achieved our objective .
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Referring Quantities

N1 N2 

Primary 

side

Secondary 

side

2

1

1 22

2

N
Z Z

N
e1

This is actually what we set out to achieve in our 

objective! The circuit to the left is the circuit we 

need! We have achieved our objective .

In fact, in addition to the impedances Z1 and Z2, we can say similar things about 

the voltages and currents.

• Z1=(N1/N2)
2Z2 is primary side equivalent of Z2.

• e1=(N1/N2)e2 is the primary side equivalent of e2.

• i1=(N2/N1)i2 is the primary side equivalent of i2.

And it works the other way too…

• Z2=(N2/N1)
2Z1 is secondary side equivalent of Z1.

• e2=(N2/N1)e1 is the secondary side equivalent of e1.

• i2=(N1/N2)i1 is the secondary side equivalent of i1.

You can move quantities 

from secondary side to 

primary side!

You can move quantities 

from primary side to 

secondary side!
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Referring Quantities
Notation:

• Second, we use unprimed notation, i.e., I1, E1, Z1, and I2, E2, Z2, to denote the 

quantity represented on the side on which it actually exists. Thus, we say

 I1, E1, Z1 are the current, voltage, and impedance of primary side quantities

referred to the primary side, and 

 I2, E2, Z2 are the current, voltage, and impedance of secondary side quantities 

referred to the secondary side.

• Third, we use primed notation, i.e., I’’1, E’’1, Z’’1, and I’2, E’2, Z’2, to denote the 

quantity represented on the opposite side from where it actually exists. Thus, we say 

 I’’1, E’’1, Z’’1 are the current, voltage, and impedance of primary side quantities

referred to the secondary side, and 

 I’2, E’2, Z’2 are the current, voltage, and impedance of secondary side quantities 

referred to the primary side.

• First, observe that subscripts “1” and “2” (for turns, currents, voltages, impedances) 

tell us whether the quantity actually exists (physically) on the primary side (having 

subscript of “1”) or the secondary side (having subscript of “2”). 
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2 1 2
2 2

2 2 1

N N

N N
  



I
I I

I

2 1 1
2 2

2 2 2

N N

N N


 

E
= E E

E

2 2

2 1 1
2 2

2 2 2

Z N N
Z Z

Z N N

   
     

   

Referring secondary 

current to primary

Referring secondary 

voltage to primary

Referring secondary 

impedance to primary

Referring quantities from secondary to primary

Referring secondary 

current to primary

Referring secondary 

voltage to primary

Referring secondary 

impedance to primary

Referring quantities from primary to secondary

1 1 1
1 1

1 2 2

N N

N N


  

I
I I

I

1 1 2
1 1

1 2 1

N N

N N
 



E
= E E

E

2 2

1 1 2
1 1

1 2 1

Z N N
Z Z

Z N N

   
     

    
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Solution: We can solve this problem in one of two ways.
Approach 1: Refer all quantities to secondary, solve for I2; then refer this current to the primary.
Approach 2: Refer all quantities to primary, solve for I1.

Approach 2:

We begin by referring Z2 to the primary side via: 
2 2

1
2 2

2

5 25
4 4 1

10 100

N
Z Z

N

   
       

  

So we know what Z’2 is… it is the secondary impedance Z2 as 

seen from the primary side. Let’s redraw the circuit accordingly.

Example 8: Find the current I1 in the primary side of the below circuit.
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Example 8: Find the current I1 in the primary side of the below circuit.

Solution: We can solve this problem in one of two ways.
Approach 1: Refer all quantities to secondary, solve for I2; then refer this current to the primary.
Approach 2: Refer all quantities to primary, solve for I1.

Approach 2:

Use of Ohm’s Law results in

1 2

50 0
50 0

1

 
    I I And we are done 

But wait…what if we wanted to obtain secondary quantities, such as I2 and E2?
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Example 8: Find the current I1 in the primary side of the below circuit.

Solution: We can solve this problem in one of two ways.
Approach 1: Refer all quantities to secondary, solve for I2; then refer this current to the primary.
Approach 2: Refer all quantities to primary, solve for I1.

Approach 2:

But wait…what if we wanted to obtain secondary quantities, such as I2 and E2?

Then we refer I’2 and E’2 (which are quantities we obtain on the primary side) 
back to the secondary side. We already know I’2; we obtain E’2 by inspection of 
the above circuit, observing that it is the same as E1, i.e., E’2=50∟0°. 

1 2

50 0
50 0

1

 
    I I
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Example 8: Find the current I1 in the primary side of the below circuit.

Solution: We can solve this problem in one of two ways.
Approach 1: Refer all quantities to secondary, solve for I2; then refer this current to the primary.
Approach 2: Refer all quantities to primary, solve for I1.

Approach 2:

1 2

50 0
50 0

1

 
    I I

2 1 1
2 2

2 2 2

5
50 0 25 0

10

N N

N N
        



I
I I

I

2 1 2
2 2

2 2 1

10
50 0 100 0

5

N N

N N


       

E
= E E

E

Check: 2
2

2

100 0
4

25 0
Z

 
   

 

E

I
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Referring Quantities: Example 9

3

3

3
3

3

3
V1=

4000∟0°

80,000Ω

j11,544Ω

I1
I1w 0.012+j0.04Ω

E1
E2

I2

4

+j2 Ω

Ideal Xfmr

N1/N2=10/1Find I2 and V2.

V2

First, we need to refer all quantities to one side or the other. 

Because there are more elements on the primary side, it is easier 

to refer secondary quantities to primary quantities. 

Z1=1.2+j4.0Ω
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Apply to first impedance (call it Z2s):

3

3

3
3

3

3
V1=

4000∟0°

80,000Ω

j11,544Ω

I1
I1w

Z2s= 

0.012+j0.04Ω

E1
E2

I2

Z2L=4

+j2 Ω

Ideal Xfmr

N1/N2=10/1

V2

2 2

1

2 2 2

2

10

1

N
Z Z Z

N

   
     

  

2 2

1

2 2

2

10
(0.012 0.04) 1.2 4

1
s s

N
Z Z j j

N

   
         

  
Apply to second impedance (call it Z2L):2 2

1

2 2

2

10
(4 2) 400 200

1
L L

N
Z Z j j

N

   
         

  

Z1=1.2+j4.0Ω

Referring Quantities: Example 9
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3

3

3

3
V1=

4000∟0°

80,000Ω

j11,544Ω

I1
I1w

Z’2s= 1.2+j4Ω

E1=E’2

I’2

Z’2L= 400

+j200 Ω

V’2

Now we have a circuit to solve. Recall our goal is to find I2 & V2.

I am going to do this as follows:

1. Get Zeq =80,000//j11,544//(401.2+j204) (parallel combination)

2. Get I1=V1/[Z1+Zeq].(Ohm’s law)

3. Use KVL or voltage division to get E’2
4. Get I1w=I’2=E’2/[Z’2s+Z’2L] (Ohm’s law)

5. Get V’2=I’2[Z’2L] (Ohm’s law)

6. Refer I’2 and V’2 back to the secondary (turns ratio)

Z1=1.2+j4.0Ω

Referring Quantities: Example 9
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3

3

3

3
V1=

4000∟0°

80,000Ω

j11,544Ω

I1
I1w

Z’2s= 1.2+j4Ω

E1=E’2

I’2

V’2

1. Get Zeq =80,000//j11,544//(401.2+j204). This is a parallel 

combination of the 80,000Ω resistor, the j11,544Ω inductor, 

and the series combination Z’2a+Z’2L, as indicated by the 

dotted arrows above. Recalling the parallel combination of 

three impedances is given by

(80,000)( 11,544)(401.2 204)
385 218

(80,000)( 11,544) ( 11,544)(401.2 204) (80,000)(401.2 204)
eq

j j
Z j

j j j j


  

   

Z’2L= 400

+j200 Ω

a b c

eq

a b b c a c

Z Z Z
Z

Z Z Z Z Z Z


 

Z1=1.2+j4.0Ω

Referring Quantities: Example 9
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2. Get I1=V1/[Z1+Zeq]. This is just an application of Ohm’s law

385 218eqZ j 

3

V1=

4000∟0°

Z1=1.2+j4.0ΩI1

3

1

1

1

4000 0
8.98 29.9

(1.2 4) (385 218)eqZ Z j j

 
    

   

V
I

Comment: We really don’t need I1, because we 

can get E1=E’2 (step 3) by voltage division. But if 

you want to perform step 3 by KVL, we do need I1.

E1=E’2

Referring Quantities: Example 9
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3. Use KVL or voltage division to get E’2

385 218eqZ j 

3

V1=

4000∟0°

Z1=1.2+j4.0ΩI1

3

1 2 1 1 1

             4000 0 (8.98 29.9 )(1.2 4)

             3973 0.4

Z

j

  

      

  

E E V I

E1=E’2

I will first do it by KVL:

Now do it by voltage division:

1 2 1

1

385 218
             4000 0

(1.2 4) (385 218)

             3973 0.4

eq

eq

Z

Z Z

j

j j

 
   

  

 
   

   

   

E E V

Referring Quantities: Example 9
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4. Get I1w=I’2=E’2/[Z’2s+Z’2L] (Ohm’s law).

3

3

3

3
V1=

4000∟0°

80,000Ω

j11,544Ω

I1
I1w

Z’2s= 1.2+j4Ω

E1=E’2

I’2

V’2

Z’2L= 400

+j200 Ω

Z1=1.2+j4.0Ω

2

1 2

2 2'

3973 0.4
             

(1.2 4) (400 200)

             8.83 27.4

w

s LZ Z

j j





  


  

  

E
I = I' =

Referring Quantities: Example 9
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5. Get V’2=I’2[Z’2L] (Ohm’s law)

3

3

3

3
V1=

4000∟0°

80,000Ω

j11,544Ω

I1
I1w

Z’2s= 1.2+j4Ω

E1=E’2

I’2

V’2

Z’2L= 400

+j200 Ω

Z1=1.2+j4.0Ω

2 2 2 (8.83 27.4 )(400 200)

                   3950 0.8

L j     

  

V = I' Z'

Referring Quantities: Example 9
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6. Refer I’2 and V’2 back to the secondary (turns ratio)

3

3

3

3
V1=

4000∟0°

80,000Ω

j11,544Ω

I1
I1w

Z’2s= 1.2+j4Ω

E1=E’2

I’2

V’2

Z’2L= 400

+j200 Ω

Z1=1.2+j4.0Ω

2 3950 0.8    V

2 8.83 27.4  I'

2

2 2

1

1
3950 0.8 395 0.8

10

N

N
       V V

1

2 2

2

10
8.83 27.4 88.3 27.4

1

N

N
      I = I'

Referring Quantities: Example 9
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Comment

I strongly encourage you to read chapters 5 

and 6 in Kirtley’s text. 

• Chapter 5: Magnetic circuits

• Chapter 6: Transformers

Don’t get stuck. Read through whole thing.

Find where he addresses the same thing I address. 

• Identify what he emphasizes that is different. 

• Identify what he emphasizes that is similar.

Be motivated to learn/understand so as to do well in 

this and other classes.

Be motivated to learn/understand engineering to help 

you become a competent engineer in the workplace.
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Exact & approximate transformer models

3

3

3
3

3
3

V1

Rc jXm

I1
I1w Z2=R2+jX2

E1
E2

I2

Z2L

Ideal Xfmr

N1/N2=10/1

V2

Z1=R1+jX1

The circuit we have been using in the last example 

is actually the “exact equivalent model” of the xfmr.

(Aside: “Exact” and “model” is an oxymoron.) 

Note the nomenclature given to the voltages, 

currents, and impedances above. Let’s define them.

Ie

Ic Im
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Exact & approximate transformer models

3

3

3
3

3
3

V1

Rc jXm

I1
I1w Z2=R2+jX2

E1
E2

I2

Z2L

Ideal Xfmr

N1/N2=10/1

V2

Z1=R1+jX1

Z1, Z2: series impedances of each side

R1, R2: winding resistances of each side

X1, X2: leakage reactance of each side

Rc: core loss resistance; represents

losses due to eddy currents and 

hysteresis.

Xm: magnetizing inductance; represents

current necessary to overcome the

core reluctance in setting up flux.

V1, V2: Source, load voltages, respectively

E1, E2: Voltages across internally-modeled 

prim & sec coils, respectively.

I1, I2: Currents into and out of xfmr prim

& sec terminals, respectively.

I1w, I2: Currents in internally-modeled

prim & sec coils, respectively.

Ie: Exciting current.

Ic, Im: Core loss &magnetizing currents

Ie

Ic Im
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Exact & approximate transformer models

3

3

3
3

3
3

V1

Rc jXm

I1
I1w Z2=R2+jX2

E1
E2

I2

Z2L

Ideal Xfmr

N1/N2=10/1

V2

Z1=R1+jX1

Let’s illustrate how to refer secondary-side quantities 

to primary side. There are only two of them: Z2, Z2L.
2

1

2 2

2

N
Z Z

N

 
   

 

2

1

2 2

2

L L

N
Z Z

N

 
   

 

Now draw the circuit...

Ie

Ic Im



102

Exact & approximate transformer models

3

3

3

3
V1

Rc jXm

I1

E1=E’2

I’2

V’2

Z1=R1+jX1

Observe that the ideal transformer is no longer used.

I1w

2

1

2 2

2

L L

N
Z Z

N

 
   

 

2

1

2 2

2

N
Z Z

N

 
   

 

This model is called the “exact equivalent model 

referred to the primary.”

Ie

Ic Im
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Exact & approximate transformer models

3

3

3

3
V1

Rc jXm

I1

E1=E’2

I’2

V’2

Z1=R1+jX1

Fact: The shunt element, RC//jXm, is actually quite 

large, in comparison to the series impedances Z1, Z’2. 

I1w

2

1

2 2

2

L L

N
Z Z

N

 
   

 

2

1

2 2

2

N
Z Z

N

 
   

 

1 1/ /c mR jX R jX 

Ie

Ic Im

This implies 

1. Voltage drop across Z1is small; most of V1 appears 

across shunt RC//jXm.

2. Ie very small; current thru Z1 same as current thru Z2.
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Exact & approximate transformer models

3

3

3

3
V1

Rc jXm

I1

E1=E’2

I’2

V’2

Z1=R1+jX1I1w

2

1

2 2

2

L L

N
Z Z

N

 
   

 

2

1

2 2

2

N
Z Z

N

 
   

 

Ie

Ic Im

3

3

3
V1

Rc jXm

I1
I’2

V’2

I1w

2

1

2 2

2

L L

N
Z Z

N

 
   

 

2

1

1 2 1 2

2

N
Z Z Z Z

N

 
    

 

Ie

Ic Im

Combining Z1 and Z2, the above becomes:

This is called 

approximate circuit #1.
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Exact & approximate transformer models

3

3
V1

I1
I’2

V’2

I1w

2

1

2 2

2

L L

N
Z Z

N

 
   

 

2

1

1 2 1 2

2

N
Z Z Z Z

N

 
    

 

This is called 

approximate circuit #2.

But note that with approximate circuit #1, the voltage 

seem by the portion of the circuit with Z1+Z’2L is V1. This 

implies that the shunt Rc//jXm does not affect I’2. Thus, if I 

am not interested in loss analysis (and therefore don’t 

care about Ic
2Rc), meaning I am mainly interested in 

voltage drop across the transformer, then the below is a 

good model. 
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Exact & approximate transformer models

3

3
V1

I1
I’2

V’2

I1w

2

1

2 2

2

L L

N
Z Z

N

 
   

 

2

1

1 2 1 2

2

N
X X X X

N

 
    

 

This is called 

approximate circuit #3.

A final model results from the fact that, for a transformer, 

the series reactance is significantly larger than the 

series impedance, i.e., with Z1=R1+jX1, Z’2=R’2+jX’2:

1 2 1 2X X R R   

Then the following VERY simple model becomes quite 

reasonable. Indeed, this model, consisting of a single 

reactance,  is often used in analysis of large power systems.


