Name: $\qquad$

## EE 303, Quiz 5, Spring 2019, Dr. McCalley, Closed book, closed notes, no calculator

1. ( 30 pts ) Consider the following circuit which is exactly the same as one discussed in class. It is a per-phase circuit of a three-phase system. The three phase power consumed by load \#3 is 95.04 kVA at 0.6 pf leading.


Choose your base line-to-neutral voltage as 5000 volts and your base per-phase power as 100,000 volt-amperes.
a. Compute the base line current.
b. Compute the base impedance for Y-connected loads.
c. Compute the per-unit voltage applied at load.
d. Compute the per-unit power consumed by load \#3.
e. Compute the per-unit impedances for the impedance of the two constant impedance loads.

## Solution:

a. $\quad \mathrm{I}_{\text {base }}=\mathrm{S}_{1, \text { base }} / \mathrm{V}_{\mathrm{LN}, \text { base }}=100,000 / 5000=20$ or $\mathrm{I}_{\text {base }}=\mathrm{S}_{3, \text { base }} /\left(\mathrm{sqrt}(3) \mathrm{V}_{\mathrm{LL}, \text { base }}\right)=300,000 / \mathrm{sqrt}(3) \mathrm{sqrt}(3) 5000=20 \mathrm{amps}$.
b. $Z_{\text {base }}=\mathrm{V}_{\mathrm{LN}, \text { base }} / \mathrm{I}_{\text {base }}=5000 / 20=250 \mathrm{ohms}$ or $\mathrm{Z}_{\text {base }}=\left(\mathrm{V}_{\mathrm{LL}, \text { base }}\right)^{2} / \mathrm{S}_{3, \text { base }}=(\mathrm{sqrt}(3) * 5000)^{2} / 300,000=250 \mathrm{ohms}$
c. $V_{\text {pu, } 10 a d}=4800 / 5000=0.96 \mathrm{pu}$
d. $\quad \mathrm{S}_{3, \mathrm{pu}}=95,040(0.6-\mathrm{j} 0.8) / 300,000=0.3168(0.6-\mathrm{j} 0.8)$
e. $\mathrm{Z}_{1, \mathrm{pu}}=(150+\mathrm{j} 50) / 250=(0.6+\mathrm{j} 0.2) \mathrm{pu} ; \mathrm{Z}_{2, \mathrm{pu}}=300+\mathrm{j} 200 / / 250=(1.2+\mathrm{j} 0.8) \mathrm{pu}$.
2. Choose a system MVA base of 100 MVA and a voltage base of 4.0 kV for the load portion of the system. Find per-unit values of impedances for both transformers and the transmission line.


## Solution:

$$
\begin{aligned}
& V_{\text {base2 }}=(4.0 \mathrm{kV}) \cdot\left(\frac{36 \mathrm{kV}}{4.5 \mathrm{kV}}\right)=32 \mathrm{kV} \\
& V_{\text {base2 }}=(32 \mathrm{kV}) \cdot\left(\frac{4.1 \mathrm{kV}}{34.5 \mathrm{kV}}\right)=3.803 \mathrm{kV} \\
& T 1: X_{T 1}=X_{\text {puT1 }} \cdot\left[\frac{V_{\text {baseold }}}{V_{\text {basenew }}}\right]^{2} \cdot\left[\frac{S_{\text {basenew }}}{S_{\text {baseold }}}\right]=0.10 \cdot\left[\frac{4.1 \mathrm{kV}}{3.803 \mathrm{kV}}\right]^{2} \cdot\left[\frac{100 \mathrm{MVA}}{15 \mathrm{MVA}}\right]=0.7749 \\
& T 2: X_{T 2}=X_{\text {puT2 }} \cdot\left[\frac{V_{\text {baseold }}}{V_{\text {basenew }}}\right]^{2} \cdot\left[\frac{S_{\text {basenew }}}{S_{\text {baseold }}}\right]=0.08 \cdot\left[\frac{4.5 \mathrm{kV}}{4.0 \mathrm{kV}}\right]^{2} \cdot\left[\frac{100 \mathrm{MVA}}{20 \mathrm{MVA}}\right]=0.506 \\
& \text { Line }: Z_{\text {base }}=\frac{(32 \mathrm{kV})^{2}}{100 \mathrm{MVA}}=10.24 \Omega \Rightarrow Z_{p u}=\frac{6 \Omega}{10.24 \Omega}=0.586
\end{aligned}
$$

