\qquad

EE 303, Quiz 3, Spring 2019, Dr. McCalley. Time: 20 minutes, closed book, closed notes, no communication devices

1. (30 pts) Determine the placement of the dots for the coupled coils shown in figure below.

Solution: (A and D) or (B and C)
2. (40 pts) A pair of coupled inductors is connected as shown below. Find the differential equation relating $\mathrm{v}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$, and then find the equivalent inductance "seen" at the terminals looking into the circuit.

$$
\begin{aligned}
& v(t)=L_{1} \frac{d i(t)}{d t}+M \frac{d i(t)}{d t}+L_{2} \frac{d i(t)}{d t}+M \frac{d i(t)}{d t}=\left[L_{1}+2 M+L_{2}\right] \frac{d i(t)}{d t} \\
& \Rightarrow L_{e q}=L_{1}+2 M+L_{2}
\end{aligned}
$$

3. (30 pts) For the circuit below, express (a) $\mathrm{v}_{1}(\mathrm{t})$ and (b) $\mathrm{v}_{2}(\mathrm{t})$ as a function of: mesh currents $i_{1}(\mathrm{t})$ and $\mathrm{i}_{2}(\mathrm{t})$, associated current derivatives, and other parameters indicated on the diagram.

a. Left loop: $\quad v_{1}(t)=\left[i_{1}(t)+i_{2}(t)\right] R_{2}+L_{1} \operatorname{di}_{1}(t) / d t-\operatorname{Mdi}_{2}(t) / d t+R_{11_{1}}(t)$
b. Right loop : $\quad v_{2}(t)=\left[i_{1}(t)+i_{2}(t)\right] R_{2}+L_{2} \operatorname{di}_{2}(t) / d t-\operatorname{Mdi}_{1}(t) / d t$
