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Module E3 
Economic Dispatch Calculation 

 
 

Primary Author:  Gerald B. Sheble, Iowa State University 

Email Address:  gsheble@iastate.edu  

Co-author:  James D. McCalley, Iowa State University 

Email Address:  jdm@iastate.edu 

Prerequisite Competencies:  Matrix Algebra, Partial Derivatives, and Synchronous Generator 

Operation, found in G1.  

Module Objectives: 1. Model the generator cost rate as a function of generator output 

 2. Apply the Karush-Kuhn-Tucker (KKT) conditions in solving 

multi-variable, constrained optimization problems. 

 3. Solve the economic dispatch problem by applying graphical and 

Newton approaches. 

 4. Identify the meaning of incremental cost and how it relates to 

Lagrange multipliers.  

 

 

E3.1    Introduction  

The daily operation of the electric transmission grid is primarily concerned with the balance of satisfying the demand 

for electricity with the supply. This is accomplished keeping in mind adherence to all rules of physics and acceptable 

operation for security and reliability, while simultaneously minimizing the cost of electricity production. 

 

The main objective of this material is to describe the calculation procedures used in allocating demand among available 

units at minimum cost to the generation firm.  In preparation for achieving this objective, we will first present the 

operational and functional structure in which the calculation is done.  We will describe how to model generator costs.  

We will then study analytical procedures used in minimizing multivariate functions under constraints.  At this point we 

will be ready to solve the economic dispatch problem. 

 

 

E3.2  Operational Structure 

The work of the Independent System Operator (ISO) revolves around of a facility called an Energy Control 

Center(ECC). Through the ECC, the ISO operates the transmission grid to provide maximum access to all members of 

the system within the established operational guidelines. The ISO consists of system operators, of operational planners, 

and of operational auditors working to track all schedules and all accounts as to the planned operation and to the actual 

operation.  The system operators are responsible for the switching operations to isolate equipment for safety or for 

maintenance.  The system operators are also responsible for the control of the generation to implement the contracted 

schedules.  The operational planners establish schedules according to the contracts and bids offered by the GENCOs, 

TRANSCOs and DISTCOs.  This provides that the transmission grid can operate within the established operational 

guidelines.  The system operators implement the planned schedules and adjust the auxiliary services to meet the actual 

grid requirements.  The end result is a log of all operational events to implement the schedules and all deviations from 

planned schedules.  The operational auditors verify all schedule compliance, adjust any log entries for incomplete or 

missing data, compute any deviations from the planned schedules, log any needed operational changes for future plans, 

any deviations and the required remedies, and document all restrictions to the transmission grid transfer capability.  The 

computer capability to support the above functions is a major reason for the research and development now occurring 

around the world. 
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There is an ISO for each location operated as a control area. The control areas are interconnected within the two major 

regions of the United States: East and West. Each control area is to operate as a whole, absorbing any demand changes 

within the control area, effectively isolating each area.  The areas are interconnected to provide the capability to trade 

resources between areas when economically feasible and to provide resources, as system needs change until the 

communication and control systems can respond.  The changes on the electrical grid travel nearly at the speed of light. 

Thus, changes must be accommodated immediately.  The communication and control systems respond on the order of 

seconds, far too slow to respond to changes as they occur.  Thus the system has to be designed to inherently, properly 

respond to changes as a natural response.  

 

 

E3.2.1  NERC Guidelines 
The security and reliability of the present electric power grid is preserved by the consensus of all electric utilities 

through the National Electric Reliability Council (NERC).  NERC is divided into several regional groups to oversee 

the compliance of each company to the agreed operational requirements. NERC is responsible for the standards 

generation and evaluation of operating and planning standards. 

 

Two fundamental definitions provided by NERC are as follows : 

 Adequacy is the ability of the electric systems to supply the aggregate electrical demand and energy requirements 

of customers at all times taking into account scheduled and reasonably expected unscheduled outage of system 

elements. 

 Security is the ability of the electric system to withstand sudden disturbances such as electric short circuits and 

unanticipated loss of system elements. 

 

 

E3.3  Energy Management System Overview 

The energy control center (ECC) is a facility where the system operators can analyze and operate the transmission 

grid through a set of software applications called an energy management system (EMS). There are two basic EMS 

functions; security monitoring and control / dispatch. 

 

In security monitoring, the state of the power system is classified into one of the following: secure, alert, alarm, 

compromised.  A secure state is when the system is operating as planned with no immediate probable problems. An 

alert state is when the system is operating as planned with immediate problems probable. An alarmed state is when the 

power system is operating outside acceptable levels. A compromised state is when the power system is operating 

outside allowable levels and outside acceptable schedule deviations. Network analysis functions operate periodically to 

determine the state of the power system (e.g. every five minutes) for the planned schedules and operating conditions. 

Alternatively, the operator may analyze the power system under a hypothetical situation to determine the state of the 

power system on a demand (or as needed) basis.   

 

The control and dispatch of the generation is directed through the energy management system.  The functions which 

implement this direction are the Automatic Generation Control (AGC) and the Economic Dispatch calculations (EDC).  

These functions determine the set points of the governors and allocate the demand among generators. AGC operates 

continuously as a feedback control system that senses instantaneous frequency deviations caused by power imbalance 

and adjusts generator MW output to compensate the power imbalance. This is accomplished by the action of the 

governor at each generator (see module G1). EDC operates such more slowly, sensing steady-state frequency and tie-

line flow deviation every 3-5 minutes and readjusting all generator MW outputs accordingly. We will focus on the 

EDC approach in this module. A fundamental part of this approach is the cost of generators electrical energy. 
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E3.4 Costs of Generating Electrical Energy 

The costs of electrical energy generation arise mainly from three sources: facility construction, ownership costs, 

and operating costs. The last is the most significant portion of power system operation, and in this section we focus 

on this aspect. 

E3.4.1  Operating Costs 

These costs include the costs of labor, but they are dominated by the fuel costs necessary to produce electrical 

energy (MW) from the plant. Some typical average costs of fuel, as of 2002, are given in the following table for the 

most common types in use today. 

 

Table E3.1 

Fuel Type $/MBTU 

Coal 1.26 

Oil 3.34 

Uranium 0.65 

Natural Gas 3.56 

 
These values do not reflect the actual costs of producing electrical energy because substantial losses occur during 

production. Some power plants have overall efficiencies as low as 35%; in addition, the plant efficiency varies as a 

function of the generation level Pg . We illustrate this point in what follows. 

 

We represent plant efficiency by  . Then  =energy output/energy input. We can actually obtain   as a function of 

gP  by measuring the energy output of the plant in MWHRS and the energy input to the plant in MBTU. For 

example, we could get the energy output by using a wattmeter to obtain gP  as a function of time and then compute 

the area under the curve for an interval, and we could get the energy input by measuring the coal tonnage used 

during the interval and then multiply by the coal energy content in MBTU/ton). Then   is proportional to the ratio 

of MWHR/MBTU; a plot of this ratio versus gP  would appear as in Figure E3.1. 

 

 

 
 

Figure E3.1 Plot of MWhr/MBTU (proportional to efficiency) vs. Generation (Pg) 
 

Figure E3.1 indicates that efficiency is poor for low generation levels and increases with generation, but at some 

optimum level it begins to diminish. Most power plants are designed so that the optimum level is at or close to the 

rated output.  
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The heat rate curve is similar to Figure E3.1 except that the y-axis is inverted to yield MBTU/MWhrs, which is 

proportional to ./1   This curve is illustrated in Figure E3.2. Heat rate is denoted by H . Since the heat rate is 

dependent on operating point, we write ).( gPHH   Some typical heat rates for units at maximum output are (in 

MBTU/MWhrs) 9.5 for fossil-steam units, 10.5 for nuclear units, and 13.0 for combustion turbines [1]. 

 

 

 
 

Figure E3.2 Plot of Heat Rate (H) vs. Generation (Pg) 
 
We are primarily interested in how the cost per MWHR changes with gP . We assume that we know K, the cost of 

the input fuel in $/MBTU. Define R  as the rate at which the plant uses fuel, in MBTU/hr (which is dependent on 

gP ), and C as the cost per hour in $/hour. Then R = PgH(Pg) and C = (R)(K) = PgH(Pg)K. A plot of C vs. gP  is 

illustrated in Figure E3.3.  

 

Figure E3.3 Plot of Cost per Hour (C) vs. Generation (Pg) 
 

The desired $/MWHR characteristic, called the incremental cost curve for the plant, can be obtained by 

differentiating the plot in Figure E3.3. The incremental cost curve is shown in Figure E3.4.  
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Figure E3.4 Plot of Incremental Cost (IC) vs. Generation (Pg) 
 

Example    E 3.1 
 

A 100 MW coal-fired plant uses a type of coal having an energy content of 12,000 BTU/lb (the conversion factor 

from joules to BTU is 1054.85 joules/BTU). The coal cost is $1.5/MBTU. Typical coal usage corresponding to the 

daily loading schedule for the plant is as follows: 

 

 

Table E3.2 
Time of Day Electric Output (MW) Coal Used (tons) 

12:00am-6:00am 40 105.0 

6:00am-10:00am 70 94.5 

10:00am-4:00pm 80 156.0 

4:00pm-12:00am 100 270.0 

 

 

For each of the four load levels, find (a) the efficiency,   (b) the heat rate H (MBTU/MWhr) (c) the cost per hour, 

C ($/hr). Also, for the loading levels of 40, 70, and 80 MW, use a piecewise linear plot of F vs P to obtain 

incremental costs. 

 

 

Solution 
 
Let T be the number of hours the plant is producing P MW while using y tons of coal.  

(a) 

ytons
BTU

joules

ton

lb

lb

BTU
MW

watts

hr
TP







85.10542000000,12

10
sec

3600 6

  

Note that the above expression for efficiency is dimensionless. 

 

(b) 
TP

BTU

MBTU
ytons

ton

lb

lb

BTU

H





610

1
2000000,12

 

       Note that 


41.3

85.1054

36001
H , and the above expression has units of     

 MBTU/MWhr. 

 

(c) C = (R)K where R  is the rate at which the plant uses fuel and K is fuel cost in 
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      $/MBTU. Note from units of P and H that R = (P)(H)  C = (P)(H)(K) where H  

      is a function of P. 

 

Application of these expressions for each load level yields the following results: 

 

Table E3.3 
T (hrs) P (MW) y (tons) Efficiency H (mbtu/mwhr) C ($/hr) 

6 40 105.0 0.33 10.5 630 

4 70 94.5 0.42 8.1 850 

6 80 156.0 0.44 7.8 936 

8 100 270.0 0.42 8.1 1215 

 

To obtain incremental cost 
dP

dC
IC  , we plot C vs. P and then get an approximation on the derivative by assuming 

a piecewise linear model as shown in Figure E3.5. 

 

 

Figure E3.5 Calculation of Incremental Cost 
 
 

 

E3.4.2     Facility Construction Costs and Ownership Costs 
Construction costs include the costs of all necessary labor and materials necessary to plan, gain regulatory approval, 

and construct new generation facilities.  In the past, utilities were able to minimize these costs by building fewer, but 

larger facilities, due to economies of scale. This is no longer the case for the following reasons: 

 Smaller plants can be built more quickly and their construction costs are consequently subject to less 

uncertainty. 
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 Smaller plants can be located closer to load centers. This attribute decreases system losses and tends to be 

advantageous for system security. 

 Cogeneration facilities are attractive because of their high efficiency. They typically have lower ratings as a 

result of their dependency on the industrial steam processes supporting or supported by them. 

 Plants fueled by renewable energy sources (biomass, wind, solar, and independent hydro) are attractive 

because of their low operating costs and environmental appeal. They also tend to have lower ratings. 

 

Ownership costs are not related to how much the plant is used. They arise simply because the plant exists, and they 

include maintenance and capital costs. Capital costs include insurance, depreciation, taxes, and administrative 

expenses. These costs are sometimes called “existing facilities costs” or “embedded costs.” 

 

 

 

 

E3.5 Optimization Overview with Economic Dispatch Examples 

Optimization problems occur in many different fields.  There is, in fact, one field, namely operations research, 

which is dedicated entirely to the study of posing and solving optimization problems.  Perhaps the most common 

application is to identify the least expensive way of satisfying a demand.  The airline, telephone, and manufacturing 

industries are good examples of industries that make heavy use of optimization.  Another good example is, of 

course, the electric power industry. 

 

Module G1.1 defined a model for representing the operating costs of generation.  Here we approximate the cost rate 

vs. generation (Figure E3.5) curve using a quadratic function. 

 

E3.5.1     Introduction 
Economic dispatch is the process of allocating the required load demand between the available generation units such 

that the cost of operation is at a minimum. One-dimensional minimization problems are covered in a basic calculus 

course. The Economic Dispatch problem is a more general type of optimization problem. We will see that the 

Economic Dispatch problem is a non-linear, multivariable, constrained optimization problem. 

 

Nonlinear optimization techniques can be divided by type: unconstrained search, linearly constrained search, 

quadratic objective programming, convex programming, separable convex programming, nonconvex programming, 

geometric programming, fractional programming, etc.  It is easier to classify the techniques by the type of problem 

to be solved: 

 

a. Linear objective function, linear constraints 

b. Nonlinear objective function, linear constraints 

c. Nonlinear objective function, nonlinear constraints 

d. Linear objective function, nonlinear constraints 

 

The type “a” problem is most often solved with Linear Programming techniques based on the Simplex method.  

Approximating the nonlinear objective function often solves the type “b” problems.  If the nonlinear objective 

function is of a definite form, then a specialized technique may be used.  If the objective function is a quadratic 

function, then Quadratic Programming is appropriate.  If the objective function is piece-wise linear, then a separable 

function is appropriate.  Functional characteristics, such as convexity, may simplify the technique and 

correspondingly accelerate convergence to the optimal solution.  The Reduced Gradient method is best for general 

problems of this type.  

 

The type "c" problems are the hardest to solve.  Typically, unless the functions demonstrate simplifying 

characteristics, the nonlinear functions are approximated or an alternative sequence of approximating problems is 

solved.  When an alternative sequence of approximate problems is solved, it is assumed that the final approximate 

problem replicates the original problem.  The General Reduced Gradient method is best for general problems of this 

form.  The type "d" problems are almost as hard to solve as the type "c" problems since there is only one objective 
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function and many constraints.  The non-linearity of the many overshadows the linearity of the one.  The Convex 

Simplex (LP) method is best for general problems of this form. 

 

The solution methods presented in this text are the analytical method and the graphical method (also known as the 

LaGrangian Relaxation method).  The analytical technique solves the optimality conditions as a set of simultaneous 

equations to find the solution.  The graphical technique uses the conditions of optimality for estimating where the 

solution should be, moves to that solution point and then re-estimates where the solution should be.  If the solution 

point is where it was predicted, then the process has found the optimal solution.  

 

The following sections present the basic principles upon which these solution techniques depend.  The Economic 

Dispatch problem will be used to illustrate the similarities and the differences between the techniques. 

 

Note that underlined letters are used to denote vectors (x) or arrays (A).  The n decision variables x will use the 

subscript “i”; the m equality constraints will use the subscript “j”; the r inequality constrains will use the subscript 

“k”.  The objective function will be represented by f, and the constraint(s) by h (equality) and g (inequality). 

Decision variables are the parameters that can be changed through control and communication systems.  All other 

variables are dependent on decision variables.  The relationship between the decision variables and the dependent 

variables are found in the constraints.  The objective function describes the improvement as a function of the 

decision and dependent variables.  Inequality constraints typically represent the limitations of equipment (e.g., 

maximum capacity).  Equality constraints normally represent physical laws (e.g., conservation of energy). 

 

 

E3.5.2    General Optimization Problem Statement 
 The general form of a nonlinear programming problem is to find x so as to: 

 

 Min f (x)  (E3.1) 

 

subject to:  g (x)  b 

 h (x) = c 

and:   x  0 

 

where f, g, and h are given functions of the n decision variables x. Note that the condition x  0 can be satisfied by 

appropriate definition of decision variables.  

 

This text does not attempt to survey the general optimization problem.  This is a large research area with many texts 

appropriate for further study.  Considerable research is continuing in this area and will continue for some time. 

 

There are no absolutes in the area of Nonlinear Optimization.  Previous and new techniques can only be assessed by 

trial and error.  Previously judicated good techniques may no longer be appropriate as new constraints or parameter 

changes are needed.  Fortunately, at least the necessary conditions for an optimum to exist can be identified, most of 

the time.  

 

 

E3.5.3   KKT Conditions and LaGrangian Multipliers 
The first step is to form the LaGrangian function of (E3.1): 

 

          bxgcxhxfxF
TT

 ,,  (E3.2) 

 

where  m ,, 21   and  r ,, 21   are called dual variables.  The LaGrangian function is simply 

the summation of the objective function with the constraints.  It is assumed that f, h, and g are continuous and 

differentiable, and that f is convex. Given that x is a feasible point, the conditions for which the optimal solution 

occurs are: 
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 ni
x

F

i

,10 



 (E3.3a) 

  

 mj
F

j

,10 



 (E3.3b) 

 

    rkbxgkk ,10   (E3.3c) 

 nixi ,10   (E3.3d) 

 

 

 

These conditions are known as the Karush-Kuhn-Tucker (KKT) conditions or, more simply, as the Kuhn-Tucker 

(KT) conditions. The KKT conditions state that for an optimal point 

 

1) The derivatives of the LaGrangian with respect to all decision variables must be zero (Eq. E3.3a). 

2) All equality constraints must be satisfied (Eq. E3.3b). 

3) A multiplier μk cannot be zero when its corresponding constraint is binding (Eq E3.3c). 

4) All decision variables must be non-negative at the optimum (Eq.E3.3d). 

 

Requirement 3, corresponding to E3.3c, is called the “complementary” condition. The complementary condition is 

very important to understand. If x occurs on the boundary of the kth inequality constraint, then gk(x) = bk. In this case  

Eqn.(E3.3c) allows μk to be non-zero. Once it is known that the kth constraint is binding, then the kth  

constraint can be moved to the vector of equality constraints; i.e. gk(x) can then be renamed as hm+1(x) and μk as 

λm+1. 

 

On the other hand, if the solution x does not occur on the boundary of the kth inequality constraint, then (assuming x 

is an attainable point) gk(x) - bk < 0. In this case, Eq. E3.19c requires that μk = 0 and the kth constraint makes no 

contribution to the LaGrangian. 

 

It is important to understand the significance of μ and λ. The optimal values of the LaGrangian Multipliers are in 

fact the rates of change of the optimum attainable objective value f(x) with respect to changes in the right-hand-side 

elements of the constraints. Economists know these variables as shadow prices or marginal values.  This information 

can be used not only to investigate changes to the original problem but also to accelerate repeat solutions.  The 

marginal values λj or μk indicate how much the objective f(x) would improve if a constraint bj or ck, respectively, 

were changed.  One constraint often investigated for change is the maximum production of a plant. 

 

This is the limit of optimization theory to be presented.  The interested reader is referenced to one of the texts in the 

references [1-8]. 

 

 

E3.6  Economic Dispatch Formulation 

Economic Dispatch is the process of allocating the required load demand between the available generation units 

such that the cost of operation is minimized.  There have been many algorithms proposed for economic dispatch: 

Merit Order Loading, Range Elimination, Binary Section, Secant Section, Graphical/Table Look-Up, Convex 

Simplex, Dantzig-Wolf Decomposition, Separable Convex Linear Programming, Reduced Gradient with Linear 

Constraints, Steepest Descent Gradient, First Order Gradient, Merit Order Reduced Gradient, etc.  The close 

   

1

1









mk

mk xhxg


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similarity of the above techniques can be shown if the solution steps are compared.  These algorithms are well 

documented in the literature.  We will use only the analytical and the graphical (LaGrangian Relaxation) techniques. 

 

Economic Dispatch is also the most intensive part of a Unit Commitment program.  An Economic Dispatch 

algorithm expends approximately seventy (70) percent of the computer time of a Unit Commitment program1.  Thus, 

the selection and implementation of an Economic Dispatch algorithm is a central issue of any Unit Commitment 

research.  Also, since Economic Dispatch executes approximately once every five minutes in each energy control 

center, any computation reduction has a significant impact.  Thus, it is necessary for the selection of the best method 

for Economic Dispatch. 

 

This text is directed to introduce the optimization algorithms in the general literature.  Thus, the following does not 

address the selection of the best method to use for Economic Dispatch for a given problem or data.  However, the 

following does provide an excellent starting point. 

 

E3.6.1   Generation Models 
The electric power system representation for Economic Dispatch consists of models for the generating units and can 

also include models for the transmission system.  The generation model represents the cost of producing electricity 

as a function of power generated and the generation capability of each unit.  This model was discussed in section 3.4 

of this module. We can specify it as: 

1.  Unit cost function: 

 

 COSTi = Ci(Pi)  (E3.4) 

  

 where COSTi = production cost (units of $/hr) 

 

 Ci = energy to cost conversion curve 

 

  Pi = production power 

 

2.  Unit capacity limits: 

 

 P Pi i
   

 ii PP   (E3.5)  

    

 

where 

levelgeneratorPP

levelgeneratorPP

i

i

max

min

max

min





 

 

 

 

E3.6.2    Transmission Model 
The general transmission model used for EDC represents the balance between power supplied and power consumed 

within and delivered from the area of the interconnection for which the calculation is being done. This area of 

connection is hereafter referred to as the “control area”.  In general, then, we may write  

 

where Pi is the power generation at unit “i”, PD is the total power demanded in the control area, PLOSS is the total 

power loss in the control area, and Ptie is the total power flowing out of the control area into other interconnected 

control areas.  If the power is flowing in, then Ptie is a negative number.  

 

                                                           
1 Unit commitment is the procedures used to determine which generation units should be connected to the grid. 
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 tieLossD

n

i

i PPPP 
1

 (E3.6) 

 

Let’s assume that for a given demand PD and tie flow Ptie the losses are fixed.  This is an approximation because in 

reality the losses will change depending on how power demand is allocated to the various generators.  We accept 

this approximation here in order to keep the discussion basic.  We note that (E3.6) represents an equality constraint.  

It is sometimes called the power balance constraint. 

 

E3.6.3     Formulation of the LaGrangian 
We are now in a position to formulate our optimization problem.  Stated in words, we desire to minimize the total 

cost of generation subject to the inequality constraints on individual units (E3.5) and the power balance constraint 

(E3.6).  Stated analytically, we have: 

 

Minimize:   


n

i

ii PC
1

 

Subject to: T

n

i

tieLossDi PPPPP 
1

  

0





i

ii

iiii

P

PP

PPPP

 (E3.7) 

 

We note that this optimization problem is in the same form as E3.1 if we recognize these similarities: 

   

  bxgniPPPP

hP

cPPPP

xfPC

xP

iiii

n

i

i

tieLOSSDT

i

ii

ii



















,1,

1

1

 

 

The equality constraint h(x) = c for the general case was allowed to contain multiple constraints.  Here, in the EDC 

problem, we see that there is only one equality constraint, i.e., h and c are both scalars.  This implies that λ is a 

scalar also. The LaGrangian function, then, is: 
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  (E 3.8) 
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Here, we note that r = 2n (n is the number of generators) because there are 2 inequality constraints for each decision 

variable Pi: the maximum and minimum levels of generation. 

 

 

 

 

 

E3.6.4     KKT Conditions 
Application of the KKT conditions to the LaGrangian function of E.3.2 results in: 
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The KKT conditions provide us with a set of equations that can be solved.  The unknowns in these equations include 

the generation levels P1, P2, …, Pn and the LaGrange multipliers, 

 

nn  ...,,,...,,, 2121  

 

a total of  (3n+1)  unknowns.  We note that E3.9 provides n equations, E3.10 provides one equation, and E3.11 

provides (2n) equations.  Thus, we have a total of (3n+1) equations.  

 

E3.6.5      KKT Conditions for a 2-Unit System 
To illustrate more concretely, let’s consider a simple system having only two generating units.  The LaGrangian 

function, from E3.8, is:  
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The KKT conditions, from E3.9, E3.10, and E3.11 become: 
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We see that there are seven unknowns:  

212121 ,,,,,, PP  

There are also seven equations. 

 

 

 

 

Example    E 3.2 
 
Let’s now provide numerical data for the two-unit problem.  The ‘cost-curves’ are approximated using quadratic 

functions.  In general, the form of these functions is given by: 

 

      iiiiiii cPbPaPC 
2   (E3.16) 

 

where ai is the ‘quadratic’ term, ib  is the ‘linear’ term, and ic  is the ‘constant’ term.  These terms, together with the 

minimum and maximum generation specifications for each generator are given in the table below.  The total 

generation to be allocated is MWPPPP TIELOSSDT 400  

 
Table E3.4 Dispatch Data for Example Case 

 
 Unit 1 Unit 2 

Generation Specifications:   

Minimum Generation 200 MW 100 MW 

Maximum Generation 380 MW 200 MW 

Cost Curve Coefficients:   

Quadratic Term 0.016 0.019 

Linear Term 2.187 2.407 

Constant Term 120.312 74.074 

 

)40.3(E
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The LaGrangian function is: 
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The KKT conditions are then given by: 
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E3.7     Solution Procedures 

We will study two solution procedures.  The first one is analytical and the second one is graphical.  We will 

illustrate both solution procedures by extending Example E3.2. 

 

 

E3.7.1    Analytical Solution 
One notes that Eqn. (E3.18), (E3.19), and (E3.20) are linear in the unknowns.  However, Eqn. (E3.21) and (E3.22) 

are not linear due to the product terms consisting of the LaGrange multipliers and the Pi variables.  In general, 

solving linear equations is “easy”, while solving non-linear equations is not.  We desire a solution approach where 

we can apply the mathematics of linear equations.  

 

Recall from that Eqs. (E3.21) and (E3.22) are derived from the complementary condition.  This condition requires 

that, in (E3.21),  
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and in (E3.22),  

01000 22  Por  

and  

02000 22  Por  

 

Our solution procedure is based on the following idea: 

 

For each equation associated with the complementary conditions, we can guess which term is zero.  

We then solve the resulting set of equations (E3.18, E3.19, and E3.20), and check to see if the 

solution satisfies the original inequality constraints.  If it does, our guess was correct. If it does 

not, we make another guess and try again. 

 

The most natural starting guess is that all inequality constraints are ‘non-binding’, meaning the solution has all 

generation levels within (but not at) their associated limits.  The implication of this is that  

 

nand iii ,100    

 

 

 

 

 

 

 

Example    E 3.3 
For the two-unit system supplying 400 MW, the KKT conditions reduce to   
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We can rewrite these equations as  
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In matrix form this set of equations is represented by 
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Solving this matrix equation (using MATLAB) we have 
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where P1 = 220.29 MW,  P2 = 179.71 MW, and λ = 9.24 $/MWhr.  From table E3.4 we can see that  
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We have guessed correctly and found the solution.  

 

 

 

Example    E 3.4 
It is important at this point to understand the meaning of λ = 9.24 $/MWhr.  This is the system incremental cost.  It 

indicates how the total system costs would change if we increased the demand by 1 MW for the next hour.  We can 

check this interpretation by computing the total system cost at 400 MW and again at 401 MW.  At 400 MW we have 

P1 = 220.29 and P2 = 179.71.  Therefore, 
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Total costs are 

    78.249825.112053.13782211  PCPCCT  

 

 Now we need to obtain total costs for  PT = 401 MW.  Again, guessing that the constraints are non-binding 

(guessing that our optimized solution will be within the bounds of operation for the generator),  
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the KKT conditions reduce to  
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The solution is  
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The costs for each generator are 
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The total cost is 

     03.250851.112452.13832211  PCPCCT  

 

So, as a result of the 1 MW increase in demand, the total cost will change by 2508.03-2498.78 = 9.25 $/hr.  This is 

in agreement with our solution of λ = 9.25 $/hr. 
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Example    E 3.5    ( Binding Constraint ) 
Now let’s investigate what happens when our initial guess is incorrect. Consider a total demand of  PT = 550 MW.  

Guessing that all constraints are non-binding, the KKT conditions reduce to  
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with a solution of 
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Because generator 2 must generate between 100 MW and 200 MW, we see that P2 is out of range. 

 

So we must guess again.  However, our next guess should not be made arbitrarily. The fact that P2 is above its 

generation limit with constraints ignored suggests that it is a less expensive unit.  Accordingly, we should try to 

extract as much power from it as possible. So let us set P2 = 200 MW.  Because this example includes only two units 

the solution may be found quite easily:  
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However, this direct-substitution approach would not work for systems having more than 2 units since assigning a 

constant value to one of the three or more variables would still leave two or more variables for which to solve.  In 

addition, it does not identify the values of the LaGrange multipliers.  We will therefore proceed with the formal 

solution approach. 

 

 

Setting P2 = 200 MW implies that the constraint associated with 

   020022 P  

is binding.  This means that μ2-double-upper-bar may not be zero.  The KKT conditions are, therefore, from E3.18, 

E3.19, E3.20, and E3.22. 
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Because we have three equations and four unknowns we need another equation.  We know that P2 - 200 = 0.  This 

provides our fourth equation.  Rewriting all four equations we have 
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In matrix form this set of equations becomes 
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The solution is  
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Example    E 3.6    (The Meaning of μ) 
The units of μ are the same as those of λ:  $/MWhr.  It is important to understand the meaning of  

MWhr/$38.32   

This is the incremental cost of the constraint associated with the upper limit of unit 2.  It indicates the cost of 

increasing this limit by 1 MW for the next hour.  Since μ2-double-upper-bar is negative, the “cost” is actually a 

savings.  We can check this conclusion by computing the total system costs when the constraint is 200 MW and 

when it is 201 MW. For a total demand of 550 MW with a maximum unit-2 generation capability of 200 MW we 

have P1 = 350, P2 = 200 and therefore 

 

 

 

 

 

 

 

 

Now we need to obtain the total costs for a total demand of 550 MW with an increase in the upper limit of the 

second unit, P2, by 1 MW.  To do this, we need to re-solve the economic dispatch problem.  Since we have already 

found the unconstrained problem (refer to Eq. E3.27) to result in P1 = 301.71, P2 = 248.29, we know that the 

maximum limit of 201 MW limit will be violated.  We simply need to adjust Eq. E3.30, resulting in 
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 with a solution of: 
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The costs for each generator are, then, 
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The total costs are 

     89.415750.132539.28322211  PCPCCT  

 

So, as a result of the 1 MW increase in P2max, the total cost will change by 

 h/$34.323.416189.4157   

 

The small difference between this value and μ-double-upper-bar is due to round-off error and the non-linearity of 

the problem. 

 

E3.7.2      Graphical Solution 
Recall the first KKT condition when applied to the general system eqn.(E3.9) shown again here for convenience:  
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If we assume that all binding inequality constraints have been converted to equality constraint, so that the mu’s are 

zero, then eqn. (E3.32) (above) becomes 
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where B is the set of all generators without binding constraints.  This equation implies that for all regulating 

generators (i.e. units not at their limits) each generator’s incremental costs are the same and are equal to λ:  
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This very important principle provides the basis on which to apply the graphical solution method. The graphical 

solution is illustrated in Figure E3.6 (note that “ICC” means incremental-cost-curve).  The unit's data are simply 

plotted adjacent to each other.  Then, a value for λ is chosen (judiciously), a “ruler” is placed horizontally across the 

graphs at the value of  , and the generations are added.  If the total generation is equal to the total demand “PT” 

then the optimal solution has been found.  Otherwise, a new value for λ is chosen and the process repeated.  The 

limitations of each unit are included as vertical lines since the solution must not include generation beyond unit 

capabilities.  
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Figure E3.6 Graphical Solution of EDC 
 

 

Example    E 3.7     
Our two-unit problem can be solved using a graphical approach as shown in Figure E3.7.  The λ axis is on the far 

right and is used for all units since all units must have the same value for λ at the optimum solution.  The ruler yields 

the generation for each unit at the given value of λ and is shown as a line with solid dots at each end.  The ruler can 

then be used to find the generation for each unit for a given function of λ by moving it up and down.  These 

generation values are then added to find the total generation.  If the total generation is the generation to be 

dispatched, then the placement of the ruler is optimal.  Otherwise, the ruler has to be moved up if the total 

generation is too low, and down if the total generation is too high.  To simply the operation, note that the total 

generation for each value of λ is shown on the far right.  Also the λ axis is provided at both the left and right hand 

sides for convenience.  A similar production-costing curve is shown in Figure E3.8 with a ruler which would move 

in parallel with the above ruler.  The solution indicated in Fig E3.7 corresponds to a loading level of about  PT = 410 

MW, λ = 9.30 $/MWhr, P1 = 223 MW, and P2 = 187 Mw.  See if you can verify the solutions found in example 3.3 

(PT = 400 MW) and 3.5 (PT = 550 MW). 

 

  λ ($/MW) 1P  (MW) 2P  (MW) TP (MW)   ($/MW)

       ___13.125  ___ 350.  ___ 550.  ___ 13.125

       --  --  --  --

       --  -- T  --  --

  S   --  -- O  --  --

  Y   --  -- T  -- S  --

  S   ___ 9.8148  ___ 244.1  ___ 200.0 A  ___ 444.1 Y  ___ 9.8148

  T   -- U  -- U   -- L  -- S  --

  E   -- N  -- N   --  -- T  --

  M  -- I  -- I   -- G  -- E  --

        -- T  ___ 222.0 T   -- E  -- M  --

  L ___ 9.1262  --  ___ 181.4 N  ___ 403.4  ___ 9.1262

  A   -- 1  -- 2   -- E  -- L  --

  M  --  --   -- R  -- A  --

  B   --  --   -- A  -- M  --

  D   --  ___ 200.   -- T  -- B  --

  A  ___ 8.4375  ___ 162.8 I  ___ 362.8 D  ___ 8.4375

       --   -- O  -- A  --

       --   -- N  --  --

       --   --  --  --

       --   --  --  --

       ___ 6.1111  ___ 100.  ___ 300.  ___ 6.111

 
Figure E3.7 Economic Dispatch Graphical Solution 
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  λ($/MW) 1C  ($1000) 2C  ($1000) TC ($1000)   ($/MW)

       ___13.125  ___ 2.80  ___ 4.10  ___ 13.125

       --  --  --  --

       --  -- T  --  --

   S  --  -- O  --  --

   Y  --  -- T  -- S  --

   S  ___ 9.8148  ___ 1.59  ___ 1.30 A  ___ 2.89 Y  ___ 9.8148

   T  -- U  -- U  -- L  -- S  --

   E  -- N  -- N  --  -- T  --

   M -- I  -- I  -- G  -- E  --

       -- T  ___ 1.376 T  -- E  -- M  --

   L  ___ 9.1262  --  ___ 1.120 N  ___ 2.496  ___ 9.1262

   A  -- 1  -- 2  -- E  -- L  --

   M --  --  -- R  -- A  --

   B  --  --  -- A  -- M  --

   D  --  ___ 1.183  -- T  -- B  --

   A  ___ 8.4375  ___ 0.957 I  ___ 2.140 D  ___ 8.4375

       --  -- O  -- A  --

       --  -- N  --  --

       --  --  --  --

       --  --  --  --

       ___ 6.1111  ___ 0.500  ___ 1.683  ___ 6.111

 
Figure E3.8 Production Costing Graph  

 

E3.8    Summary 

The following references are suggested for further reading.  This author has used these texts.  The texts by Hillier 

and Lieberman are must reading for all students of Operations Research [3].  This text outlines the application of 

Linear Programming to many unique problems and even applies special Linear Programming algorithms.  The texts 

by Cooper and Steinberg [1, 2] and by Simmons [6] are texts that are more advanced for Operations Research.  

Luenberger's text [4] and Pierre's text [5] present the material at a graduate level.  Lasdon's text [7] presents 

advanced material at a graduate level.  The classic presentation of optimization for power systems is the text by 

Wood and Wollenberg [8]. 
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P R O B L E M S 
 

Problem 1 

A two-unit system is given by the following data 

 

     

      37025.0

62015.0

2

2

222

1

2

111





ggg

ggg

PPPC

PPPC
 

 

The total system demand is 500MW. The lower and upper limits for each generator unit are 20 and 300MW, 

respectively. 

 

(a) Determine the optimal dispatch ignoring inequality constraints 

(b) And identify whether it is a feasible dispatch or not (support your answer) 

 

 
 

Problem 2 

Generator cost rate functions, in $/hr, for a three unit system are given as  

 

 

 

  2008.5009.0

4005.5006.0

5003.5004.0

3

2

333

2

2

222

1

2

111







PPPC

PPPC

PPPC

 

 

Limits on the generation levels are ,450200 1  P ,350150 2  P 225100 3  P .  These three generators must 

supply a total demand of 975 MW. 

 

(a) Form the linear matrix equation necessary to solve the unconstrained optimization problem. 

(b) The solution to the unconstrained optimization problem is ,9.4821 MWP   ,3.3052 MWP   

.5.1863 MWP  For this solution (i.e., ignoring limits) 

(i)  Compute λ 

(ii) Determine the total cost rate 

(iii)  How much would the total cost rate change if the total load increased from 975 to 976 MW? (Indicate 

whether the total cost rate increases or decreases). 

(c) Form the linear matrix equation necessary to solve the next iteration of getting the solution to this problem. 

 

 

 

 

Problem 3 

A three-unit system is given by the following data. The total system demand is 1100MW. Generator constraints are 

5500 1  gP , 3000 2  gP , 3000 3  gP  

 

      13.0010.0 1

2

111  ggg PPPC  

      32.0030.0 2

2

222  ggg PPPC  

      59.0020.0 3

2

333  ggg PPPC  

 

(a) Identify the objective function for this optimization problem. 

(b) Identify the LaGrangian function assuming no constraints are binding. 
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(c) Identify the KKT conditions assuming no constraints are binding. 

(d) Find the solution to the problem assuming no constraints are binding. 

(e) Find the solution to the problem accounting for any binding constraints. 

(f) Find the total cost of supplying the 1100MW using the solution found in part (e) 

(g) Approximately the total cost of supplying the 1100MW change if the upper limit on generator 1 was increased 

from 550MW to 560MW. 

 

 

Problem 4 

A three-unit system is given by the following data. The total system demand is 1100MW. Generator constraints are 
,7000 1  gP ,2000 2  gP .3.2520 3  gP  

 

      55.0008.0 1

2

111  ggg PPPC  

      32.0030.0 2

2

222  ggg PPPC  

      5020.0 3

2

333  ggg PPPC  

 

(a) Set up the linear matrix equation to solve the economic dispatch problem, assuming all constraints are satisfied 

(i.e., ignore constraints. DO NOT solve the equation. 

(b) The solution to the problem in (a) is ,5.6641 MWPg  ,2.1822 MWPg   and .3.2533 MWPg   Reformulate this linear 

matrix equation to solve the economic dispatch problem for this system, accounting for any violated constraints. 

Again, you DO NOT need to actually solve the equation, just set it up. 

(c) Using only the cost function for generator 1,  1g1 PC , together with information given in the part b problem 

statement, determine the system λ for the solution to the unconstrained problem. 

 

 

Problem 5 

Recall that the "system λ" is the cost to the system owner of producing the next MW over the next hour; it is equal to 

the incremental cost of an individual unit when the system is economically dispatched for minimum cost and the 

unit is not at an upper or lower generation limit. A two-unit system is given by the following data. 

 

      62015.0 1

2

111  ggg PPPC  

      46020.0 1

2

222  ggg PPPC  

 

The demand is 300MW 

1. Write the KKT conditions that must be satisfied at the optimal solution to this problem, assuming that both units 

are operating between their respective upper and lower limits. 

2. Set up the linear matrix equation to solve the economic dispatch problem for this system, assuming that both 

units are operating between their respective upper and lower limits. Do NOT solve the system of equations. 

3. The solution to the problem in (2) is ,57.2281 MWPg  MWPg 43.712  .  Assuming that each unit has a minimum 

generation capability of 80 MW. 

(a) Indicate why the given solution is not feasible. 

(b) Identify the optimal feasible solution 

(c) Identify the incremental costs of each unit at the optimal feasible solution 

(d) Identify the system λ at the optimal feasible solution 

(e) Would the total cost of supplying the 300MW increase or decrease (relative to the total cost corresponding 

to the optimal feasible solution) if the minimum generation capabilities on both units were changed to 

79MW? 
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Problem 6 

The ‘system λ’ is the cost to the system owner of producing the next MW over the next hour. It is equal to the 

incremental cost of an individual unit when the system is economically dispatched for minimum cost and the unit is 

not at an upper or lower generation limit.  A three-unit system is given by the following data. 

Total system demand is 1000 MW.  

 

     

     

    5020.0

62015.0

55.0008.0

3
2

333

2
2

222

1
2

111







ggg

ggg

ggg

PPPC

PPPC

PPPC

 

 
a) Set up the linear matrix equation to solve the economic dispatch problem for this system.  DO NOT 

solve the equation. 

b) The solution to the problem in (a) is  Pg1 = 549.6 MW,  Pg2 = 243.1 MW, and  Pg3 = 207.3 MW.  

Assume that each unit has a maximum generation capability of 350 MW.  Reformulate the linear 

matrix equation to solve the economic dispatch problem for this system.  Again, DO NOT solve the 

system. 

c) What is the incremental cost for unit 1under the condition specified in part (b)?  Do you think the 

system λ is greater than or less than this value?  

 

 

 

Problem 7 

Generator 1 has an incremental cost curve of: 

    0.205.0 111  gg PPIC  

and limits of:  

.10010 1 MWPMW g   

The generator operates in an economically dispatched system.  In this system, it is found that supplying an 

additional 5 MW costs an additional $50/hr.  Determine Pg1. 

 

 

 

Problem 8 

A system consists of two generators supplying a load. Generators 1 and 2 have incremental cost curves as indicated 

below:  

   
    .0.106.0

0.204.0

222

111





gg

gg

PPIC

PPIC
 

 

and limits of:  

MWPMW

MWPMW

g

g

10030

10010

2

1




 

 

a) In this system, when the load is 140 MW, what is the dispatch of these two units? 

b) In this system, when the load is 190 MW, what is the dispatch of these two units?  

c) In this system, under a certain economically dispatched scenario (a scenario different than in part 

(a) and (b)), it is found that supplying an additional 1 MW costs an additional $5.68/hr.  

Determine Pg1 and Pg2.  
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Problem 9 

A two unit system has incremental cost curves (the derivatives of the cost curves) of IC1=0.01P1+5, and 

IC2=0.02P2+4, where P1 and P2 are given in MW. The demand is 300 MW. Ignoring limits on the generators, 

determine the values of P1 and P2 that minimize the cost of supplying the 300 MW. 

 

 

 

Problem 10 

A two-generator system is operating on economic dispatch and supplying 420 Mw of load. The total cost of supply 

is computed from the final EDC solution (i.e., all constraints are satisfied) and found to be $3000/hr. From this same 

final solution, the LaGrange multipliers are found to be: 

Equality constraint  =$15/Mw-hr 

 

Pg1 > 20 Mw   1,L=0 

 

Pg1 < 300 Mw   1,H=0 

 

Pg2 > 10 Mw   2,L=0 

 

Pg2 < 200 Mw   2,H= -$4.00/Mw-hr 

 

Here the subscripts “L” and “H” indicate “Low limit” and “High limit,” respectively, and refer to the corresponding 

inequality constraint. For each question below, you must provide some basis or reasoning for your response. 

(a) What would be the (approximate) total cost of supply if the total demand was increased to 421 MW? 

(b) What would be the total cost of supply if the lower limit for generator 2 was increased from 10 MW to 11 

MW? 

(c) What would be the total cost of supply if the upper limit for generator 2 was increased from 200 MW to 

201 MW? 

(d) What are the generation levels in Mw of generators 1 and 2 ? 

(e) What is the incremental cost for generator 1? 

 

 

Problem 11 

A two generator system has cost curves ($/hr) of C1(P1)=0.006P1
2 +5P1+3 , and C2(P2)=0.01P2

2+4P2+2, where P1 and 

P2 are given in MW. The total demand is PT=500 MW. The limits on these generators are 0<P1<300 and 0<P2<300.  

a. Determine the unconstrained values of P1 and P2 that minimize the cost of supplying the 500 MW, and 

indicate whether this solution is feasible or not. 

b. For the solution found in (a), how much would the total cost of supply change if the total demand increased 

to 501 MW for one hour ? 

c. Use the complementary condition (the third condition in the KKT conditions), to identify the values of each 

Lagrange multiplier associated with the inequality constraints.  

 

 
 


