
Module E3-a

Economic Dispatch

HW: Probs 1-5, 11

Due Tuesday 4/23
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Min f(x) subject to h(x)=x=0.5
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Min f(x) subject to g(x)=x<0.5
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Min f(x) subject to g(x)=x<1.5
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Conclusion: 

Our approach seems to work fine for 

•equality constraints 

•and for inequality constraints when we 

know they are binding

but not for inequality constraints when they are not binding!



General solution approach when we

have inequality constraints:

Solve problem without them and then

check to see if inequality constraints

are satisfied. If not, add the violated

constraint(s) as equality constraints.



The previous problems illustrated

simple applications of the general approach

to solving optimization problems.

Optimization problems can also be

multivariable.

They can also have both equality and 

inequality constraints.



Another example.
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Circle is where plane

intersects the bowl and represents the set of feasible solutions

of the equality-constrained problem.
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Solve, ignoring inequality constraint.



2         0        -2

0         2        -1

2         1        0

1

2

x

x



=
0

0

3

1

2

x

x



=

1.2

0.6

1.2

But x2>0.5, so this solution is infeasible.

f(x)=1.8
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So we must bring in inequality constraint.
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f(x)=1.8125

Note f(x) is larger than without

the inequality constraint (solution

got worse), but that the inequality

constraint x2<0.5 is satisfied.

This is therefore the optimal

feasible solution.



Circle is where plane

intersects the bowl and represents the set of feasible solutions

of the equality-constrained problem.
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Some definitions:

• x are decision variables

• f(x) is the objective function

• h(x)=c are the equality constraints

• g(x)< b are the inequality constraints.



General optimization problem.

Min f (x)

subject to: 

g (x)  b

h (x) = c

and:  x  0

Aside:

• The non-negativity constraint on decision-variables is imposed to ensure the feasible region 

is bounded from below (reflecting engineering constraints imposing non-negativity).

• Doing so does not cause loss of generality because you can always make a non-positive 

decision variable x to be non-negative by defining y=-x. 



Form the LaGrangian Function:
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The underlines indicate vectors.

General solution strategy



Theorem: The solution to the previous

problem is found when the Karush-Kuhn-Tucker (KKT)

conditions are satisfied.
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Aside: We assert (here) that the μk are the decrease in the objective function for an increase in bk; 

then we see that non-negativity constraints are imposed on the μk because a negative μk would 

indicate increasing bk (which enlarges the feasible region) makes the objective function larger 

(gets worse).

Harold Kuhn, 

1925-2014

Albert Tucker, 

1905-1995

William Karush, 

1917-1997

Published conditions in 1951.

Developed conditions in 1939 in 

his (unpublished) MS thesis.
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The complementarity condition (also known 

as the complimentary slackness condition):
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This is a math way of saying:

ignore constraint if not binding

and use it as equality constraint if binding.

Complementarity: the state 

of working usefully together.

Complementary slackness: There cannot be slack in both a 

constraint and the associated dual variable (this one 

becomes clearer by studying duality, which we will not do).



Unit cost function:

COSTi =

where COSTi = production cost

Ci = energy to cost conversion curve

Pi = production power

Economic dispatch problem

    )40.3(
2

EcPbPaPC iiiiiii 



Unit capacity limits

ii PP ii PP 

levelgeneratorPP

levelgeneratorPP

where

i

i

  max

  min

:

max

min





Notation: double underline means lower bound.

Double overline means upper bound.
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Transmission model
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General EDC problem statement.
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General case, LaGrangian Function

Notation: double underline for lower bound multiplier

double overline for upper bound multiplier.
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General case, KKT conditions:
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Two unit system, LaGrangian Function:
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Two unit system,  KKT conditions:



Table E3.4  Dispatch Data for Example E3.2

Unit 1 Unit 2

Generation

Specifications:

Minimum Generation 200 MW 100 MW

Maximum Generation 380 MW 200 MW

Cost Curve Coefficients:

Quadratic Term 0.016 0.019

Linear Term 2.187 2.407

Constant Term 120.312 74.074

Now let’s add some numbers.

Minimum load limitations are caused by fuel combustion stability and inherent 

steam generator design constraints. For example, most supercritical units cannot 

operate below 30% of design capability. A minimum flow of 30% is required to 

cool the tubes in the furnace of the steam generator adequately. – A. Wood and B. 

Wollenberg, “Power generation, operation, and control,” 2nd edition, Wiley, 1996.
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LaGrangian function
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KKT conditions:



Assume all inequality constraints are non-binding.

This means that
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And KKT conditions become
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Rewrite them as:

And it is easy to see how to put them into

matrix form for solution in matlab.
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What is  ?

= $9.24/MW-hr from previous problem

It is the system “incremental cost.”

It is the cost if the system provides an 

additional MW over the next hour.

It is the cost of “increasing” the RHS of the

equality constraint by 1 MW for an hour.

We can verify this.



Verification for meaning of lambda.

• Compute total costs/hr for Pd=400 MW

• Compute total costs/hr for Pd=401 MW

• Find the difference in total costs/hr for

the two demands. 

If our interpretation of lambda is correct,

this difference should be $9.24.



     

 

     

  hrPC

PC

hrPC

PC

/$25.1120

074.7471.179407.271.179019.0

/$53.1378

312.12029.220187.229.220016.0

22

2
22

11

2
11









    78.249825.112053.13782211  PCPCCT

Total cost/hr are C1+C2

Get cost/hr for each unit.



Now solve EDC for Pd=401 MW to get P1,P2
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Total cost/hr are C1+C2

Get cost/hr for each unit.

    03.250851.112452.13832211  PCPCCT

Total cost/hr changed by 2508.03-2498.78 = 9.25 $/hr,

which is in agreement with our interpretation of lambda.
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$30.14

$29.18

$28.22

$69.70
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https://www.misoenergy.org/markets-and-operations/real-time-

-market-data/real-time-displays/

https://www.misoenergy.org/markets-and-operations/real-time--market-data/real-time-displays/

