Module E3-a
Economic Dispatch HW: Probs 1-5, 11 Due Tuesday 4/23
$\operatorname{Min}_{f(x)}(x)=x^{2}-2 x$

$$
\frac{d f(x)}{d x}=2 x-2=0
$$

$x=1 \quad$ minimizes this function (Also, $\mathrm{f}(1)=-1)$

Min $\mathrm{f}(\mathrm{x})$ subject to $\mathrm{h}(\mathrm{x})=\mathrm{x}=0.5$
$F(x)=f(x)-\lambda(h(x)-0.5)=x^{2}-2 x-\lambda(x-0.5)$
$\frac{\partial F(x)}{\partial x}=2 x-2-\lambda=0$
$\frac{\partial F(x)}{\partial \lambda}=-x+0.5=0$
$x=0.5$ minimizes this function
(also, $\lambda=-1, f(0.5)=-0.75$)

Min $\mathrm{f}(\mathrm{x})$ subject to $\mathrm{g}(\mathrm{x})=\mathrm{x} \leq 0.5$
$F(x)=f(x)-\mu(g(x)-0.5)=x^{2}-2 x-\mu(x-0.5)$
$\frac{\partial F(x)}{\partial x}=2 x-2-\mu=0$
$\frac{\partial F(x)}{\partial \mu}=-x+0.5=0$
$x=0.5$ minimizes this function
(Also, $\mu=-1, \mathrm{f}(0.5)=-0.75$)

Min $f(x)$ subject to $g(x)=x \leq 1.5$
$F(x)=f(x)-\mu(g(x)-1.5)=x^{2}-2 x-\mu(x-1.5)$
$\frac{\partial F(x)}{\partial x}=2 x-2-\mu=0$
$\frac{\partial F(x)}{\partial \mu}=-x+1.5=0$
$x=1.5$ DOES NOT minimize this function!

Conclusion:

Our approach seems to work fine for

-equality constraints
-and for inequality constraints when we know they are binding
but not for inequality constraints when they are not binding!

General solution approach when we have inequality constraints:

Solve problem without them and then check to see if inequality constraints are satisfied. If not, add the violated constraint(s) as equality constraints.

The previous problems illustrated simple applications of the general approach to solving optimization problems.

Optimization problems can also be multivariable.

They can also have both equality and inequality constraints.

Another example.

$\min f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}{ }^{2}$
subject to
$h\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}=3$
$g\left(x_{1}, x_{2}\right)=x_{2} \leq 0.5$

Solve, ignoring inequality constraint.

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-\lambda\left(2 x_{1}+x_{2}-3\right) \\
& \frac{\partial F}{\partial x_{1}}=2 x_{1}-2 \lambda=0 \\
& \frac{\partial F}{\partial x_{2}}=2 x_{2}-\lambda=0 \\
& \frac{\partial F}{\partial \lambda}=2 x_{1}+x_{2}-3=0
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{lll}
2 & 0 & -2 \\
0 & 2 & -1 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right] \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
1.2 \\
0.6 \\
1.2
\end{array}\right] \quad \mathrm{f}(\underline{\mathrm{x}})=1.8
\end{gathered}
$$

But $x_{2}>0.5$, so this solution is infeasible.

So we must bring in inequality constraint.

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-\lambda\left(2 x_{1}+x_{2}-3\right)-\mu\left(x_{2}-0.5\right) \\
& \frac{\partial F}{\partial x_{1}}=2 x_{1}-2 \lambda=0 \\
& \frac{\partial F}{\partial x_{2}}=2 x_{2}-\lambda-\mu=0 \\
& \frac{\partial F}{\partial \lambda}=2 x_{1}+x_{2}-3=0 \\
& \frac{\partial F}{\partial \mu}=x_{2}-0.5=0
\end{aligned}
$$

 intersects the bowl and represents the set of feasible solutions of the equality-constrained problem.

Some definitions:

- \underline{x} are decision variables
- $\mathrm{f}(\underline{\mathrm{x}})$ is the objective function
- $\underline{h}(\underline{x})=\underline{c}$ are the equality constraints
- $g(\underline{x}) \leq \underline{b}$ are the inequality constraints.

General optimization problem.

$\operatorname{Min} \mathrm{f}(\underline{\mathrm{x}})$

subject to:

$$
\begin{aligned}
& \underline{g}(\underline{x}) \leq \underline{b} \\
& \underline{h}(\underline{x})=\underline{c}
\end{aligned}
$$

and: $\underline{x} \geq \underline{0}$

Aside:

- The non-negativity constraint on decision-variables is imposed to ensure the feasible region is bounded from below (reflecting engineering constraints imposing non-negativity).
- Doing so does not cause loss of generality because you can always make a non-positive decision variable x to be non-negative by defining $\mathrm{y}=-\mathrm{x}$.

General solution strategy

Form the LaGrangian Function:
$F(\underline{x}, \lambda) \equiv f(\underline{x})-\underline{\lambda}^{T}[\underline{h}(\underline{x})-\underline{c}]-\underline{\mu}^{T}[\underline{g}(\underline{x})-\underline{b}]$

The underlines indicate vectors.

Theorem: The solution to the previous problem is found when the Karush-Kuhn-Tucker (KKT) conditions are satisfied.

William Karush, 1917-1997
Developed conditions in 1939 in his (unpublished) MS thesis.

$$
\begin{array}{ll}
\frac{\partial F}{\partial x_{i}}=0 & \forall i=1, n \\
\frac{\partial F}{\partial \lambda_{j}}=0 & \forall j=1, m \\
\mu_{k}\left[g_{k}(\underline{x})-b_{k}\right]=0 \quad \forall k=1, r \\
x_{i} \geq 0 & \forall i=1, n \\
\mu_{k} \geq 0 & \forall k=1, r
\end{array}
$$

Aside: We assert (here) that the μ_{k} are the decrease in the objective function for an increase in b_{k}; then we see that non-negativity constraints are imposed on the μ_{k} because a negative μ_{k} would indicate increasing b_{k} (which enlarges the feasible region) makes the objective function larger (gets worse).

The complementarity condition (also known as the complimentary slackness condition):

$$
\mu_{k}\left[g_{k}(x)-b\right]=0 \quad \forall k=1, r
$$

Complementarity: the state of working usefully together.

Complementary slackness: There cannot be slack in both a constraint and the associated dual variable (this one becomes clearer by studying duality, which we will not do).

$$
\begin{aligned}
& \text { If } \mu_{\mathrm{k}} \neq 0 \text {, then } \mathrm{g}_{\mathrm{k}}(\underline{x})-b_{k}=0 \text { (binding) } \\
& \text { If } \mathrm{g}_{\mathrm{k}}(\underline{x})-b_{k} \neq 0 \text {, then } \mu_{\mathrm{k}}=0 \text { (not binding) }
\end{aligned}
$$

This is a math way of saying: ignore constraint if not binding and use it as equality constraint if binding.

Economic dispatch problem

> Unit cost function:
> $\operatorname{COST}_{\mathrm{i}}=C_{i}\left(P_{i}\right)=a_{i}\left(P_{i}\right)^{2}+b_{i} P_{i}+c_{i}$
where $\operatorname{COST}_{\mathrm{i}}=$ production cost
$C_{i}=$ energy to cost conversion curve

$$
\mathrm{P}_{\mathrm{i}}=\text { production power }
$$

Unit capacity limits

$$
P_{i} \geq \underline{\underline{P}}_{i} \quad P_{i} \leq \overline{\bar{P}}_{i}
$$

where:
$\underline{\underline{P_{i}}}=P_{\min }=\min$ generator level
$\overline{\overline{P_{i}}}=P_{\max }=\max$ generator level

Notation: double underline means lower bound. Double overline means upper bound.

Transmission model

$$
\sum_{i=1}^{n} P_{i}=P_{D}+P_{L O S S}+P_{t i e}
$$

$$
(E 3.29)
$$

General EDC problem statement.

$$
\min f\left(P_{i}\right)=\sum_{i=1}^{n} C_{i}\left(P_{i}\right)
$$

Subject to

$$
\sum_{i=1}^{n} P_{i}=P_{D}+P_{\text {Loss }}+P_{\text {tie }}=P_{T}
$$

$$
P_{i} \geq \underline{\underline{P_{i}}} \Rightarrow-P_{i} \leq-\underline{\underline{P_{i}}}
$$

$$
P_{i} \leq \overline{\overline{P_{i}}}
$$

$$
P_{i} \geq 0
$$

General case, LaGrangian Function

$$
\begin{align*}
F(\underline{P}, \lambda, \underline{\mu})=\sum_{i=1}^{n} C_{i}\left(P_{i}\right) & -\lambda\left[\sum_{i=1}^{n} P_{i}-P_{T}\right] \\
& -\underline{\underline{\mu_{1}}}\left[-P_{1}+\underline{\underline{P_{1}}}\right]-\mu_{1}\left[P_{1}-\overline{\bar{P}}_{1}\right] \\
& -\underline{\underline{\mu}}_{2}\left[-P_{2}+\underline{\underline{P}}_{2}\right]-\overline{\mu_{2}}\left[P_{2}-\overline{\bar{P}}_{2}\right] \\
& -\bullet \bullet \bullet \tag{E3.31}\\
& -\underline{\underline{\mu_{n}}}\left[-P_{n}+\underline{\underline{P_{n}}}\right]-\bar{\mu}_{n}\left[P_{n}-\overline{\bar{P}}_{n}\right]
\end{align*}
$$

Notation: double underline for lower bound multiplier double overline for upper bound multiplier.

General case, KKT conditions:

$$
\begin{align*}
& \frac{\partial F}{\partial P_{i}}=0 \Rightarrow \frac{\partial C_{i}\left(P_{i}\right)}{\partial P_{i}}-\lambda+\underline{\underline{\mu_{i}}}-\bar{\mu}_{i}=0 \quad \forall i=1, n \tag{E3.32}\\
& \frac{\partial F}{\partial \lambda}=0 \Rightarrow \sum_{i=1}^{n} P_{i}-P_{D}-P_{\text {LOSS }}-P_{\text {tie }}=0 \tag{E3.33}\\
& \underline{\mu}^{\mathrm{T}}[\underline{g}(\underline{x})-\underline{c}]=\underline{0} \quad \Rightarrow \quad \underline{\underline{\mu}}\left[-P_{1}+\underline{P}_{1}\right]=0, \overline{\mu_{1}}\left[P_{1}-\overline{\bar{P}}_{1}\right]=0 \\
& \underline{\underline{\mu}}_{2}\left[-P_{2}+\underline{\underline{P}}_{2}\right]=0, \overline{\mu_{2}}\left[P_{2}-\overline{\bar{P}}_{2}\right]=0 \\
& \underline{\underline{\mu_{n}}}\left[-P_{n}+\underline{\underline{P_{P}}}\right]=0, \overline{\mu_{n}}\left[P_{n}-\overline{\bar{P}}_{n}\right]=0 \tag{E3.34}\\
& \mu_{i} \geq 0 \quad \forall i=1, n \quad \Rightarrow \quad \mu_{i} \geq 0, \bar{\mu}_{i} \geq 0 \quad \forall i=1, n
\end{align*}
$$

Two unit system, LaGrangian Function:

$$
\begin{align*}
F\left(P_{1}, P_{2}, \lambda, \underline{\mu}, \underline{\mu} 1, \underline{\underline{\mu}}, \underline{\underline{\mu}}\right)= & C_{1}\left(P_{1}\right)+C_{2}\left(P_{2}\right) \\
& -\lambda\left[P_{1}+P_{2}-P_{T}\right] \\
& -\underline{\underline{\mu}}\left[-P_{1}+\underline{\left.\underline{P_{1}}\right]-\overline{\mu_{1}}\left[P_{1}-\bar{P}_{1}\right]}\right. \\
& -\underline{\underline{\mu}}\left[-P_{2}+\underline{\underline{P}}_{2}\right]-\mu_{2}\left[P_{2}-\bar{P}_{2}\right] \tag{E3.35}
\end{align*}
$$

Two unit system, KKT conditions:

$$
\begin{align*}
& \frac{\partial F}{\partial P_{1}}=0 \Rightarrow \frac{\partial C_{1}\left(P_{1}\right)}{\partial P_{1}}-\lambda+\underline{\underline{\mu_{1}}}-\bar{\mu}_{1}=0 \tag{E3.36}\\
& \frac{\partial F}{\partial P_{2}}=0 \Rightarrow \frac{\partial C_{2}\left(P_{2}\right)}{\partial P_{2}}-\lambda+\underline{\mu}_{2}-\bar{\mu}_{2}=0 \tag{E3.37}\\
& \frac{\partial F}{\partial \lambda}=0 \Rightarrow P_{1}+P_{2}-P_{T}=0 \tag{E3.38}\\
& \underline{\mu^{\mathrm{T}}}[\underline{h}(\underline{x})-\underline{c}]=\underline{0} \Rightarrow \quad \underline{\underline{\mu_{1}}}\left[-P_{1}+\underline{\underline{P}}_{1}\right]=0, \overline{\mu_{1}}\left[P_{1}-\overline{\bar{P}}_{1}\right]=0 \\
& \\
& \underline{\underline{\mu_{2}}}\left[-P_{2}+\underline{\underline{P}}_{2}\right]=0, \overline{\mu_{2}}\left[P_{2}-\overline{\bar{P}}_{2}\right]=0
\end{align*}
$$

Now let's add some numbers.

Table E3.4 Dispatch Data for Example E3.2

	Unit 1	Unit 2
Generation Specifications:		
Minimum Generation	200 MW	100 MW
Maximum Generation	380 MW	200 MW
Cost Curve Coefficients:		
Quadratic Term	0.016	0.019
Linear Term	2.187	2.407
Constant Term	120.312	74.074

Minimum load limitations are caused by fuel combustion stability and inherent steam generator design constraints. For example, most supercritical units cannot operate below 30% of design capability. A minimum flow of 30% is required to cool the tubes in the furnace of the steam generator adequately. - A. Wood and B. Wollenberg, "Power generation, operation, and control," $2^{\text {nd }}$ edition, Wiley, 1996.

$$
\begin{aligned}
& C_{1}\left(P_{1}\right)=0.016\left(P_{1}\right)^{2}+2.187\left(P_{1}\right)+120.312 \\
& C_{2}\left(P_{2}\right)=0.019\left(P_{2}\right)^{2}+2.407\left(P_{2}\right)+74.074 \\
& h\left(P_{1}, P_{2}\right)=P_{1}+P_{2}=400 \\
& 200 \leq P_{1} \leq 380 \Rightarrow P_{1} \leq 380,-P_{1} \leq-200 \\
& 100 \leq P_{2} \leq 200 \Rightarrow P_{2} \leq 200,-P_{2} \leq-100
\end{aligned}
$$

LaGrangian function

$$
\begin{aligned}
F\left(P_{1}, P_{2}, \lambda, \underline{\underline{\mu}}, \overline{\mu_{1}}, \bar{\mu}_{1}, \underline{\mu}_{2}, \bar{\mu}_{2}\right)= & 0.016\left(P_{1}\right)^{2}+2.187\left(P_{1}\right)+120.312 \\
& +0.019\left(P_{2}\right)^{2}+2.407\left(P_{2}\right)+74.074 \\
& -\lambda\left[P_{1}+P_{2}-400\right] \\
& -\underline{\underline{\mu_{1}}\left[-P_{1}+200\right]-\overline{\mu_{[}}\left[P_{1}-380\right]} \\
& -\underline{\underline{\mu_{2}}}\left[-P_{2}+100\right]-\bar{\mu}_{2}\left[P_{2}-200\right]
\end{aligned}
$$

KKT conditions:

$$
\begin{aligned}
& \frac{\partial F}{\partial P_{1}}=0 \Rightarrow 0.032\left(P_{1}\right)+2.187-\lambda+\underline{\underline{\mu_{1}}}-\overline{\bar{\mu}}_{1}=0 \\
& \frac{\partial F}{\partial P_{2}}=0 \Rightarrow 0.038\left(P_{2}\right)+2.407-\lambda+\underline{\underline{\mu}}_{2}-\overline{\bar{\mu}}_{2}=0 \\
& \frac{\partial F}{\partial \lambda}=0 \Rightarrow P_{1}+P_{2}-400=0 \\
& \left.\underline{\mu}^{\mathrm{T}} \underline{g}(\underline{x})-\underline{c}\right]=\underline{0} \Rightarrow \quad \underline{\underline{\mu}}\left[-P_{1}+200\right]=0, \overline{\mu_{1}}\left[P_{1}-380\right]=0 \\
& \underline{\underline{\mu_{2}}}\left[-P_{2}+100\right]=0, \overline{\mu_{2}}\left[P_{2}-200\right]=0
\end{aligned}
$$

Assume all inequality constraints are non-binding. This means that

$$
\underline{\underline{\mu_{i}}}=0 \quad \text { and } \quad \overline{\mu_{i}}=0 \quad \forall i=1, n
$$

And KKT conditions become

$$
\begin{aligned}
& 0.032\left(P_{1}\right)+2.187-\lambda=0 \\
& 0.038\left(P_{2}\right)+2.407-\lambda=0 \\
& P_{1}+P_{2}-400=0
\end{aligned}
$$

Rewrite them as:

$$
\begin{aligned}
& 0.032\left(P_{1}\right)+0\left(P_{2}\right)-\lambda=-2.187 \\
& \left(P_{1}\right)+0.038\left(P_{2}\right)-\lambda=-2.407 \\
& P_{1}+P_{2}=400
\end{aligned}
$$

And it is easy to see how to put them into matrix form for solution in matlab.

$$
\left[\begin{array}{ccc}
0.032 & 0 & -1 \\
0 & 0.038 & -1 \\
1 & 1 & 0
\end{array}\right] \times\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-2.187 \\
-2.407 \\
400
\end{array}\right]
$$

Solution yields: $\left[\begin{array}{c}P_{1} \\ P_{2} \\ \lambda\end{array}\right]=\left[\begin{array}{c}220.29 \\ 179.71 \\ 9.24\end{array}\right]$

$$
\begin{aligned}
& \text { What is } \lambda ? \\
& \boldsymbol{\lambda} \text { ? }
\end{aligned}
$$

It is the system "incremental cost."
It is the cost if the system provides an additional MW over the next hour.

It is the cost of "increasing" the RHS of the equality constraint by 1 MW for an hour.

We can verify this.

Verification for meaning of lambda.

- Compute total costs/hr for $\mathrm{Pd}=400 \mathrm{MW}$
- Compute total costs/hr for Pd=401 MW
- Find the difference in total costs/hr for the two demands.

If our interpretation of lambda is correct, this difference should be $\$ 9.24$.

Get cost/hr for each unit.

$$
\begin{aligned}
& C_{1}\left(P_{1}\right)=0.016(220.29)^{2}+2.187(220.29)+120.312 \\
& C_{1}\left(P_{1}\right)=1378.53 \$ / h r \\
& C_{2}\left(P_{2}\right)=0.019(179.71)^{2}+2.407(179.71)+74.074 \\
& C_{2}\left(P_{2}\right)=1120.25 \$ / h r
\end{aligned}
$$

Total cost/hr are $\mathrm{C} 1+\mathrm{C} 2$

$$
C_{T}=C_{1}\left(P_{1}\right)+C_{2}\left(P_{2}\right)=1378.53+1120.25=2498.78
$$

Now solve EDC for $\mathrm{Pd}=401 \mathrm{MW}$ to get $\mathrm{P} 1, \mathrm{P} 2$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
0.032 & 0 & -1 \\
0 & 0.038 & -1 \\
1 & 1 & 0
\end{array}\right] \times\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-2.187 \\
-2.407 \\
401
\end{array}\right]} \\
{\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
220.83 \\
180.17 \\
9.25
\end{array}\right]}
\end{gathered}
$$

Get cost/hr for each unit.

$$
\begin{aligned}
& C_{1}\left(P_{1}\right)=0.016(220.83)^{2}+2.187(220.83)+120.312 \\
& C_{1}\left(P_{1}\right)=1383.52 \$ / h r \\
& C_{2}\left(P_{2}\right)=0.019(180.17)^{2}+2.407(180.17)+74.074 \\
& C_{2}\left(P_{2}\right)=1124.51 \$ / h r
\end{aligned}
$$

Total cost/hr are $\mathrm{C} 1+\mathrm{C} 2$

$$
C_{T}=C_{1}\left(P_{1}\right)+C_{2}\left(P_{2}\right)=1383.52+1124.51=2508.03
$$

Total cost/hr changed by $2508.03-2498.78=9.25 \$ / \mathrm{hr}$, which is in agreement with our interpretation of lambda.

https://www.misoenergy.org/markets-and-operations/real-time--market-data/real-time-displays/

