Zbus
1.0 Introduction
The Zbus is the inverse of the Ybus, i.e., 
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Since we know that
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and therefore
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then 
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So Zbus relates the nodal current injections to the nodal voltages, as seen in (4).

In developing the power flow problem, we choose to work with Ybus. The reason for this is that the power flow problem requires an iterative solution that can be made very efficient when we use Ybus, due to the sparsity (lots of zeros) in the matrix used in performing the iteration (the Jacobian matrix – we will discuss this more later). 

However, in developing fault analysis methods (done in EE 457), we will choose to work with Zbus.  The main reason for choosing to work with Zbus in fault analysis is that, as we will see, Zbus quantities characterize conditions when all current injections are zero except one, corresponding to the faulted bus. We can use some creative thinking to express that one current injection (the fault current). Once we have that one current injection, eq. (4) is very easy to evaluate to obtain all bus voltages in the network, and once we have bus voltages, we can get all currents everywhere. These currents are the currents under the fault conditions and are used to design protection systems.
The Zbus is not sparse (no zeros). But fortunately, fault analysis does not require iterative solutions, and so computational benefit of sparsity is not significant in fault analysis.

2.0 The meaning of Ybus elements

Consider a 3-bus network. We can write the Y-bus relation as
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(5)
Let’s inspect more closely one of the equations in (5). Arbitrarily choose the second equation.
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Now solve for self admittance of bus 2, Y22. 
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But what if we set V1 and V3 to 0, i.e., what if we short-circuit buses 1 and 3? Then eq. (7) is:
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(8)

Equation (8) says that Y22 is the ratio of bus 2 current injection to bus 2 voltage when buses 1 and 3 are shorted. 

So we can obtain Y22 by shorting buses 1 and 3, connecting a voltage source at bus 2 and measuring (computing) the current at bus 2. 
We can go through similar analysis to see:
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We can therefore obtain mutual terms Y21 (Y12) by shorting buses 2 (1) and 3, connecting a voltage source at bus 1 (2), and measuring (computing) the current at bus 2 (1).
These understandings of self and mutual admittances are consistent with our method of building the Y-bus, as shown in Figs. 1-2 (note there exist impedance to ground at each bus, although we do not draw them because it would make the picture too crowded).
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Fig. 1
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Fig. 2

3.0 The meaning of Zbus elements
We can write the Z-bus relation for the same network as
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(11)

Let’s inspect more closely one of the equations in (11). Arbitrarily choose the second equation.
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Now solve for driving point impedance of bus 2, Z22. 


[image: image15.wmf]2

3

23

1

21

2

22

I

I

Z

I

Z

V

Z

-

-

=



(13)

But what if we set I1 and I3 to 0, i.e., what if we open-circuit buses 1 and 3? Then eq. (13) is:
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Equation (14) says that Z22 is the ratio of bus 2 voltage to the bus 2 current injection when buses 1 and 3 are open-circuited. 

So we can obtain Z22 by opening buses 1 and 3, injecting a current at bus 2 and measuring (computing) the bus 2 voltage. 

We can go through similar analysis to see:
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We can therefore obtain transfer impedances Z21 (Z12) by opening buses 2 (1) and 3, injecting a current at bus 1 (2), measuring (computing) the bus 2 (1) voltage.

Figs. 3 and 4 illustrate these operations (note there exist impedance to ground at each bus, although we do not draw them because it would make the picture too crowded).
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Fig. 3
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Fig. 4

One important observation from Figs. 3 and 4 is that, unlike in the case of admittance elements, the calculation involves the entire network. For complex networks, there is no easy way to compute Zbus elements (.
4.0 Self admittance and driving point impedance
We know that the Z-bus and the Y-bus are inverses of each other, i.e., Z=Y-1. In line with this fact, one might notice from eq. (8) that 
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and from eq. (14) that
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and be tempted to conclude that Z22=1/Y22. 

But that is a big no-no. Why???
The reason is that the two ratios are computed for different networks!!!! Y22 is computed when buses 1 and 3 are shorted. Z22 is computed when buses 1 and 3 are opened. 

Unfortunately, there is no simple relation between individual elements of Ybus and individual elements of Zbus. And in spite of the fact that Matlab is quite capable of matrix inversion for small dimension, you are NOT ALLOWED to think about just inverting Ybus since we must, eventually, live in the real world of 5000+ bus models. Bummer.

All is not hopeless, however. In what follows, we will pursue a different approach to getting Zbus. It is a building procedure, based on modification to an already existing Zbus. To understand it, we will first look at modification to an already existing Ybus.
5.0 Ybus modifications (Appendix 7)
Let’s assume that we have a 3-bus system with Ybus given by 
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(17)

Assume the branch between buses 1 and 3 is numbered as branch 3. Then let’s modify branch 3 by adding another circuit between bus 1 and bus 3 having an admittance of Δy3. How will the Ybus change? 

· Add Δy3 to diagonal elements in positions (1,1) and (3,3).

· Subtract Δy3 from off-diagonal elements in positions (1,3) and (3,1).

The resulting matrix is 
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(18)

So the new Y-bus is just the old Y-bus with the addition of Δy3 in four positions, as indicated by eq. (19):
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 (19)

The matrix on the right of eq. (19) can actually be written as a product of two vectors. Define a vector corresponding to the modification of branch 3 (connected between bus 1 and bus 3) as 
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(20)

Then notice that:
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(21)

Substitution of (21) into (19) yields:
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(22)

In general, anytime we modify Y-bus, then 
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(23)

where ak is constructed according to:
· 1 at position i and -1 at position j if we add or remove a branch between buses i and j.

· 1 at position ii if we add or remove a shunt at bus i.

Why is eq. (23) of interest to us?

Reason is that there is a nice way to invert an expression in the form of eq. (23).

6.0 Matrix inversion lemma (Appendix 6)
The matrix inversion lemma (MIL), otherwise known as the Sherman-Morrison formula, is as follows.
Suppose we have an n×n symmetric matrix Y whose inverse is known and we wish to find the inverse of Y+μakakT, where 

· μ is a scalar and

· ak is an n×1 vector.
Then the MIL says that:
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where b is an n×1 vector given by
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and γ is a scalar given by
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(26)

There is a proof of MIL in the text, page 600. It is also discussed in most books on linear algebra.
This formula is useful for getting a modified Z-bus, since Z=Y-1. In other words, eq. (24), (25), and (26) become:
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where bk is an n×1 vector given by
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and γ is a scalar given by
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(29)

The implication is huge. 

Consider that somehow, we are able to get an initial Zbus, denoted Z, for some sub-portion of our network. Then we can just “add-in” an additional element using eq. (28) and (29) to compute the bk and γ, which are in turn used in eq. (27) to get the new Z-bus, denoted Zn.

Repeated application of this will eventually provide us with the entire Z-bus. The algorithm implementing this approach is called the Z-bus building algorithm. 
7.0 Example (Example A7.1 in text)
We are given the following Zbus for a 3-node network.
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The admittance of branch 2, located between nodes 1 and 2, is changed from –j5 to –j15. Find the new Zbus, Zn.

Solution: The change in admittance of branch 2, located between buses 1 and 2, is 

[image: image37.wmf]10

2

,

1

2

j

y

y

-

=

D

=

D


Note that the fact that the admittance became more negative means that the impedance got less positive, i.e., the impedance decreased. This is typically caused by the addition of another circuit.

Following the example of eq. (20), we have that


[image: image38.wmf]2

1

0

1

1

2

bus

bus

a

¬

¬

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=


Writing out eq. (23), we have:
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Now, if we had Y, we could easily compute Yn. But that is not our objective. Our objective is to compute (Yn)-1. By eq. (27), (28), and (29), this is 
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where μ=Δy2.

So first let’s compute b2. That is
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What is b2? More generically, we observe:
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In other words, b2 finds the difference between the columns of Z corresponding to the buses terminating the branch being modified, in this case, buses 1 and 2, i.e.,
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Now let’s compute γ.
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Finally, we can compute Zn according to:
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8.0 A closer look at γ
Recall that 
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But 
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Consider the term 
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where branch k connects buses i and j. Then we can write:
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The expression for γ becomes
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If there is no circuit between buses i and j, 
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where zb=1/Δyb is the impedance of the new circuit added.
8.0 Some special cases
We review some special, but very important cases for modifying Zbus.  

8.1 Adding a bus connected to ground
The situation is as illustrated in Fig. 5.
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Fig. 5

Although this situation does not make much sense, it corresponds to a step that we must take in building the Z-bus.

To understand the approach to this situation, we return to the Ybus. How will Ybus be modified? We simply increase the dimension of Ybus by 1, with only the new diagonal element being non-zero, and it will have value yb. The result of this is shown below, where Y is the Y-bus before the addition of the new node.
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(30)

Where 0 is an n×1 vector of 0’s. Inverting eq. (30), we get:
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So modifying Zbus to accommodate a new bus connected to ground is easy (, and it results in Modification #1 and Rule #1 in Section 9.5.

Modification #1: Add a branch with impedance zb from a new bus (numbered n+1) to the reference node.
Rule #1: Zn is given by 
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(32)
8.2 Add a branch from new to existing bus
We assume the new bus is numbered n+1 and the existing bus is numbered i. 

The situation is as illustrated in Fig. 6.
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Fig. 6
The derivation of what to do here is based on the same approach taken in section 8.2, i.e., we first see what happens to the Ybus, and then consider the inversion of the Ybus. In this case, the derivation is a little tedious and I will not go through it. You can refer to the text, pp. 604-605. 
The result is Modification #2 and Rule #2 in Section 9.5.

Modification #2: Add a branch with impedance zb from a new bus (numbered n+1) to an existing node i.
Rule #2: Denote the ith column of Z as Zi, and the iith element of Z as Zii.  Zn is then given by 
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Example 1: A network consists of a single bus connected to the reference node through an impedance of j1.25 ohms. Give Zbus.

Solution: This requires application of rule 1.
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But Z does not exist. Therefore,


[image: image64.wmf][

]

25

.

1

j

Z

n

=


Example 2: A bus 2 is added to the network of example 1 through a branch having a reactance of j0.0533. Give new Zbus.

Solution: This requires application of rule 2.
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Here, Z=Zi=ZiT=Zii. Therefore
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8.3 Add a branch between existing buses
This is the original situation we worked on.

It is illustrated in Fig. 8.
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Fig. 8
We know what to do with this. The result is summarized as Modification #4 and Rule #4 in Section 9.5.

Modification # 4: Add a branch zb between existing ith and jth nodes.

Rule #4: Denote the ith column of Z as Zi, and the jth column of Z as Zj, and denote the iith, jjth, and ijth elements of Z as Zii, Zjj,  Zij.  Then Zn is given by 
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We have already given one example of this rule (Example A7.1, page 16 above), and another one is given in the text as Example 9.11. So we will not illustrate further. 

There is one more modification necessary, that we will call modification #3, and that is to add a branch with impedance Zb between existing node and reference. This differs from Modification #1 because in Modification #1, the node did not exist previously. Now it does. The issue is a bit tricky, and we will address it in section 8.5. 

Before we do that, however, it may help to take a look at the algorithm used to build Z-bus, and we have enough information to do that now. 
8.4 Z-bus building algorithm
Step 0: Number the nodes of the given network starting with those nodes at the ends of branches connected to the reference node.

Step 1: Develop the Z-bus for all buses with a connection to the reference node. This is a Modification #1 using Rule #1, which means that the resulting matrix will be a diagonal matrix consisting of the values of the shunt impedances along the diagonal (all off-diagonals will be zero).
Recall that this step is based on the following:
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Note: building the Zbus in this way avoids the necessity of rule 3, since this step consists only of adding shunt impedances simultaneous with nodes (modification #1, rule #1), and after we are done, we will not have any more shunt impedances to add, and therefore it will not be possible to add a shunt impedance to an existing bus. Lovely.

Step 2: Add a new node to the ith (existing) node of the network via a new branch having impedance zb. Continue until all nodes of the network have been added. This is modification #2, Rule #2, which is based on:
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Step 3: Add a branch between the ith and jth nodes. Continue until all remaining lines have been added. This is modification #4, Rule #4, which is based on:
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8.5 Adding shunt to existing bus: motivation
The Zbus building algorithm provides a way to build the Zbus using only Rules #1, 2, and 4. The reason why this works is that the first step of the algorithm is to build the Zbus for all buses that have shunt elements. This step eliminates the possibility that at some later step of the algorithm, we will have to add a shunt to an existing bus. Thus we avoid Rule #3, which addresses adding a shunt to an existing bus. 

Unfortunately, there are situations that require Rule #3 which we cannot avoid. Consider, for example, that you want to develop a program which will compute fault currents for each bus, one faulted bus at a time. 

An important question is, “What does faulted bus mean?”

It means that a short-circuit is placed on the bus. In reality, there is no perfect short, i.e., any short will always have some impedance. In effect, then, faulted bus means connecting a very small shunt impedance from a bus to the reference node.

So, assuming fault analysis requires the Zbus for each faulted condition, how would you do the study to get the short circuit current for each faulted bus?

Using our algorithm described above, what we have to do is to re-build the Zbus for each separate faulted bus we want to analyze. 

Building Zbus is not as computational as inverting the matrix, but it is does require some computational effort.

What we would like to do, from a programming perspective, is to build the network Zbus once, and then perform a more efficient manipulation for getting each fault-specific Zbus. This, then, is where Rule #3 comes in very handy.

Adding a shunt impedance from bus i to the reference node may be thought of in a preliminary way as adding a branch between an existing node i and a new node. This is a Rule #2 issue.

How do we handle Rule #2? Repeating eq. (33), we develop the new Zbus as:
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(33)
where the new Zbus relation is
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But in eq. (34), Vref=0, and so 
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(35)
This fact that the left-hand-side of eq. (35) is 0 for the last equation is significant. It means that we may eliminate a variable from our solution vector. In particular, we will would like to eliminate Iref since it corresponds to a current that is not really interesting to us (it is the sum of all currents injected from the reference node into the network). 

There exists a certain analytical technique for eliminating Iref. It is called Kron Reduction after the famous power system engineer Gabriel Kron.

8.5 Kron Reduction (section 9.3)
Consider the following matrix equation:
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(36)

We can write this as separate equations: 
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Let’s eliminate the variable z from the top equation. This is accomplished by multiplying the bottom equation by -bd-1 and adding it to the top equation. 

This results in
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(39)

Factoring out y from the first two terms and noting the third and fourth terms go to 0, we have:
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(40)

Conclusion: we can eliminate the second variable (z) from our equation set if we force to zero the element in the first row, second column (b).

This works if the bottom element in the left-hand-side is zero. In this case, the operation to accomplish our purpose will not change the top element in the left-hand-side (x).

Let’s see if we can do this same thing to eq. (35), repeated here for convenience:
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One can simply apply the same “pattern” that we used in the above case to obtain:
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Alternatively, one can think in terms of forcing the element in the second column, first equation, to zero, through an operation where we add a multiple of the second equation to the first. 
The goal here is to zero out the element in position (1,2) of the eq. (35) matrix. The reason we want to do this is because then, the first equation becomes independent of the variable Iref. 

To do this, we will multiply the second row by –Z​i(Zii+zb)-1. Then we add this multiplied second row to the first row. This results in:
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Noting in eq. (42) the terms that go to zero, 
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And the first equation in (43) is independent of Iref, so that we may extract it as:
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     (44)

which is the same as eq. (41).
This is Kron reduction. It can be applied to reduce the dimensionality of a set of linear equations whenever the left-hand-side of one of the equations is zero.

Aside: The text, in Section 9.3, motivates Kron reduction in a totally different, but equally legitimate way. It raises the issue of what you can do to the Ybus when you have a bus for which there is neither generation or load modeled at it. This issue comes often in power flow analysis. There are, in fact, some substations that do not have generation, and they do not serve load. Such substations might arise, for example, at the junction of several transmission circuits, or at a transmission-level transformer application (e.g., 169kV:345 kV). In this case, the left-hand side of the Ybus relation will be zero for the corresponding circuit. The text does some good examples of this on pp. 309-311.
8.6 Adding shunt to existing bus: method
We are now (finally) in position to state Modification #3 and Rule #3. It is:

Modification #3: Add a branch with impedance zb between (existing) ith node and the reference node.
Rule #3: Denote the ith column of Z as Zi, and the iith element of Z as Zii.  Zn,e is then given by 
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(33)
The new Zbus is then obtained by performing Kron reduction on Zn,e to eliminate the last variable, that is, 
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Additional homework problem: due Monday

I have already asked you to work problem 9.8 using our Zbus algorithm. Now I am asking you to work it in another very specific, but different fashion, as follows:

1. Add node 1 to reference.

2. Add node 2 to node 1.

3. Add node 3 to node 2.

4. Add node 4 to node 3.

5. Add branch between nodes 2 and 4.

6. Add node 5 to node 4.

7. Add branch between node 5 and reference.

8. Add capacitive reactance between node 2 and reference.

9. Add capacitive reactance between node 3 and reference.
10. Add capacitive reactance between node 4 and reference.

For both solutions, NEGLECT RESISTANCES!!!!

Note that in the last 4 steps (steps 7, 8, 9, and 10), you will have to use Rule 3. I will do Step 7 for you. 

The answer you should get following Step 6 is:
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The information in EXAMPLE 9.5 indicates that node 5 has a branch to reference of impedance j1.25. 
Therefore Zii+zb=Z55+zb=j(1.4987+1.25)=2.7487

Also, 
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And so the augmented matrix is 
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Kron reduction results in
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There cannot be any influence from y23 because it both of its terminating buses are a ground; if y23 carried a current, there would be potential across it, thus contradicting that the terminating buses are at the same potential.
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