Shunt Admittance of Overhead Lines
1.0 Introduction
Our interest so far has been focused on the series impedance part of the transmission line model. This is the part of the transmission line for which a voltage drops as loading current increases, and the voltage drop always leads the current that caused it (or the current lags the voltage).
Another effect is that leading current is produced as a function of the voltage at a bus. This effect is caused by capacitance. In the case of overhead lines, there is capacitance between phases and also between each phase and ground. Which is larger? 

Recall the relation for capacitance of a parallel plate configuration:
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where ε is the permittivity of the medium between the plates (ε=8.854×10-12 f/m), A is the area of one of the plates, and d is the distance of separation between them. Note that as d decreases, C increases. For overhead lines, the separation between phases is significantly less than the height of the conductor. As a result, the phase-to-phase capacitance is the dominating influence.
What does this do to currents? Recall that Xc=1/ωC, so as C goes up, reactance goes down. For a shunt capacitor, the current is given by V/jXC, so for greater capacitance, for a given voltage, we get more charging currents. 

Example 3.7: Infinite Uniformly Charged Conductor
Consider a charge Q on infinitely long conductor of length h and radius r. (This charge Q is not related to the current flow; in fact, you can assume no current is flowing if you like.) Then the charge density is
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Now consider a cylindrical surface, Fig. 1, with a cylinder enclosing the conductor having surface area A. The radius of the cylinder (measured from the centerline of the conductor) is R, where R>>r.
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Fig. 1
Define E (volts/meter) as the electric field intensity and D (coulomb/m2) as the electric flux density, both vectors directed radially outwards from the conductor such that 
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Here,
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. Also define da as a vector of differential length normal and outwards to the surface of the cylinder.

Then recall Gauss’ law for electric fields which says that the surface integral of the dot product of D and da equals the charge enclosed, i.e., 
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Integrating about the cylindrical surface, we obtain:
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(5)

This is eq. (3.44) in the text. 

Substituting eq. (3) into eq. (5) results in
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Now recall potential difference between two points in space Pα and Pβ that are located distances Rα and Rβ, respectively, from the centerline of the conductor, is obtained by
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(7)

The first integral in (7) is positive if Pβ is closer to the charge than Pα. Since E and dl are both in the radially outwards direction, using eq. (6), with R replaced by l, we have
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(8)
Equation (8) is identical to (3.48) in the text.
2.0 Two-wire configuration
Note that the text does not do this case. 

Consider two straight infinitely long conductors separated in space by a distance R12, having radii of r1 and r2, respectively. 
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Fig. 2
We desire to obtain the potential difference between two arbitrary points in space, Pβ and Pα, due to the charges residing on conductors 1 and 2, q1 and q2.

Our approach is using superposition, to get:
· 
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Then we add to get total potential difference.

From eq. (8), we know that the potential difference between two points Rβ1 and Rα1 away from conductor 1 is given by
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(9)
Likewise, the potential difference between two points Rβ2 and Rα2 away from conductor 2 is given by
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Then, by superposition,


[image: image17.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

+

=

+

=

+

=

2

2

2

1

1

1

2

2

2

1

1

1

)

2

(

)

1

(

ln

ln

2

1

ln

2

ln

2

b

a

b

a

b

a

b

a

ba

ba

ba

pe

pe

pe

R

R

q

R

R

q

R

R

q

R

R

q

v

v

v

(11)
3.0 Multi-wire configuration
Consider having n charged conductors labeled 1,…,n. Then eq. (11) generalizes, and we may obtain the voltage drop between any two points Pβ and Pα in space as
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Equation (12) is identical to (3.49) in text.

We desire to obtain an expression for potential difference between point Pβ and a reference point Pα, where Pα is far away from the conductor, so far, in fact, that its potential will be zero so that vβα
But this will make each term in eq. (12) very large in positive direction because Rαi will be very large (note that placing point Pα on the conductor and point Pβ far away does not help because doing this will only make each term very large in negative direction). 

Some tricky manipulation will help us here. 
This manipulation depends on one very important assumption, and that is that the charges on the conductors sum to zero. This will be the case if the voltages sum to zero, since q=Cv, which is true for three-phase transmission systems. This means that
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Equation (13) is same as (3.50) in text.

Note that if (13) is true, then multiplying each term by a constant –ln(Rα1)/2πε will not change the fact that it sums to zero, i.e., 
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Equation (14) is same as (3.52) in text. The usefulness of eq. (14) will be apparent in what we do next.

Returning to eq. (12), let’s expand the logarithm terms to get:
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This is the same as eq. (3.51) in the text.

Since the left-hand-side of eq. (14) equals 0, we can add it to the right-hand-side of eq. (15) to obtain:
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Now combine the second and third summations in eq. (16) to get:
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Take the limit as the point Pα is moved to ∞:
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Equation (18) is the same as (3.54) in text. It can be used to compute the voltage between any point Pβ and a distant reference (ground). Note that this voltage depends on the charges on all conductors.
To clarify, Rβi is the distance between Pβ and the center of the ith conductor. If Pβ is on the ith conductor, then Rβi is the radius of the ith conductor.
For example, we can compute the voltage at a point on conductor #1 of an n-conductor configuration as:
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Equation (19) is same as eq. (3.55) in text.

Text on page 78 indicates that “while physical considerations indicate that the surface of conductor 1 is an equipotential surface, application of (3.55) gives slightly different results for different choices of points on the surface.”
What this means can be viewed easily in the two conductor case, as shown in Fig. 3, where we see that different positions for the point on conductor #1, P1 (represented by the black dot), yield different R12 (distance from P1 to centerline of conductor 2).
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Fig. 3

For this case, because R12 is normally much greater than the conductor radius, we can assume that the R12 is just the distance between centerlines of the two conductors.

For the more general case of multiple conductors, as given by eq. (19), 
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we use the following notation:

· R11=r1, the radius of conductor #1.

· R1i=d1i, the distance between centerlines of conductors 1 and i. 

With this notation, eq. (19) becomes: 
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(20)

This is same as eq. (3.56) in text.
And the general case is, for conductor k:
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This is the same as eq. (3.57) in text and is the fundamental relation for developing expressions for potential at a conductor due to charged conductors. 

The general approach to derive capacitance for a particular three-phase configuration of conductors is 

1. Write down the voltage equation, eq. (21), for the given geometry

2. Use q1+q2+q3=0 to express the voltage equation in terms of only q1 (or qa).
3. Solve for q1/v1=C1.

These steps are similar to the steps employed for deriving inductance expressions and so we will not spend time on them. Rather, we will just summarize, on the next page, the capacitance relations for different geometries.
Summarizing the main derivations for computing capacitance, we have:
1. Capacitance of phase a to neutral, in f/m, for equilateral configuration, unbundled:
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where D is distance between phases and r is conductor radius. This is (3.61) in text.

2. Capacitance of phase a to neutral, f/m, for asymmetrical phase configuration, transposed, bundled:
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where Dm is the GMD between phases as 

developed for inductance:
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and 
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 is Capacitive GMR for the bundle: 
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What is difference between GMR and capacitive GMR?  GMR uses r’ whereas capacitive GMR just uses r.
Some last comments:

The capacitance you compute using the above expressions is typically expressed in terms of shunt susceptance per unit length, with units of mhos/meter. To do this, use
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(Note that Xc=1/Bc).

It is typical in modeling transmission lines in a power flow program to compute B=Bc*(line length) and then model B/2 at each end of the line.
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