PowerFlow3
1.0 Introduction
We define and discuss some terminology necessary for understanding the power flow problem and solution procedure.
2.0 Classification of buses
Although it is physically appealing to categorize buses based on the generation/load mix connected to it, we need to be more precise in order to analytically formulate the power flow problem. For proper analytical formulation, it is appropriate to categorize the buses according to what information is known about them before we solve the power flow problem. 
For each bus, there are four possible variables that characterize the buses electrical condition. Let us consider an arbitrary bus numbered k. The four variables are real and reactive power injection, Pk and Qk, respectively, and voltage magnitude and angle, |Vk | and (k, respectively. From this perspective, there are three basic types of buses. We refer to the first two types using terminology that remind us of the known variables.

· PV Buses: For type PV buses, we know Pk and |Vk | but not Qk or (k.  These buses fall under the category of voltage-controlled buses because of the ability to specify (and therefore to know) the voltage magnitude of this bus. Most generator buses fall into this category, independent of whether it also has load; exceptions are 
1. buses that have reactive power injection at either the generator’s upper limit (Qmax) or at its lower limit (Qmin), and

2. the system swing bus (we further describe the swing bus below). 
There are also special cases where a non-generator bus (i.e., either a bus with load or a bus with neither generation or load) may be classified as type PV, and some examples of these special cases are buses having switched shunt capacitors or static var compensation systems (SVCs). In the example that we worked on previously, illustrated below for convenience, buses B2 and B3 are type PV. 
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Fig. 1

The real power injections of the type PV buses are chosen according to the system dispatch corresponding to the modeled loading conditions. The voltage magnitudes of the type PV buses are chosen according to the expected terminal voltage settings, sometimes called the generator “set points,” of the units.

· PQ Buses: For type PQ buses, we know Pk and Qk but not |Vk | or (k.  All load buses fall into this category, including buses that have not either load or generation. In Fig. 1, buses 4 and 5 are type PQ. The real power injections of the type PQ buses are chosen according to the loading conditions being modeled. The reactive power injections of the type PQ buses are chosen according to the expected power factor of the load.

The third type of bus is referred to as the swing bus. Two other common terms for this bus are slack bus and reference bus. There is only one swing bus, and it can be designated by the engineer to be any generator bus in the system. For the swing bus, we know |V| and (. The fact that we know ( is the reason why it is sometimes called the reference bus. 
Physically, there is nothing special about the swing bus; in fact, it is a mathematical artifact of the solution procedure. 
At this point in our treatment of the power flow problem, it is most appropriate to understand this last statement in the following way. The generation must supply both the load and the losses on the circuits. Before solving the power flow problem, we will know all injections at PQ buses, but we will not know what the losses will be, because losses are a function of the flows on the circuits which are yet to be computed. So we may set the real power injections for, at most, all but one of the generators. The one generator for which we do not set the real power injection is the one modeled at the swing bus. Thus, this generator “swings” to compensate for the network losses, or, one may say that it “takes up the slack.” Therefore, rather than call this generator a |V|( bus (as the above naming convention would have it), we choose the terminology “swing” or “slack” as it helps us to better remember its function. The voltage magnitude of the swing bus is chosen to correspond to the typical voltage setting of this generator. The voltage angle may be designated to be any angle, but normally it is designated as 0o.

A word of caution about the swing bus is in order. Because the real power injection of the swing bus is not set by the engineer but rather is an output of the power flow solution, it can take on mathematically tractable but physically impossible values. Therefore, the engineer must always check the swing bus generation level following a solution to ensure that it is within the physical limitations of the generator.
3.0 Number of variables and equations

Consider a power system network having N buses, NG of which are voltage-regulating generators. One of these must be the swing bus. Thus there are NG-1 type PV buses, and N-NG type PQ buses. We assume that the swing bus is numbered bus 1, the type PV buses are numbered 2,…, NG, and the type PQ buses are numbered NG+1,…,N (this assumption on numbering is not necessary, but it makes the following development notationally convenient). 
It is typical that we know, in advance, the following information about the network (implying that it is input data to the problem): 

1. The admittances of all series and shunt elements (implying that we can obtain the Y-bus),
2. The voltage magnitudes Vk, k=1,…,NG, at all NG generator buses,
3. The real power injection of all buses except the swing bus, Pk, k=2,…,N
4. The reactive power injection of all type PQ buses, Qk, k=NG+1, …, N
Statements 3 and 4 indicate power flow equations for which we know the injections, i.e., the values of the left-hand side of the power flow equations. These particular power flow equations are very valuable because they have one less unknown than equations for which we do not know the left-hand-side. The number of these equations for which we know the left-hand-side can be determined by adding the number of buses for which we know the real power injection (statement 3 above) to the number of buses for which we know the reactive power injection (statement 4 above). 
This is (N-1)+(N-NG)=2N-1-NG. We repeat the power flow equations here, but this time, we denote the appropriate number to the right.
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We are trying to find the following information about the network:

a. The angles for the voltage phasors at all buses except the swing bus (it is 0( at the swing bus), i.e., (k, k=2,…,N
b. The magnitudes for the voltage phasors at all type PQ buses, i.e., |Vk|, k=NG+1,..., N
Statements a and b imply that we have N-1 angle unknowns and N-NG voltage magnitude unknowns, for a total number of unknowns of (N-1)+(N-NG)=2N-1-NG. 
Referring to the power flow equations above, we see that there are no other unknowns on the right-hand side besides voltage magnitudes and angles (the real and imaginary parts of the admittance values, Gkj and Bkj, are known, based on statement 1 above).

Thus we see that the number of equations having known left-hand side (injections) is the same as the number of unknown voltage magnitudes and angles. Therefore it is possible to solve the system of 2N-NG-1 equations for the 2N-NG-1 unknowns. 
However, we note that these equations are not linear, i.e., they are nonlinear equations. This nonlinearity comes from the fact that we have terms containing products of some of the unknowns and also terms containing trigonometric functions of some of the unknowns. Because of these nonlinearities, we are not able to put them directly into the familiar matrix form of “Ax=b” (where A is a matrix, x is the vector of unknowns, and b is a vector of constants) to obtain their solution. We must therefore resort to some other methods that are applicable for solving nonlinear equations. We will describe such a method in the next class. Before doing that, however, it may be helpful to more crisply formulate the exact problem that we want to solve.

Let’s first define the vector of unknown variables. This we do in two steps. First, define the vector of unknown angles ( (an underline beneath the variable means it is a vector or a matrix) and the vector of unknown voltage magnitudes |V|. 
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Second, define the vector x as the composite vector of unknown angles and voltage magnitudes.
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With this notation, we see that the right-hand sides of the power flow equations (see top of page 9) depend on the elements of the unknown vector x. Expressing this dependence more explicitly, we rewrite the power flow equations as
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In the above, Pi and Qi are the specified injections (known constants) while the right-hand sides are functions of the elements in the unknown vector x. Bringing the left-hand side over to the right-hand side, we have that
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We now define a vector-valued function f(x) as:
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The above equation is in the form of f(x)=0, where f(x) is a vector-valued function and 0 is a vector of zeros; both f(x) and 0 are of dimension (2N-1-NG)(1, which is also the dimension of the vector of unknowns, x. We have also introduced nomenclature representing the mismatch vector, as the vector of (Pi’s and (Qi’s. This vector is used during the solution algorithm, which is iterative, to identify how good the solution is corresponding to any particular iteration. In the next class, we introduce this solution algorithm, which can be used to solve this kind of system of equations. The method is called the Newton-Raphson method.
Example: For the 5 bus system use previously, write down the solution vector and the minimum set of power flow equations necessary to solve the problem.


[image: image9.emf] 

P g1   P g2 =0.8830   P g3 =0.2076  

V 1 =1∟0°  

S D3 =0.2+j0.1  

S D3 =1.7355+j0.5496   S D3 =1.7137+j0.5983  

V 4  

|V 2 |   =1   |V 3 |   =1  

V 5  

Fig. 1

Solution: We have really already identified the solution elements in the “PowerFlow2” notes as
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But now we write them as a single vector x, 
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There will be real power flow equations for all buses except the swing bus: buses 2-5. 

There will reactive power flow equations for only the type PQ buses: buses 4-5. 

So the minimal set of equations to solve is:
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We are now at a point where we desire to solve the above set of equations. We will do this in the next set of notes.
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