
Synchronous Machine Modeling – Notes2 
1.0 Inductances 
 
Recall the relation between flux linkages 
and currents developed in the previous 
notes. 
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We saw there are four blocks: 
• L11 (stator-stator inductances) 
• L12 (stator-rotor inductances)  
• L21 (rotor-stator inductances) 
• L22 (rotor-rotor inductances) 
We want to investigate these inductances.  
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Some important relations to remember are: 
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where, for self inductance,  is the 
reluctance of the path seen by λi in linking 
with circuit i, and ni is the number of turns 
of circuit i. 

iR

 
For mutual inductance,  is the reluctance 
of the path seen by λi in linking with coil i or 
the path seen by λj in linking with coil j, and 
ni is the number of turns of circuit i.  

ijR

 
The above use i and j (numbers 1-6) to 
denote the coils, but we will actually use 
letters a, b, c, F, D, and Q. 
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The question we must ask is, for each 
inductance: “Is it constant, or does it depend 
on the angle of the rotor, θ?”  
 
We answer this question by considering 
what happens to the reluctance of the path 
seen by the associated flux. 
 
The reluctance of a path in a magnetic 
circuit is given by 

A
l
μ

=iR      (4) 
where l is the length of the path, μ is the 
permeability of the material, and A is the 
cross-sectional area. 
 
If a path consists of different materials (e.g., 
air and iron), then the reluctance for the part 
of the path corresponding to each material 
must be computed, e.g.,  
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We are not going to derive expressions for 
reluctances. Rather, for each coil and coil 
pair in the synchronous machine, we are 
going to see if any of the terms (on which 
reluctance depends) change as the rotor 
turns.  
 
We will do this by determining if the 
proportion of the path in air, relative to the 
proportion of the path in iron, changes as the 
rotor turns. 
 
2.0 Rotor-rotor inductances 
 
Here, we are considering the inductances in 
the lower right-hand sub-matrix L22, given 
by 
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Each of these terms is inversely proportional 
to the reluctance of the path seen by the 
associated flux linkage.  
 
Let’s use Fig. 1 to consider the reluctance 
seen by the flux from the main field winding 
F, linking with itself, to determine whether 
LF depends on θ. 
 

Position 1 Position 2 

 
Fig. 1 

Compare position 1 with position 2: does the 
percentage of flux path in air change relative 
to the percentage of flux path in iron?  
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Answer is NO. Therefore LF is constant. 
 
By the same reasoning, LD is constant, since 
it has location identical to the main field 
winding F (see Fig. 2). 

 
Fig. 2 

 
What about LQ? Let’s use Fig. 3 to consider 
the reluctance seen by the flux from the 
damper winding Q, linking with itself, to 
determine whether LQ depends on θ. 
 
Compare position 1 with position 2: does the 
percentage of flux path in air change relative 
to the percentage of flux path in iron?  
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Position 1 Position 2 

 
Fig. 3 

 
Answer is once again NO. So LQ is constant. 
 
Now consider the mutuals. There are three 
of them to consider: LFD, LFQ, and LDQ.  
 
For LFD, consider that the two windings are 
have collinear axes, i.e., they are aligned, 
and the flux of one completely links with the 
other, similar to the situation of winding two 
different coils around the same nail, as 
illustrated in Fig. 4.  
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Fig. 4 

 
And this situation will not change with θ. 
Therefore, LFD is constant. It is conventional 
in the literature to denote this mutual 
inductance as MR.  
 
For LFQ and LDQ, consider that the two pairs 
of windings each have orthogonal 
(perpendicular) axes, i.e., they are wound so 
that the flux of one has zero linkage with the 
flux of the other, similar to the situation of 
winding two different coils around nails that 
are positioned perpendicular to each other, 
as illustrated in Fig. 5. Sometimes we say 
that orthogonal windings are in quadrature. 
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Fig. 5 

When the flux from a current does not link 
with a circuit, there can be no inductance. 
And this situation does not change with θ. 
Therefore both LFQ and LDQ are zero. 
 
From the above considerations, the L22 
submatrix becomes: 
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3.0 Stator-stator inductances 
 
Here, we are considering the inductances in 
the upper left-hand sub-matrix L11, given by 
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3.1 Stator self-inductances 
We consider La, Lb, and Lc. We focus on La 
first. There are 3 important concepts to 
grasp. 
 
a. Effect of rotor position: Inspection of Fig. 
6 shows the flux produced by the a-phase 
stator winding. Clearly, the reluctance of the 
path seen by this flux in position 1 is quite 
different than the reluctance of the path seen 
by this flux in position 2 (position 1 is a path 
mainly of iron, whereas position 2 is a path 
mainly of air). 

 10



Position 1 Position 2 
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Fig. 6 
So the reluctance varies with θ. 
 
b. Reluctance and polarity: The self 
inductance of the a-phase winding depends 
on the effect of rotor position on reluctance; 
however, this effect is not influenced by 
polarity of the rotor. Therefore, the two 
positions of Fig. 7 create exactly the same 
path reluctance as does the two positions of 
Fig. 6 (note the polarity of the rotor is 
reversed in Fig. 7 relative to Fig. 6). 
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Fig. 7 
As a result, we observe that the reluctance of 
the phase a flux path will vary with 2θ. 
 
c. Angle-independent path: There is a part of 
the flux path which has constant reluctance 
for all θ, as illustrated by the colored regions 
in Fig. 8. These regions correspond to the 
stator iron (yellow), a portion of the air-gap 
(green), and a portion of the rotor iron (red).  
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Position 1 Position 2 

 
Fig. 8 

The white region of the flux path in Fig. 8, 
however, has reluctance which varies with θ. 
The two positions illustrate the positions of 
minimum reluctance (position 1) and 
maximum reluctance (position 2).  
 
 
From the above three concepts, we conclude 
that the reluctance of the path seen by the a-
phase flux has a constant term and a term 
which varies with 2θ. We will assume the 
reluctance variation is approximately 
sinusoidal, so that a reasonable expression 
for the reluctance is: 
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)2/2sin( πθ −+= K0RR     (8) 
where  is the constant term and K is the 
amplitude of the reluctance sinusoidal 
variation. 

0R

 
From eq. (2), we recall that 
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Substitution of (8) into (2) yields: 
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 (9) 
Although (9) is not exactly sinusoidal, it is 
close, as illustrated in Fig. 9. 
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Fig. 9 

We observe in Fig. 9 that both R and L vary 
with 2θ (two cycles occur between 0 and 
2π=6.28). Where R is maximum, L is 
minimum, so they need to be in antiphase. 
This occurs for 

θ2cosmSa LLL +=     (10) 
This is equivalent to taking only the DC and 
fundamental terms of (9). 
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Because the b and c phases are physically 
displaced from the a-phase by 120 and 240 
degrees, respectively, we will also have: 

)
3

22cos( πθ −+= mSb LLL    (11) 

)
3

22cos( πθ ++= mSc LLL    (12) 
 
3.2 Stator mutual inductances 
 
The stator-stator mutuals also depend on 
flux paths that vary with θ. The development 
of these expressions is similar to that of the 
stator self inductances, although a bit more 
involved. The course EE 554 will discuss 
this in more depth.  
Expressions for the mutuals are: 
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My only comment here is with respect to the 
negative signs. Given that Ms and Lm are 
positive, and that Ms>Lm, the negative signs 
indicate that the mutual inductances are 
actually negative numbers.  
 
A mutual inductance between two circuits 
should be negative if positive currents in the 
two circuits produce fluxes in opposite 
directions. One can show that this is the case 
for the fluxes produced by the stator 
windings.  
 
The final L11 submatrix is therefore given 
by: 
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(14) 
4.0 Stator-rotor inductances 
Here we are interested in the off-diagonal 
submatrices L12 and L21, which are 
transposes of each other. 
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Note that ALL of these terms are mutuals 
(there are no self inductances).  
 
In understanding these terms, it is helpful to 
first recall why we found stator-stator terms 
(self and mutuals) dependent on θ. 
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With stator-stator self and mutuals, although 
all windings were locationally fixed (on the 
stator), and thus the flux path was fixed, the 
reluctance of that flux path varied due to the 
rotor motion. 
 
Now, however, although the stator windings 
are locationally fixed, the field windings are 
not – they rotate with the rotor. This will 
give us an inductance that varies with θ, but 
not due to variation in path reluctance but 
rather due to the extent to which the fluxes 
are linked.  
 
Consider LaF, the mutual inductance 
between the a-phase and the main field 
winding. Figure 10 illustrates two separate 
positions for the rotor. The a-phase and the 
main field winding are shown. Position 1 
has the axes of the two windings aligned, 
which is the position of maximum flux 
linkage, and maximum inductance. 
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Fig. 10 

 
Position 2, however, has the two windings in 
quadrature, meaning that no flux from either 
winding links the other. So this is a position 
of zero inductance.  
 
We could consider a position 3 as well, 
which would be the same as position 1, 
except that the polarity of the rotor would be 
reversed. Now the two fluxes from the 
windings are in opposite directions (for 
positive currents), but the axes are aligned, 
therefore we get a negative inductance with 
magnitude equal to that of position 1. 
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This analysis leads us to the following 
expression for the mutual inductance 
between the a-phase and the main field 
winding: 

θcosFaF ML =      (16) 
The mutual between the a-phase and the D-
winding will have exactly the same form, 
with the only difference being the 
amplitude: 

θcosDaD ML =      (17) 
The Q-axis damping winding will also have 
the same form, except it will have different 
amplitude, and it will be 90° behind: 

θcosQaQ ML =      (18) 
Expressions for the b and c phases will be 
exactly like (16), (17), and (18), except that 
they will be 120° and 240° degrees behind, 
respectively. Summarizing, we have: 
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Stator-main field mutuals: 

)
3

2cos(

)
3

2cos(

cos

πθ

πθ

θ

+=

−=

=

FcF

FbF

FaF

ML

ML

ML

    (19) 

 
Stator-D winding mutuals: 

)
3

2cos(

)
3

2cos(

cos

πθ

πθ

θ

+=

−=

=

DcD

DbD

DaD

ML

ML

ML

    (20) 

Stator-Q winding mutuals: 
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Therefore we can express L12 as 
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5.0 Final inductance matrix 
We are now in a position to write down the 
final inductance matrix as follows: 
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We recall, of course, that this matrix is important because of: 
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