
Synchronous Machine Modeling 
1.0 Introduction 
 
Our motivation at this point is to put you in 
a position to understand synchronous 
machine modeling for power system 
dynamic analysis.  
 
If you take EE 457, you will be introduced 
to a conceptual treatment of power system 
dynamics using what is called the equal area 
criterion. This treatment is useful for 
thinking about how power systems respond 
during the first few seconds following a 
disturbance, and for understanding the main 
influencing factors behind power system 
dynamics. However, this treatment is not 
very useful for understanding the computer 
models that are used in time-domain 
simulation programs such as those offered 
by Siemens (PSS/E), GE, Powertech, and 
RTE-France (Eurostag). 
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Chapter 7 of your text does a reasonable job 
of introducing you to synchronous machine 
models. But I hope to improve on this with 
these notes. Please read both. 
 
One last comment before we proceed. 
Working hard to understand this material 
will put you in a very good position to take 
EE 554 and do well in that course. EE 554 
dedicates a full semester to study of 
synchronous machine models and other 
computer methods for simulation of power 
system dynamics. It is a good course, and I 
strongly recommend it. 
 
What we are after here is a characterization 
of the machine dynamics. Because a 
synchronous machine is comprised of both 
electrical and mechanical dynamics, our 
interest can be expressed as “electro-
mechanical dynamics.” We will focus 
mainly on the electrical dynamics, leaving 
the mechanical dynamics for another course. 
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It is of interest that the underlying theory to 
our work was developed in 1929 by an 
employee of GE named Robert Park. Below 
is a snapshot of the first page of the papers 
that was published in relation to this work. 
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2.0 Preliminaries 
 
2.1 Assumed machine construction 
We will conduct our modeling exercise for a 
two-pole salient machine. Results will be 
generalizable to a smooth rotor machine 
because such machines can be well 
approximated using a salient pole model 
together with proper designation of the 
machine parameters. Results will be 
generalizable to machines with p>2 because 
such machines will have the exact same 
phenomena, except p/2 times/cycle. 
 
2.2 Defined axes 
The magnetic circuit and all rotor winding 
circuits are symmetrical with respect to the 
polar and inter-polar (between-poles) axes. 
This proves convenient, so we give these 
axes a special name: 
• Polar axis: Direct, or D-axis 
• Interpolar axis: Quadrature, or Q-axis 
These axes are shown in Fig. 1. 
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Interpolar 
or Q-axis 

Polar or 
D-axis 

 
Fig. 1 

 
The Q-axis is 90° from the D-axis, but 
which way is the choice of the modeler. But 
once that choice is made, you must stick 
with it. We will choose the Q-axis to lag the 
D-axis. 
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2.3 Machine windings  
There are 5 physical windings on a 
synchronous generator. 
• The 3 stator (phase) windings, denoted a, 

b, c. 
• The main field winding, denoted F. 
• So-called “amortessuer” (dead) windings 

exist on the pole-faces of salient pole 
machines, which produce damping 
currents that contribute to the magnetic 
field. We denote these windings with Q, 
since they will produce flux along the 
quadrature axis. Fig. 2 illustrates 
armortessuer windings. 

 
Fig 2 

Although the above covers all of the 
physical windings, it does provide for 
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modeling a component of flux along the D-
axis that is observed. This component of 
flux is similar to the component of Q-axis 
flux from the amortessuer windings in that it 
is observed only after disturbances. In fact, 
it comes from damping currents in the iron 
of the rotor.  
So we MODEL a fictitious winding placed 
exactly like the main field winding. We 
denote this winding with D, since it 
produces flux along the direct axis. 
 
Fig. 3 illustrates these windings. 

 
Fig. 3 
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Each one of these windings will   
• have a voltage across their terminals 
• carry a current 
• have a resistance 
• see a flux linkage 

Table 1 summarizes the notation to be used. 
Table 1 

Winding Voltage Current resistance flux 
a va ia r λa
b vb ib r λb
c vc ic r λc
F vF iF rF λF
D vD iD rD λD
Q vQ iQ rQ λQ

All voltages, currents, and flux linkages in 
Table 1 are instantaneous time-domain 
expressions. For example, va is really va(t).  
 
In addition, the voltage notation, relative to 
Fig. 2, are va(t)=vaa’, vb(t)=vbb’, vc(t)=vcc’, 
vF=vFF’, vD=vDD’, vQ=vQQ’. 
 

 8



3.0 Voltage (electrical) equation 
One important attribute of our work now is 
that we are not considering an open circuit. 
As a result, we must use va to account for 
the drop across the resistance due to the 
current, instead of just the open circuit 
voltage.  
 
The circuit associated with each circuit, 
assuming voltages are applied (not 
generated) and currents flow into the circuit, 
are illustrated in Fig. 3. We can write a KVL 
equation for each circuit, resulting in: 
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With an applied voltage, the internal 
(induced) voltage will oppose it, as shown in 
each circuit. Using KVL, we may write:  

 

aaa eriv +=  

bbb eriv +=  

ccc eriv +=  

FFFF eriv +=  

DDDD eriv +=

QQQQ eriv +=
 

Each of the induced voltages is a result of 
the time derivatives of the flux linking the 
corresponding circuits. Modifying the above 
equations accordingly, we obtain 
 

dt
driv aa

aa
'λ

+=  

dt
driv bb

bb
'λ

+=  

dt
driv cc

cc
'λ

+=
 

dt
driv FF

FFF
'λ

+=  

dt
driv DD

DDD
'λ

+=

dt
d

riv QQ
QQQ

'λ
+=

In the above equations, each flux linkage is 
in a direction consistent with a current in 
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opposite direction to the defined current. For 
example, the flux linkage λaa’ is in a 
downward direction, consistent with a 
current in a defined positive direction from a 
to a’, as shown in Fig. 4.  
 

ia I 

va=va'a 

 
Fig. 4 

This convention is fine for the F, D, and Q 
circuits, because they either have voltage 
applied as indicated (in the case of F) or 
they are short circuited and have zero 
voltage (in the case of D and Q).  
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This convention is not fine for the phase 
windings, since the current is actually in the 
opposite direction, as shown in Fig. 5. 
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With the current directions reversed for the 
phase windings, we need to change the signs 
of terms that depend on these currents. At 
the same time, we will multiply the F, D, 
and Q equations through by -1 to make all 
right-hand-sides look the same.  
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dt
driv aa

aa
'λ

−−=  

dt
driv bb

bb
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dt
driv cc
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dt
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FFF
'λ
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The D and Q windings have no voltage 
source but carry current ONLY when there 
is flux linkage variation. So their left-hand-
sides must be zero. This results in: 
 

dt
driv aa

aa
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−−=  

dt
driv bb

bb
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dt
driv cc
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−−=
 

dt
driv FF
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We will change the flux-linkage notation to 
use only a single subscript: 
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dt
driv a

aa
λ

−−=  

dt
driv b

bb
λ

−−=  

dt
driv c

cc
λ

−−=
 

dt
driv F

FFF
λ

−−=−  

dt
dri D

DD
λ

−−=0

dt
d

ri Q
QQ

λ
−−=0

 

 
Finally, we replace the differentiation 
notation from fractional form to dot-form: 
 

aaa riv λ&−−=  

bbb riv λ&−−=  

ccc riv λ&−−=
 

FFFF riv λ&−−=−  

DDDri λ&−−=0

QQQri λ&−−=0
 

Putting all these equations in a single vector 
relation, we have: 
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In compact form, (1) becomes: 
λ&−−= iRv       (2) 
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4.0 Flux-linkages 
A beginning point for understanding how to 
express flux linkages will observe 3 facts: 
Fact 1: λ=Li 
Fact 2: Each circuit will see a flux 
contribution from every current. Therefore, 
the flux linking a circuit will need to be 
computed from a summation of applications 
of  Fact 1. 
Fact 3: The flux contribution seen by a 
circuit from its own current is related to that 
current through the mutual inductance. 
 
Therefore, if we have 6 circuits and number 
them 1-6, the flux linkage seen by any given 
circuit i will be 

∑
=

=
6

1j
jiji iLλ

     (3) 
The notation of (3) has 
• Lii is the self-inductance for circuit i.  
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• Lij is the mutual inductance between 
circuit i and j.  

 
However, we are using letters to denote each 
circuit, i.e., a, b, c, F, D, and Q. 
Therefore, for example, the flux linking the 
field winding would be 

QFQDFDFFFccFbbFaafF iLiLiLiLiLiL +++++=λ   (4) 
The self inductance LFF may be written as 
just LF, resulting in 

QFQDFDFFccFbbFaafF iLiLiLiLiLiL +++++=λ   (5) 
We can express the flux linkages for the 
other windings in a similar way. Gathering 
these six equations into a single matrix 
relation results in  
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One notices the partitioning of the matrix in 
(6) into 4 different blocks. We identify these 
blocks by nomenclature and by whether they 
capture inductances between windings on 
the stator or on the rotor or between them: 
• L11 (stator-stator inductances): These give 

the self inductances of each phase winding 
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and the mutual inductances between each 
pair of phase windings. 

• L12 (stator-rotor inductances): These give 
the mutual inductances between each 
stator winding and each winding on the 
rotor. 

• L21 (rotor-stator inductances): These give 
the mutual inductances between each 
winding on the rotor and each stator 
winding. Note that L12=[L21]T. 

• L22 (rotor-rotor inductances): These give 
the self inductances of each rotor winding 
and the mutual inductances between each 
pair of rotor windings. 

 
5.0 Inductances 
 
The different inductances of (6)  
 
6.0 lj 
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