Synchronous Machine Modeling 1.0 Introduction

Our motivation at this point is to put you in a position to understand synchronous machine modeling for power system dynamic analysis.

If you take EE 457, you will be introduced to a conceptual treatment of power system dynamics using what is called the equal area criterion. This treatment is useful for thinking about how power systems respond during the first few seconds following a disturbance, and for understanding the main influencing factors behind power system dynamics. However, this treatment is not very useful for understanding the computer models that are used in time-domain simulation programs such as those offered by Siemens (PSS/E), GE, Powertech, and RTE-France (Eurostag).

Chapter 7 of your text does a reasonable job of introducing you to synchronous machine models. But I hope to improve on this with these notes. Please read both.

One last comment before we proceed. Working hard to understand this material will put you in a very good position to take EE 554 and do well in that course. EE 554 dedicates a full semester to study of synchronous machine models and other computer methods for simulation of power system dynamics. It is a good course, and I strongly recommend it.

What we are after here is a characterization of the machine dynamics. Because a synchronous machine is comprised of both electrical and mechanical dynamics, our interest can be expressed as "electromechanical dynamics." We will focus mainly on the electrical dynamics, leaving the mechanical dynamics for another course.

It is of interest that the underlying theory to our work was developed in 1929 by an employee of GE named Robert Park. Below is a snapshot of the first page of the papers that was published in relation to this work.

NAP5, Univxsity of Wateriag, Conade, Ocrober 23-24. 2000
Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis-Part I

BY R. H. PARE.
suaduce, A.I. 2. I.
 or hyslersin, sod val datribuan of armolirt phote m. ni. f. sfortinnly finsapida! as far as regandr ghmomese deprnimi span

 Spreish lataliad formular are nire smolsped stioh jewan the
 derisg aboting, and zhm only nool smistiph frow an avergge operibing angie ere inobim.

T
HIS paper prevents a generilisution and extersion of the wark of Blondel, Dreyfu, and Doherty and 'Niekle, and watablishes new and zeneral mathods of colculating carreat poivicr and toeque in salient" and aon-salient pole spuchronores mackinas, under both travelent and steady lond sonditoces.
Attention is reatrieted to symmetrical three-phase! machins with feld structure symmetrical abown the axis of the feld winding and intarpelar space, but salient poles and an arbitracy number of rotort circuits is corsidered.
Idenlization is reenried to, to the ectent that saturation and hysteresis in every magentic efreuit and eddy

currenta in the armature inon are neglected, and in the ascumption that, as f ar as soncerns effects dopend. ing on the pocition of tha rotor, each armature winding msy be regarded an, in wfact, simusoidally distributed.3 A. Eundanesial Circait Bruetiona

Consider the ideal synchronoss machine of Fia- 1, and let
 tady, N, T,
"Single-ptase mactions bay be reganded na thrne-phest medions with cas phase opas tiepalted.
t8lakor fee a mashina with stationary beld atrietare.

In adinian, nat and werv socurair equindend civonit oft Csalaped for apncironest ens orjweervows medións aperaing

It in proysend to nowhimes an analyar in
$i_{s} i_{i v i}=$ per unit Instantaneous phase eurrents
$\mathrm{Sn}_{4} \mathrm{fu} \mathrm{fo}_{0}=$ per unit instantaneous plase voliagea $\psi_{\text {at }} \psi_{\mathrm{h}} \psi_{1}=$ per unit instantaceoui phase liakages $f=$ time in ciectrical radians

$$
p=\frac{d}{d 4}
$$

Then there is

$$
\begin{align*}
& \epsilon_{2}=F \psi_{2}-r i_{2} \\
& \epsilon_{5}=F \psi_{4}-T i_{b} \\
& \epsilon_{\mathrm{r}}=F \psi_{\mathrm{c}}-T i_{4} \tag{t}
\end{align*}
$$

It has been shown proviously that
$\psi_{t}=L_{i} \cos \theta-L_{4} \sin \theta$

$$
-\frac{z_{0}}{3}\left[i_{2}+i_{5}+i_{n}-\frac{x_{4}+z_{2}}{s}\left[i_{4}-\frac{i_{0}+i_{2}}{2}\right]\right.
$$

$-\frac{z_{s}-z_{5}}{3} h_{2} \cos 2 \theta+i_{4} \cos (2 \theta-120)$
+i: $+i, \cos (2 \theta+120)$
$n=L_{i} \cos (9-120)-I_{4} \sin (9-120)$
$-x_{4} \frac{i_{5}+i_{3}+i_{2}}{\frac{1}{3}}-\frac{x_{i}+x_{4}}{3}\left[i_{5}-\frac{i_{2}+i_{5}}{2}\right]$
$-\frac{z_{4}-z_{8}}{3}\left(3 . \cos (2 \theta-120)+i_{9} \cos (2 \theta+120)\right.$
$+i, \cos 2$ g 9
$\psi_{4}=I_{t} \cos (6+120)$
$-I_{\mathrm{s}} \sin (\theta+120)-\pi_{8} \frac{i_{4}+i_{2}+i_{5}}{3}$
$-\frac{z_{4}+z_{8}}{8}\left[i_{4}-\frac{i_{4}+i_{5}}{8}\right]$
$-\frac{\pi_{4}-x_{4}}{3}\left[i, 000\{2 \theta+120]+i_{5} 0022 \theta\right.$
$+i, \cos (2 f-120)]$

2.0 Preliminaries

2.1 Assumed machine construction

We will conduct our modeling exercise for a two-pole salient machine. Results will be generalizable to a smooth rotor machine because such machines can be well approximated using a salient pole model together with proper designation of the machine parameters. Results will be generalizable to machines with $\mathrm{p}>2$ because such machines will have the exact same phenomena, except p/2 times/cycle.

2.2 Defined axes

The magnetic circuit and all rotor winding circuits are symmetrical with respect to the polar and inter-polar (between-poles) axes. This proves convenient, so we give these axes a special name:

- Polar axis: Direct, or D-axis
- Interpolar axis: Quadrature, or Q-axis These axes are shown in Fig. 1.

Figure 6.1 Gonerneor crota bection.
Fig. 1
The Q -axis is 90° from the D -axis, but which way is the choice of the modeler. But once that choice is made, you must stick with it. We will choose the Q -axis to lag the D-axis.

2.3 Machine windings

There are 5 physical windings on a synchronous generator.

- The 3 stator (phase) windings, denoted a, b, c.
- The main field winding, denoted F .
- So-called "amortessuer" (dead) windings exist on the pole-faces of salient pole machines, which produce damping currents that contribute to the magnetic field. We denote these windings with Q , since they will produce flux along the quadrature axis. Fig. 2 illustrates armortessuer windings.

Figure 5.2.13 A sketch of damper bars located on the salent-pole shoes of a synchronous machine.

Fig 2
Although the above covers all of the physical windings, it does provide for
modeling a component of flux along the D axis that is observed. This component of flux is similar to the component of Q -axis flux from the amortessuer windings in that it is observed only after disturbances. In fact, it comes from damping currents in the iron of the rotor.
So we MODEL a fictitious winding placed exactly like the main field winding. We denote this winding with D , since it produces flux along the direct axis.

Fig. 3 illustrates these windings.

Fig. 3

Each one of these windings will

- have a voltage across their terminals
- carry a current
- have a resistance
- see a flux linkage

Table 1 summarizes the notation to be used. Table 1

Winding	Voltage	Current	resistance	flux
a	v_{a}	i_{a}	r	λ_{a}
b	v_{b}	i_{b}	r	λ_{b}
c	v_{c}	i_{c}	r	λ_{c}
F	v_{F}	i_{F}	r_{F}	λ_{F}
D	v_{D}	i_{D}	r_{D}	λ_{D}
Q	v_{Q}	i_{Q}	r_{Q}	λ_{Q}

All voltages, currents, and flux linkages in Table 1 are instantaneous time-domain expressions. For example, v_{a} is really $\mathrm{v}_{\mathrm{a}}(\mathrm{t})$.

In addition, the voltage notation, relative to Fig. 2, are $v_{a}(t)=v_{a a^{\prime}}, v_{b}(t)=v_{b b^{\prime}}, v_{c}(t)=v_{c c^{\prime}}$, $\mathrm{v}_{\mathrm{F}}=\mathrm{V}_{\mathrm{FF}}, \mathrm{v}_{\mathrm{D}}=\mathrm{v}_{\mathrm{DD}}, \mathrm{v}_{\mathrm{Q}}=\mathrm{v}_{\mathrm{QQ}}$.

3.0 Voltage (electrical) equation

One important attribute of our work now is that we are not considering an open circuit. As a result, we must use v_{a} to account for the drop across the resistance due to the current, instead of just the open circuit voltage.

The circuit associated with each circuit, assuming voltages are applied (not generated) and currents flow into the circuit, are illustrated in Fig. 3. We can write a KVL equation for each circuit, resulting in:

Fig. 3

With an applied voltage, the internal (induced) voltage will oppose it, as shown in each circuit. Using KVL, we may write:

$$
\begin{aligned}
& v_{a}=i_{a} r+e_{a} \\
& v_{b}=i_{b} r+e_{b} \\
& v_{c}=i_{c} r+e_{c}
\end{aligned}
$$

$$
\begin{aligned}
& v_{F}=i_{F} r_{F}+e_{F} \\
& v_{D}=i_{D} r_{D}+e_{D} \\
& v_{Q}=i_{Q} r_{Q}+e_{Q}
\end{aligned}
$$

Each of the induced voltages is a result of the time derivatives of the flux linking the corresponding circuits. Modifying the above equations accordingly, we obtain

$$
\begin{aligned}
& v_{a}=i_{a} r+\frac{d \lambda_{a a^{\prime}}}{d t} \\
& v_{b}=i_{b} r+\frac{d \lambda_{b b^{\prime}}}{d t} \\
& v_{c}=i_{c} r+\frac{d \lambda_{c c^{\prime}}}{d t}
\end{aligned}
$$

In the above equations, each flux linkage is in a direction consistent with a current in
opposite direction to the defined current. For example, the flux linkage $\lambda_{a a^{\prime}}$ is in a downward direction, consistent with a current in a defined positive direction from a to a', as shown in Fig. 4.

Fig. 4
This convention is fine for the F, D, and Q circuits, because they either have voltage applied as indicated (in the case of F) or they are short circuited and have zero voltage (in the case of D and Q).

This convention is not fine for the phase windings, since the current is actually in the opposite direction, as shown in Fig. 5.

Fig. 5
With the current directions reversed for the phase windings, we need to change the signs of terms that depend on these currents. At the same time, we will multiply the F, D, and Q equations through by -1 to make all right-hand-sides look the same.

$$
\begin{aligned}
& v_{a}=-i_{a} r-\frac{d \lambda_{a a^{\prime}}}{d t} \\
& v_{b}=-i_{b} r-\frac{d \lambda_{b b^{\prime}}}{d t} \\
& v_{c}=-i_{c} r-\frac{d \lambda_{c c^{\prime}}}{d t}
\end{aligned} \left\lvert\, \begin{aligned}
& -v_{F}=-i_{F} r_{F}-\frac{d \lambda_{F F^{\prime}}}{d t} \\
& -v_{D}=-i_{D} r_{D}-\frac{d \lambda_{D D^{\prime}}}{d t} \\
& -v_{Q}=-i_{Q} r_{Q}-\frac{d \lambda_{Q Q^{\prime}}}{d t}
\end{aligned}\right.
$$

The D and Q windings have no voltage source but carry current ONLY when there is flux linkage variation. So their left-handsides must be zero. This results in:

$$
\begin{aligned}
& v_{a}=-i_{a} r-\frac{d \lambda_{a a^{\prime}}}{d t} \\
& v_{b}=-i_{b} r-\frac{d \lambda_{b b^{\prime}}}{d t} \\
& v_{c}=-i_{c} r-\frac{d \lambda_{c c^{\prime}}}{d t}
\end{aligned}
$$

We will change the flux-linkage notation to use only a single subscript:

$$
\begin{array}{l|l}
v_{a}=-i_{a} r-\frac{d \lambda_{a}}{d t} & -v_{F}=-i_{F} r_{F}-\frac{d \lambda_{F}}{d t} \\
v_{b}=-i_{b} r-\frac{d \lambda_{b}}{d t} & 0=-i_{D} r_{D}-\frac{d \lambda_{D}}{d t} \\
v_{c}=-i_{c} r-\frac{d \lambda_{c}}{d t} & 0=-i_{Q} r_{Q}-\frac{d \lambda_{Q}}{d t}
\end{array}
$$

Finally, we replace the differentiation notation from fractional form to dot-form:

$$
\begin{aligned}
v_{a} & =-i_{a} r-\dot{\lambda}_{a} \\
v_{b} & =-i_{b} r-\dot{\lambda}_{b} \\
v_{c} & =-i_{c} r-\dot{\lambda}_{c}
\end{aligned}
$$

$$
-v_{F}=-i_{F} r_{F}-\dot{\lambda}_{F}
$$

$$
0=-i_{D} r_{D}-\dot{\lambda}_{D}
$$

$$
0=-i_{Q} r_{Q}-\dot{\lambda}_{Q}
$$

Putting all these equations in a single vector relation, we have:

$$
\left[\begin{array}{c}
v_{a} \tag{1}\\
v_{b} \\
v_{c} \\
-v_{F} \\
0 \\
0
\end{array}\right]=-\left[\begin{array}{cccccc}
r & 0 & 0 & 0 & 0 & 0 \\
0 & r & 0 & 0 & 0 & 0 \\
0 & 0 & r & 0 & 0 & 0 \\
0 & 0 & 0 & r_{F} & 0 & 0 \\
0 & 0 & 0 & 0 & r_{D} & 0 \\
0 & 0 & 0 & 0 & 0 & r_{Q}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c} \\
i_{F} \\
i_{D} \\
i_{Q}
\end{array}\right]-\left[\begin{array}{c}
\dot{\lambda}_{a} \\
\dot{\lambda}_{b} \\
\dot{\lambda}_{c} \\
\dot{\lambda}_{F} \\
\dot{\lambda}_{D} \\
\dot{\lambda}_{Q}
\end{array}\right]
$$

In compact form, (1) becomes:

$$
\begin{equation*}
\underline{v}=-\underline{R} \underline{i}-\underline{i} \tag{2}
\end{equation*}
$$

where

$$
\begin{array}{lc}
\underline{v}=\left[\begin{array}{c}
v_{a} \\
v_{b} \\
v_{c} \\
-v_{F} \\
0 \\
0
\end{array}\right] \quad \underline{R}=\left[\begin{array}{cccccc}
r & 0 & 0 & 0 & 0 & 0 \\
0 & r & 0 & 0 & 0 & 0 \\
0 & 0 & r & 0 & 0 & 0 \\
0 & 0 & 0 & r_{F} & 0 & 0 \\
0 & 0 & 0 & 0 & r_{D} & 0 \\
0 & 0 & 0 & 0 & 0 & r_{Q}
\end{array}\right] \\
\underline{i}=\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c} \\
i_{F} \\
i_{D} \\
i_{Q}
\end{array}\right] \quad \underline{\lambda}=\left[\begin{array}{c}
\lambda_{a} \\
\lambda_{b} \\
\lambda_{c} \\
\lambda_{F} \\
\lambda_{D} \\
\lambda_{Q}
\end{array}\right]
\end{array}
$$

4.0 Flux-linkages

A beginning point for understanding how to express flux linkages will observe 3 facts:
Fact 1: $\lambda=\mathrm{Li}$
Fact 2: Each circuit will see a flux contribution from every current. Therefore, the flux linking a circuit will need to be computed from a summation of applications of Fact 1.
Fact 3: The flux contribution seen by a circuit from its own current is related to that current through the mutual inductance.

Therefore, if we have 6 circuits and number them 1-6, the flux linkage seen by any given circuit i will be

$$
\begin{equation*}
\lambda_{i}=\sum_{j=1}^{6} L_{i j} i_{j} \tag{3}
\end{equation*}
$$

The notation of (3) has

- L_{ii} is the self-inductance for circuit i .
- L_{ij} is the mutual inductance between circuit i and j .

However, we are using letters to denote each circuit, i.e., $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{F}, \mathrm{D}$, and Q.
Therefore, for example, the flux linking the field winding would be

$$
\begin{equation*}
\lambda_{F}=L_{a f} i_{a}+L_{b F} i_{b}+L_{c F} i_{c}+L_{F F} i_{F}+L_{F D} i_{D}+L_{F Q} i_{Q} \tag{4}
\end{equation*}
$$

The self inductance $L_{\text {FF }}$ may be written as just L_{F}, resulting in

$$
\begin{equation*}
\lambda_{F}=L_{a f} i_{a}+L_{b F} i_{b}+L_{C F} i_{c}+L_{F} i_{F}+L_{F D} i_{D}+L_{F Q} i_{Q} \tag{5}
\end{equation*}
$$

We can express the flux linkages for the other windings in a similar way. Gathering these six equations into a single matrix relation results in

$$
\left[\begin{array}{c}
\lambda_{a} \tag{6}\\
\lambda_{b} \\
\lambda_{c} \\
\hdashline \lambda_{F}^{-} \\
\lambda_{D} \\
\lambda_{Q}
\end{array}\right]=\left[\begin{array}{ccc:ccc}
L_{a} & L_{a b} & L_{a c} & L_{a F} & L_{a D} & L_{a Q} \\
L_{a b} & L_{b} & L_{b c} & L_{b F} & L_{b D} & L_{b Q} \\
L_{a c} & L_{b c} & L_{c} & L_{c F} & L_{c D} & L_{c Q} \\
\hdashline L_{a F}^{-} & L_{b F}^{-} & L_{c F}^{-} & L_{F}^{--} & L_{F D}^{-a} & L_{F Q}^{--} \\
L_{a D} & L_{b D} & L_{c D} & L_{F D} & L_{D} & L_{D Q} \\
L_{a Q} & L_{F Q} & L_{D Q} & L_{Q}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c} \\
i_{F}^{-} \\
i_{D} \\
i_{Q}
\end{array}\right]
$$

Or

$$
\left[\begin{array}{l}
\underline{\lambda}_{a b c} \tag{7}\\
\underline{\boldsymbol{\lambda}}_{F D Q}
\end{array}\right]=\left[\begin{array}{ll}
\underline{L}_{11} & \underline{L}_{12} \\
\underline{L}_{21} & \underline{L}_{22}
\end{array}\right]\left[\begin{array}{l}
\underline{\underline{i}}_{a b c} \\
\underline{\underline{i}}_{F D Q}
\end{array}\right]
$$

where
$\left[\begin{array}{l}\underline{\lambda}_{a b c} \\ \underline{\lambda}_{F D Q}\end{array}\right]=\left[\begin{array}{c}\lambda_{a} \\ \lambda_{b} \\ \lambda_{c} \\ \lambda_{F} \\ \lambda_{D} \\ \lambda_{Q}\end{array}\right]$
$\left[\begin{array}{ll}\underline{L}_{11} & \underline{L}_{12} \\ \underline{L}_{21} & \underline{L}_{22}\end{array}\right]=\left[\begin{array}{cccccc}L_{a} & L_{a b} & L_{a c} & L_{a F} & L_{a D} & L_{a Q} \\ L_{a b} & L_{b} & L_{b c} & L_{b F} & L_{b D} & L_{b Q} \\ L_{a c} & L_{b c} & L_{c} & L_{c F} & L_{c D} & L_{c Q} \\ L_{a F} & L_{b F} & L_{c F} & L_{F} & L_{F D} & L_{F Q} \\ L_{a D} & L_{b D} & L_{c D} & L_{F D} & L_{D} & L_{D Q} \\ L_{a Q} & L_{b Q} & L_{c Q} & L_{F Q} & L_{D Q} & L_{Q}\end{array}\right]$
$\left[\begin{array}{l}\underline{i}_{a b c} \\ \underline{i}_{\text {FDQ }}\end{array}\right]=\left[\begin{array}{c}i_{a} \\ i_{b} \\ i_{c} \\ i_{F} \\ i_{D} \\ i_{Q}\end{array}\right]$
One notices the partitioning of the matrix in (6) into 4 different blocks. We identify these blocks by nomenclature and by whether they capture inductances between windings on the stator or on the rotor or between them:

- $\underline{\mathrm{L}}_{11}$ (stator-stator inductances): These give the self inductances of each phase winding
and the mutual inductances between each pair of phase windings.
- \underline{L}_{12} (stator-rotor inductances): These give the mutual inductances between each stator winding and each winding on the rotor.
- \underline{L}_{21} (rotor-stator inductances): These give the mutual inductances between each winding on the rotor and each stator winding. Note that $\underline{L}_{12}=\left[\underline{L}_{21}\right]^{\mathrm{T}}$.
- \underline{L}_{22} (rotor-rotor inductances): These give the self inductances of each rotor winding and the mutual inductances between each pair of rotor windings.

5.0 Inductances

The different inductances of (6)
6.0 lj

