Bearing Life

The total number of revolutions, or the number or hours at a given constant speed, of bearing operation required for failure criteria to develop
failure criteria vary from vendor to vendor
Timken criterion-spalling or pitting of an area of $0.01 \mathrm{in}^{2}$

Rating life

The number of revolutions, or hours at some given constant speed, that 90% of a group of bearings will complete or exceed before failure.

Sometimes called the L_{10} life.

Bearing Load

$\left(L_{1} / L_{2}\right)=\left(F_{2} / F_{1}\right)^{a}$
L1 is the life of a bearing subjected to load, F1
L2 is the life of a bearing subjected to load, F2

L1 and L2 are given in either millions of revolutions, or hours at a given constant speed, in RPM
$a=3$ for ball bearings
$a=10 / 3$ for roller bearings
Average life -median lives of groups of bearings are averaged--somewhere between 4 and 5 times the L10 life.

Basic Load Rating

The constant radial load which a group of bearings can endure for a rating life of 1 million revolutions of the inner ring (stationary load and stationary outer ring).

The basic load road is used for reference only-the load required for a basic load rating is so high that plastic deformation would occur.
$C=F L^{(1 / a)}$

Most vendors had rather publish ratings of bearings corresponding to a certain number of hours of life at a specified speed.

Example:

Bearing is rated at 3000 hours at 500 RPM.
Say the radial load on a bearing is 2140 lb .
$\mathrm{L}_{10}=(3000 \mathrm{~h})(60 \mathrm{~min} / \mathrm{h})(550 \mathrm{rev} / \mathrm{min})=90 \mathrm{E} 6$ revolutions
The basic load rating would be:
$C=F_{r} L^{(1 / a)}$
$\mathrm{C}=2140(90)^{(3 / 10)}=8263 \mathrm{lb}$.

Suppose a designer has the following conditions:
Load $=F_{d}$, lb.
Design life $=L_{d}$, in hours
nd = required speed, RPM
How should she or he use vendor information to find a suitable bearing?
$\mathrm{Nd}=60 \mathrm{~L}_{\mathrm{d}}{ }^{*} \mathrm{n}_{\mathrm{d}}$ (the total number of design revolutions)
$\mathrm{Nr}=60 \mathrm{~L}_{\mathrm{r}}{ }^{*} \mathrm{n}_{\mathrm{r}}$ (the total number of revolutions the vendor's bearing)
$(\mathrm{Nd} / \mathrm{Nr})=(\mathrm{Fr} / \mathrm{Fd})^{a}$
or
$\mathrm{Fr}=\mathrm{Fd}(\mathrm{Nd} / \mathrm{Nr})^{(1 / \mathrm{a})}$
The engineer must find a bearing that has a rated load of at least this much.
Reliability
$R=\exp \left[-\left(\frac{L / L_{10}-.02}{4.439}\right)^{1.483}\right]$
How can we select a bearing for a specified reliability?
$\mathrm{L}=$ desired life
$R=$ desired reliability
$L_{10}=\frac{L}{.02+4.439[\ln (1 / R)]^{1 / 1.483}}$
$F_{R}=F_{d}\left\{\frac{\left(L_{d} n_{d} / L_{r} n_{r}\right)}{.02+4.439[\ln (1 / R)]^{1 / 1.483}}\right\}^{1 / a}$
$\mathrm{Fr}=$ catalog radial load corresponding to Lr hours of life at a rate speed of nr RPM
$\mathrm{Fd}=$ design load, with required life of Ld, at a speed of nd RPM
$F_{R}=F_{d}\left\{\frac{\left(L_{d} n_{d} / L_{r} n_{r}\right)}{4.8[\ln (1 / R)]^{1 / 1.5}}\right\}^{3 / 10}$
Tapered Roller Bearings.

Equivalent radial load, Fe

Compute the following:
$\mathrm{Fe}=\mathrm{V}^{*} \mathrm{Fr}$
$\mathrm{Fe}=\mathrm{XVFr}+\mathrm{Y} \mathrm{Fa}$
Choose the larger of the two
$\mathrm{Fe}=$ equivalent radial load
$\mathrm{Fr}=$ applied radial load
Fa = applied thrust load
$\mathrm{V}=$ rotation factor
rotating inner ring $\mathrm{V}=1$
rotating outer ring $\mathrm{V}=1.2$
Self aligning bearings, $\mathrm{V}=1$, regardless of which ring rotates
X and Y are geometry factors
X is a radial factor
Y is a thrust factor
To find X and Y
compute Fa/Co (thrust load/basic static load rating)
relate to reference value e
Compute Fa/Fr
Compare $\mathrm{Fa} / \mathrm{Fr}$ to e and choose X and Y accordingly.
(Table 11-2—page 460)

Sample problems:

A certain application requires a bearing to last for 1800 hours with a reliability of 96%. What should be the rated life for this application?

A certain ball bearing manufacturer's catalog ratings are based not on L10 life, but on average life. A certain bearing in this catalog has a rated load of 1570 lb . at a speed of 1800 RPM, and an average life of 3800 h . What is the basic load rating?

An 02 series ball bearing is to be selected to carry a radial load of 8 kN and a thrust load of 4 kN . The L10 life is to be 5000 h with the inner ring rotation of 900 RPM. What basic load rating should be used to select the bearing

