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Abstract—Timing resilient designs can remove variation mar-
gins by adding error detecting logic (EDL) that detects timing
errors when execution completes within a resiliency window.
Speeding up near-critical-paths during logic synthesis can reduce
the amount of EDL needed but at the cost of increasing logic
area. This creates a logic optimization strategy called resynthesis.
This paper proposes four alternatives to optimize resilient designs
through resynthesis. The first is a brute force approach that
explores speeding up all combinations of near-critical paths and
produces good results but is computationally impractical for
complex circuits. The second is a naive brute-force approach
in which near-critical paths are sped up one end-point at a
time. It is much faster than the brute-force approach because
it does not explore the benefits of speeding up multiple end-
points simultaneously and thus provides a quick-and-dirty lower
bound for the benefits of resynthesis. The third is a geometric
program based iterative algorithm (GPIA) that achieves area
reductions that compare favorably across all four approaches.
The GPIA algorithm completes within 24 hours for all examples
and the average area reduction is up to 16%. Because the run-
time required to solve this mathematical model can still be long,
however, we propose a fourth approach that involves creating a
virtual resynthesis cell library that tries to trick the synthesis tool
to understand EDL overhead and optimize total area quickly and
automatically. This approach obtains an average of approximately
2/3rds of the area reductions of the GPIA approach with fast run
times associated with only a single synthesis run.

I. INTRODUCTION

Traditional synchronous designs must incorporate timing
margin to ensure correct operation under worst-case delays
caused by process, voltage, and temperature (PVT) variations
and cannot take advantage of average-case path activity [1].
This is particularly problematic in low-power low-voltage
designs, as performance uncertainty due to process, voltage,
and temperature variations grows from as much as 50% at
nominal supply to around 2,000% in the near-threshold domain
[2]. To address this problem, many design techniques for
resilient circuits have been proposed.

For example, canary FFs predict when the design is close
to a timing failure (see e.g., [3], [4]). Designs can then
adjust their supply voltage or clock frequency either statically
or dynamically to ensure correct operation at the edge of
failure. Other resilient design techniques use extra logic to
detect and recover from timing violations [5], [6], [7], [8].
These techniques use a variety of error-detecting latches and/or
flip-flops, initiate replay-and-recovery or slow-down/stall the
pipeline in the case of errors, and span both synchronous and
asynchronous design styles. All resilient designs exhibit higher
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performance when there are no timing errors and gracefully
slow down in the presence of timing errors, thus achieving
a higher average-case performance than traditional worst-case
designs. This additional performance can then be traded off
for lower power via further voltage scaling.

Of particular importance to this paper is that the error
detecting logic (EDL) that is necessary to enable resilient de-
signs represents area and power overhead when compared with
traditional worst-case designs. Thus the error detecting logic
must represent a relatively small fraction of the design to not
overshadow the obtained average-case performance benefits.
Circuit and EDA techniques to minimize the EDL overhead
will thus be important for these techniques to flourish.

Our proposed EDA technique to minimize EDL is resyn-
thesis [8], [9] which involves speeding up near-critical-paths
during logic synthesis with a tighter max delay constraint to
reduce the amount of EDL needed at the cost of increasing
combinational logic area. The challenge in resynthesis is that
many paths share logic and it is not obvious which combination
of paths should be constrained to achieve the best gains. This
paper presents and compares four different approaches, a brute-
force, a naive brute-force, a gate-sizing-based iterative geo-
metric program, and a low complexity library based method,
that try to find the optimal combination of paths to constrain.
It extends two previous publications: [8] which, as part of
a complete design flow for resilient designs, introduces the
naive brute force approach; and, [10], which presents a formal
framework for area optimization of flop-based resilient designs
guided by a gate-sizing-based geometric program. Moreover,
this paper also shows how all the optimization approaches can
be applied to both flop and latch-based resilient designs.

The remainder of this manuscript is organized as fol-
lows. First, Section II reviews previous and related work on
optimizing resilient circuits. Section III describes a variety
of different error-detecting sequential latches and flip-flops
and their associated resiliency approaches. Section IV, then,
formalizes the minimum area resynthesis problem for resilient
designs. Section V describes the brute-force approach while,
Section VI then describes the more computationally practical
naive brute-force approach. Our gate-sizing-based iterative
geometric program based approach is described in Section VII,
and Section VIII presents our low-complexity library based
approach. Section IX presents our experimental results com-
paring all approaches, which is followed by some conclusions
presented in Section X.

II. RELATED WORK

Some related EDA techniques focus on minimizing the
probability of timing errors in resilient circuits [11], [12], [13],



[9], [14]; some focus on improving performance [15]; others
focus on minimizing power consumption [16], [17].

Liu et al. [11] proposed to reorder the fanins of logic gates
by their arrival time to reduce delays and lower timing errors.
Dynatune [12] optimizes throughput by selectively choosing
low Vth gates to speed up near-critical paths. Ye et al. [13],
Kahng et al. [9] and [14] all use clock skew scheduling
to reduce timing errors. Greskamp et al. [15] introduce two
techniques to speed up most frequently access near-critical
points: on-demand selective biasing which applies forward
body biasing to one or more gates and path constraint tuning
which reduces the delay of desired path at the expense of
other paths. For power optimization, Kahng et al. [16], [17]
use slack redistribution to optimize timing. In particular, they
use cell swapping and re-sizing to improve timing followed
by voltage scaling to trade the higher performance for lower
power.

In this work we instead are interested in reducing the
area of resilient designs. Other proposed EDA techniques that
focus on area reduction include [18], [8], [9]. Choudhury
et al. [18], rather than using error detecting logic to detect
errors, propose an error-masking solution that makes the design
immune to timing errors. [8], [9] and our proposed algorithms
use resynthesis to minimize area that consists of constraining
certain near-critical end-points to be non-near-critical and re-
running logic synthesis. As part of the Blade [8] resilient flow,
we explored a naive brute-force resynthesize method. Near-
critical paths are constrained one end-point at a time to find
the best single end-point to constrain during logic resynthe-
sis. Kahng et al. proposed sorting near-critical endpoints by
heuristic sensitivity functions and iteratively increasing the set
of endpoints to speed up [9]. They then chose the synthesized
resilient design with minimum overall area. Both methods
achieved significant area and performance benefits and were
demonstrated to be computationally practical but they lack
a formal model from which we can explore any notion of
optimality.

This paper first proposes a straight-forward but compu-
tationally expensive method to explore speeding up all pos-
sible combinations of near-critical end-points and pick the
combination that leads to the lowest overall area. We refer
to this approach as the brute-force approach. Unfortunately,
as the circuit size grows, the run-time quickly becomes too
high. This paper also evaluates the naive brute-force approach,
first proposed in [8], that only speeds up one near-critical
end-point at a time. This approach addresses the complexity
issue of the brute-force approach, but often leads to far from
brute-force minimum overall area results. This paper next
presents a mathematical optimization framework based on a
iterative geometric program. The program’s constraints capture
the shared logic among paths and thus more accurately guide
which particular near-critical-paths to speed-up compared to
the naive brute-force method. While lower complexity than
the brute-force approach, the run-time required to solve this
mathematical model can still be long, particularly for large
circuits. We therefore also introduce a virtual resynthesis cell
library approach in which modify the standard cell libraries
to trick the synthesis tools to automatically select between
normal sequential gates and EDL flops/latches. This method
has low-complexity, consisting of only one synthesis run, and

does effectively minimize total area of the circuit, including
the area overhead of the error detecting logic.

III. BACKGROUND

Resilient designs offer the promise to remove increasingly
large margins due to process, voltage, and temperature vari-
ations and take advantage of average-case data but require
extra error detecting logic to ensure correctness. In particular,
in addition to the regular sequential gates, resilient designs
usually require some form of shadow sequential gate for each
near-critical sequential element. If the value in the regular and
shadow sequential gate differ, there is a timing violation which
is corrected using either some form of architectural replay
or some form of clock-gating, power supply, or delay line
manipulation in the downstream logic.

There are variety of different timing-resilient templates
for both asynchronous [8], [19] and synchronous designs
[20], [5], [21], [22], but one can categorize them into two
groups: flop-based resilient templates and latch-based resilient
templates. Flop-based resilient templates preserve the property
of edge-sampling in the main datapath. Timing errors cannot
be accounted for by simply adjusting down-stream logic and,
instead, the correction involves some form of architectural
replay [20], [5], [21]. Latch-based resilient designs, on the
other hand, typically use the transparent phase of the latch
as the timing resiliency window (TRW) [8], [22], [23], si-
multaneously detecting an error and allowing the new data
to pass to the downstream pipeline stage. Consequently, these
designs can account for the late propagation of data by proper
adjustment to the timing of downstream stages.

To appreciate the range of overheads of the associated error
detecting logic, we review several of error detecting sequential
elements in more detail. Figure 1 shows three different resilient
flip-flops. The first is the Razor flip-flop [20], illustrated in
Figure 1(a). In Razor, each near-critical flop is augmented
with a shadow latch that is connected to a delayed clock.
Because of the delayed clock, the shadow latch will always
latch the correct input data. Thus, if data changes after the
clock rises, the output of flip-flop will differ from that of the
shadow latch and an error is asserted. When an error occurs,
the controller tries to re-execute the instruction to recover from
the error. The second is the TIMBER (Time Borrowing and
Error Replaying) flip-flop [5], shown in Figure 1(b), which has
two master latches (M0 and M1 ) and a slave latch. M0 and
the slave latch combine to form a regular flip-flop and M0
samples the value of D when CK rises and drives the slave
latch and Q. When CK falls, the transmission gate P0 will
open and the slave latch passes the value of Q. When there is
a timing violation, the value of M0 and M1 will differ and
the controller will trigger a pipeline flush and architectural
replay to resolve the error. The Razor-lite flip-flop [21] is
illustrated in Figure 1(c). It reduces the large overhead of Razor
flip-flop using a lightweight side-channel detection mechanism
that avoids adding circuitry to the clock and data pins of the
design at the cost of reduced noise margins. When the clock
rises, one of the virtual rails (V V DD or V V SS) will float
while the other remains connected to DN . If the value of D
changes while clock is high, the other virtual rail will connect
to DN and will subsequently (dis)charge through the feedback
inverter of the master latch, allowing a monitoring circuit to



(a) Razor flip-flop

(b) TIMBER flip-flop

(c) Razor-lite flip-flop

Figure 1: Flop-based resilient templates

detect the transition at D and an error will be detected via the
upper OR gate. Note here H stands for high transition voltage
and L stands for low transition voltage.

Figure 2 presents three different error detecting latches. The
first is the Bubble razor latch [22], shown in Figure 2(a), which
uses a shadow latch to detect timing errors. If data arrives after
the latches open, the error generation XOR will flag an error.
Then, control circuits act to recover from the error by pausing
the clock and inserting bubbles to neighboring stages. A bubble
causes a latch to skip its next transparent clock phase, giving
it an additional cycle for correct data to arrive. The second is a
time-borrowing error detecting latch used in Blade [8]. It uses
a latch, an XOR, a C-element, and a Q-flop, where the Q-flop
provides metastability-free sampling of the error condition.
If data changes after the latch becomes transparent, the Err
signal will be asserted. Blade resilient controllers resolve the
error by adding extra delay to the handshake with downstream
pipeline stages. The third is a delay-input-based (DIB) error-
detecting latch [23] shown in Figure 2(c). It consists of a rising
detecting circuit (RDC), a falling detecting circuit (FDC), and
an error generator (EG). It also relies on signal nDi, a delayed
complement of D. When there is a falling or rising transition
on D during detection window, MFD and MFN or MRD and
MRN will be simultaneously on for a short period of time
because of the long delay between D and nDi. FT will be
charged or RT will be discharged to assert the error. This
design can be amortized across many data inputs, reducing
the overhead significantly [23], but is more complex requiring
more dynamic nodes and, thus, may be less robust to noise
than its larger counterparts.

Figure 3 shows the clock timing diagrams of a resilient

(a) Bubble razor latch

(b) Blade latch

(c) DIB latch

Figure 2: Latch-based resilient templates

design that resolves errors with a single clock cycle penalty
(see e.g., [24]). In Figure 3(a), Instruction 1, shown in red,
launches at cycle 2 but its delay exceeds the clock period Π and
only settles in the subsequent timing resiliency window of size
W . The error detecting logic corrects this in the subsequent
cycle delaying the processing of Instruction 2 until clock cycle
4.

Resilient latch-based designs have more flexibility because
the time-borrowing capability of latches provides some inher-
ent resilience to timing variations. Figure 3(b) shows a latch-
based resilient design with two stages in a loop, where error-
detecting and time-borrowing stages alternate. φ represents
how long the latch is transparent and γ represents the non-
overlap period between neighboring latches. The figure illus-
trates the case of a timing violation detected while Stage 1
CLK is transparent. Such a violation occurs when the delay
of the combinational logic that feeds Stage 1 latches (i.e.,
between Stage 2 and Stage 1) exceeds φ2 + γ2 but is less
than φ2 +γ2 +φ1. To recover from the violation, as illustrated
in the figure, the rising edge of Stage 2’s CLK signal is delayed
by φ1.

IV. PROBLEM STATEMENT

In this section, we formally define our minimum area
resiliency-aware resynthesis problem. We are given a gate-level
VLSI circuit with combinational gates (C), and sequential gates
(S) and a desired speculative window (W). Each gate has a list
of input/output pins (I/O) and a list of fanout gate and pin pairs
(FO). Each input pin of a gate has a delay (D), and a fanin gate
(FI). We consider both flop-based and latch-based designs as



(a) Flop-based resilient designs

(b) Two phase latch-based resilient designs

Figure 3: CLK timing diagrams for resilient designs

illustrated in Figure 3. For the flop-based designs we assume
every pipeline stage is error-detecting as in Figure 3(a) and
for the latch-based designs, as proposed in [8], we assume
that the clock cycle of resilient latch-based design starts with
one error-detecting stage and is followed by zero or more time-
borrowing stages. Even in the error-detecting stages, only those
sequential gates that are near-critical need be error-detecting.

To formalize this more, every gate i is given an arrival
time (Ti) at its output. We calculate the arrival time of each
combinational gate i ∈ C as follows:

Ti = max∀k∈I(i)(Dik + TFI(ik)) (1)

where Dik is the pin-to-pin delay from the k fanin of i to its
output.

The sequential gates can be flip-flops or latches. A flip-flop
or latch i in an error detecting stage marks the beginning of a
clock period and its arrival time is

Ti = Di, (2)

where, Di represents the clock to Q delay. Based on the clock
timing diagram of latch-based designs in Figure 3(b), for a
latch i in time-borrowing phase j > 1 with data input l, the
arrival time equation is:

Ti = Di +max(

j−1∑
k=1

(φk + γk), Tl) (3)

Here, the summation calculates the time when latch i opens
and Tl is the arrival time of the data input to latch i. Tl will be
greater than summation only when time-borrowing happens.

All latches in time-borrowing stages (j > 1) with data
input l also have a setup time constraint:

Tl ≤
j−1∑
k=1

(φk + γk) + φj . (4)

whereas the setup time constraint for a flip-flop or latch in an
error-detecting stage i with data input l is

Tl ≤ P (5)

where P is the max delay between error-detecting stages.

It is important to emphasize that all sequential gates in a
non-error-detecting stage must not be error-detecting, but every
sequential gate in an error-detecting stage may or may not be
error-detecting. We, thus, introduce a binary variable ej whose
value is determined by whether the jth sequential element must
be error detecting or not. In particular, the determination of
whether the jth sequential element must be error-detecting or
not is based on the arrival time of its input. If the arrival time
of its data input is prior to the speculation window, the paths
that end at this sequential element are not near critical and
the sequential element need not be error-detecting, i.e., ej =
0. Otherwise, the arrival time must be within the resiliency
window [(P −W ), P ] and the sequential element is deemed
near-critical and must be error-detecting, i.e., ej = 1. More
mathematically, for a flop or a latch j in an error-detecting
stage with data input l, we have

ej =

{
1, if Tl ≥ P −W,
0, otherwise

(6)

Note that in latch-based resilient designs the resiliency window
W is often set to the transparency phase of the error-detecting
latch.

We create a variable E in Equation (7) to represent the
array of all e variables and we assume there is a function
Y (E) which returns the minimum logic area needed to satisfy
the above timing constraints given the assignment of sequential
gates to error-detecting or not.

E = [e1, e2, ..., en] (7)

Our approach assumes the relative additional cost associ-
ated with each latch or flip-flop that must be error detecting is
a constant X , whose value can be set based on the resiliency
scheme adopted and the specific choice of error-detecting
sequential gate adopted. In particular, our area model is:

min (Y (E) +X ∗
∑
ej∈E

ej) (8)

The first part of the model is the sum of the total logic area
of all gates assuming all sequential elements are not error
detecting. The second part of the model is the area overhead
associated with the subset of sequential gates that must be error
detecting. As illustrated in Section III, the specific structure of
the error-detecting latches/flops vary among resilient designs
and, consequently, have different associated overheads. For



example, the time-borrowing transition detection latch illus-
trated in Figure 2(b) has an area overhead of approximately
2X that of regular latch, where as the DIB template in Figure
2(c) has an amortized area overhead of only about 0.5X that
of regular latch [23]. For these reasons, our experiments are
conducted with a range of different values of X representing
low, medium, and high values of the area overhead. Namely,
we choose X to be 0.5, 1, and 2 times the area of a minimum-
sized sequential gate. These settings are referred to as low,
medium, and high overheads.

We can now define the minimum area resiliency-aware
resynthesis problem as finding the assignment of E that
achieves the minimum total area (8) subject to the above timing
constraints (6). Equations (1)-(2) and (5)-(8) apply to flip-
flop-based designs and Equations (1)-(8) apply to latch-based
designs.

Unfortunately, the worst-case number of assignment to E is
2‖S‖ and finding the best assignment is non-trivial, particularly
because the sharing of paths in the combinational logic favors
some combinations and makes others unrealizable. Hence, in
this manuscript, we describe four different approaches aimed
at solving this problem.

V. BRUTE-FORCE APPROACH

As a pre-cursor to running resynthesis, we have the logic
synthesis tool generate the list of end-points that are near-
critical and thereby need to be terminated with EDL. The
brute-force approach consists of running many resynthesis
runs, each speeding up a different combination of near-critical
end-points by constraining them to have arrival times before
the timing resilient window begins. In addition, we constrain
all non-near-critical end-points to remain non-near-critical.
When the number of near-critical end-points is small, we can
explore speeding up all their possible combinations. However,
when the number of near-critical end-points grow, the number
of resynthesis runs needed to explore all combinations is too
high and this approach looses practicality. In particular, the
complexity of the brute-force algorithm in terms of the number
of resynthesis run is O(2‖NCE‖) where NCE represents the
number of near-critical end-points. It is, thus, useful only as a
baseline approach. In particular, the result is optimal if any area
gains associated with relaxing the constraints on the originally
non-near-critical end-points is negligible. Figure 4 shows all
combinations of speeding up near-critical end-points of the
ISCAS89 benchmark circuit s1196 [25]. After synthesis, there
are 3 near-critical end-points which requires 7 combinations
resynthesis run; however, two combinations in the plot overlap
making only 6 points visible. The best point, highlighted
in red, yields a 0.88 area ratio, and 0.25% improvement in
error rate. In particular, the error-rate is use-case dependent
and defined as the portion of simulation cycles in which
timing errors occur. Errors can be triggered by different sets
of error-detecting sequential gates and the number of such
sets is exponential in the number of error-detecting sequential
elements. Note that the potential benefits of this resynthesis
approach will heavily depend on the initial timing constraints,
i.e. a design that is already tightly constrained cannot easily be
constrained further to achieve area and performance benefits.

Figure 4: Area ratios and error rate changes via the brute-force
method on circuit s1196

VI. THE NAIVE BRUTE-FORCE APPROACH

The naive brute-force approach is similar to the brute-force
approach in that we first have the synthesis tool generated
a list of near-critical end-points. However, the naive brute-
force approach explores the impact of tightening the timing
constraints of only one near-critical end-point at a time. In
particular, for each near-critical end-point, we constrain it
to complete before the timing resilient window begins and
resynthesize the design, that is we force Tl ≤ P − W .
This approach is not optimal because it does not explore re-
constraining combinations of end-points, but the number of
resynthesis runs grows linearly with the number of near-critical
end points, ensuring the approach remains computationally
tractable.

Although the combinational area may increase due to the
tighter constraint on the chosen end-point, this overhead can
be offset if multiple flops/latches that were slated to become
error-detecting are, after resynthesis, no longer near-critical. In
particular, it is important to emphasize that the high degree of
shared paths in the combinational logic makes it challenging to
estimate the reduction in the number of end-points that are ac-
tually sped up after each resynthesis run, i.e., constraining one
near-critical latch/flop to become non-near-critical may also
speed up many other near-critical latches/flops. We also note
that the reduction of EDL combined with faster combinational
logic may lead to a reduced frequency of timing violations
during simulation, which improves the average performance
of the circuit.

Figure 5 shows the results of naive brute force re-
constraining the various near-critical end-points of the IS-
CAS89 benchmark circuit s9234 [25]. The best point, high-
lighted in red in Figure 5, makes 23 near-critical end-points
non-critical, yielding a 0.86 area ratio and a 0.37% improve-
ment in error rate. This approach, first presented in [8], while
not optimal, served as simple and effective way to ascertain if
significant benefits can be obtained with resynthesis. We note
that extensions of this approach that either blindly iterate re-
synthesis [8] or use heuristics to guide which additional end-
points to constrain [9] are also possible but outside the scope
of this paper.



Figure 5: Area ratios and error rate changes via the naive brute-force
method on circuit s9234

VII. GATE-SIZING MODEL-BASED AREA OPTIMIZATION
APPROACH

In this section, we solve the minimum area resiliency-aware
resynthesis problem using a gate-sizing based model of delay
and geometric programming. Geometric programming enables
large-scale non-linear mathematical problems to be solved, but
requires both the objective function and the inequality con-
straints to be posynomial [26], [27]. In particular, a posynomial
is a function of the form

f(x1, x2, ..., xn) =

K∑
k=1

ckx
a1k
1 ...xank

n

where all the coordinates xi and coefficients ck are positive real
numbers, and the exponents aik are real numbers. Posynomials
are closed under addition, multiplication, and non-negative
scaling. The complexity of geometric program is polynomial
of the number of variables and constraints in the program.

Section VII-A shows how we formulate the resynthesis
problem described above as a mixed integer geometric pro-
gram. Section VII-B, then, explains how we efficiently solve
the mixed integer geometric program by relaxing the integer
variables to be real and using an iterative geometric program
to find, what our experiments indicate are, close to integer
solutions.

A. Mixed Integer Geometric Program Formulation

In this section, we remodel the mathematical problem in
Section IV into a geometric program by modeling the generic
mapping function of timing constraints to area Y using a
gate-sizing-only optimization model. We are given a gate-level
VLSI circuits with combinational (C) and sequential (S) gates
with gate sizes (z). Each gate has a nominal area (A), a list of
input/output pins (I/O) and a list of fanout gate and pin pairs
(FO). Each input pin of a gate has a nominal resistance (R), a
nominal input capacitance (Cin), and a list of fanin gates (FI).
The delay Dik of the kth pin of gate i with size zi is modeled
using an Elmore delay model:

Dik = µ ∗ Rik

zi
∗

∑
jl∈FO(i)

Cinjl ∗ zj (9)

in which zi = 1 represents the nominal size of the gate and µ
is a constant scaling factor, typically set to 0.69.

Recall that in Section IV we introduced a binary variables
ej that determines if sequential element j need be error-
detecting. This variable is governed by the constraint:

Ti −W ∗ ej ≤ P −W, (10)

where i is the data input of the jth sequential element. That
is, ej can be 0 only if the arrival time at i is prior to the
speculative window. Moreover, if ej is 1, the arrival time i must
still be before the cycle time P . Unfortunately, the subtraction
on the left hand side of the constraint makes the constraint not
posynomial [27].

To address this problem, we perform a change of variables,
introducing a new variable ne as follows:

ej = 2− nej , 1 ≤ nej ≤ 2, ∀j ∈ S (11)

The delay constraint now becomes

Tj +W ∗ nei ≤ (P +W ), (12)

which is posynomial.

Substituting nej into the EDL portion of the objective
function described in Equation (8) yields:

X ∗
∑
j∈S

(2− nej),

which is unfortunately also non-posynomial. We thus make
an approximation to the objective function, creating the com-
plete mixed integer geometric program for flop-based resilient
designs as follows:

Minimize (
∑

i∈C,S

(Ai ∗ zi) +X ∗
∑
j∈S

(
2

nej
− 1)) (13)

Subject to:

Dik = µ∗Rik

zi
∗

∑
jl∈FO(i)

Cinjl∗zj , ∀k ∈ I(i) ∀i ∈ C, S (14)

{
Ti ≥ max∀k∈I(i){(Dik + TFI(ik))}, ∀i ∈ C
Ti = Di, ∀i ∈ S

(15)

Tj +W ∗ nei ≤ (P +W ), ∀i ∈ S, j ∈ FI(i) (16)

Bounds: {
LBi ≤ zi ≤ UBi, ∀i ∈ C
zi = 1, ∀i ∈ S

(17)

1 ≤ nei ≤ 2, ∀i ∈ S, nei ∈ Z (18)

0 ≤ Ti ≤ P, ∀i ∈ C, S (19)

More specifically, the EDL part of the modified area cost
function for sequential element i is changed from the non-
posynomial form 2− nei to the posynomial form (2/nei - 1).
This keeps the cost function the same for all possible (integer)
values of nei. In particular, when ei is 1, nei will be 1 and
(2/nei - 1) will remain 1 as ei. When ei is 0, nei will be 2
and (2/nei -1) will be 0 as ei.



iteration = 0; L = 1; H = 2;
while(L < H){

if(Solution_found) {
if all (ne_j == 1 || ne_j == 2) break;
L = lth * iteration + 1;
H = 2 - hth * iteration;
foreach j in sequential gates {

if(ne_j <= L) ne_j = 1;
else if(ne_j >= H) ne_j = 2;

}
iteration++;

} else
AllowHighCostNegativeSlack();

}
%cross each other
L = lth * (iteration - 1) + 1;
H = 2 - hth * (iteration - 1);
Middle = (L + H) / 2;
foreach j in sequential gates{

if(ne_j <= Middle) ne_j = 1;
else ne_j = 2;

}

Figure 6: Pseudo-code of the geometric program based iterative
algorithm (GPIA)

Note that the constraints in Equations (14) and (15) imple-
ment the same Elmore delay model described above and the
arrival time equations described in Section VII-A. Moreover,
Equations (17) and (18) show the bounds of all variables that
can be set to avoid unrealistic changes in size.

To extend this formulation to latch-based resilient designs,
we add the constraints of the arrival time and the setup time
defined in Equations (3)-(4) to the above formulations.

B. Geometric Program Based Iterative Algorithm (GPIA)

The integral constraint on nei generally adds significant
computational complexity to the mathematical program be-
cause they are typically handled using computationally expen-
sive branch-and-bound techniques [26]. To address this, we
propose a more efficient solution allowing these variables to be
any real value between 1 and 2 within an iterative outer loop.
In particular, after each iteration, we use a high threshold and
low threshold to force some nei variables to integer values for
future iterations. After setting some variables to be integral,
we squeeze the high and low thresholds closer together and
repeat. We iteratively run the geometric program until the high
threshold and low threshold cross or all ne variables are set
to integer values. The pseudo-code of this relaxation-based
algorithm is shown in Figure 6.

Figure 7 shows an example of how the high and low
thresholds are varied across iterations. If the high threshold
step (Hth) is 0.1 and low threshold step (Lth) is 0.2, then if
value of ne variables from 1st run is greater than 1.9 (less
than 1.2), the ne variables will be fixed to 2 (1) for the next
iteration. In the second iteration, we force ne variables greater
(less) than 1.8 (1.4) to be 2 (1). In this example, the maximum
number of iterations is 4 because at this point the high and low
thresholds cross. When high and low threshold cross, we find
the mid-point by averaging the high and low thresholds of the
previous iteration. Then, if the variable ne is greater than the
mid-point, ne is set to 2. Otherwise, it is set to 1.

Figure 7: Example of how high and low thresholds vary across
iterations

The threshold steps may play an important role on the
quality of the results. Iterations with small threshold steps
might have more similar critical paths as the solution with
integer variable of ne. However, this comes at the cost of
needing more iterations and thus higher runtimes. On the other
hand, larger threshold steps can lead to reduced runtimes but
have a higher chance to lead to ne variables that have larger
differences from the values obtained by the integer program.

C. Calculating Gate Resistance and Capacitance

Note that, in the geometric programs, we use the Elmore
delay model discussed in Section VII. For each gate in the
original synthesized netlist, we obtain its nominal area (A)
from the synthesis library. For each pin of each gate, we obtain
its nominal input capacitance from the synthesis library and
its nominal pin-to-pin delay from the initial synthesis timing
report. We, then, use our Elmore delay model with z = 1 to
back-calculate the nominal resistance (R) of each pin of each
gate. Based on this pin-to-pin model, the geometric program
can calculate the delay with different sizes.

VIII. VIRTUAL RESYNTHESIS CELL LIBRARY APPROACH

This section proposes an alternative optimization approach
that involves creating a virtual resynthesis cell library that
essentially tricks the synthesis to automatically select between
normal and error-detecting sequential gates in error-detecting
pipeline stages. For latch based designs, we triple all latches in
the cell library. The latches in the first group, the non-error-
detecting sequential gates in error-detecting pipeline stages,
are the normal sequential gates whose setup times are adjusted
to make sure the data arrives before the resiliency window W
begins.

The latches in the second group, the error-detecting se-
quential gates, have their area modified to include the expected
EDL overhead. For example, for the high-area overhead model
(X = 2), the area of sequential gates in the second group is
tripled. The latches in the third group, the normal sequential
gates, are for non-error-detecting pipeline stages and are the
original and unmodified sequential gates given in the standard-
cell library. Similarly, for flop-based designs, we double all
flops in the cell library, creating error-detecting versions with



high area and non-error detecting versions with high setup
times.

In the synthesis tool, we map all sequential gates in non-
error-detecting pipeline stages to the regular sequential gates
and we let the tool choose either the error-detecting or non-
error-detecting sequential gates for all error-detecting stages.
This method has low complexity requiring only one synthesis
run and will effectively minimize total circuit area, including
the area overhead of the error detecting logic.

It may be useful to contrast this approach to the three ap-
proaches described above. To overcome the fact that commer-
cial synthesis tools do not inherently understand the overhead
of EDLs, the brute-force approaches are designed to directly
assign which sequential gates will be error-detecting. They
have to re-run synthesis to evaluate each combination, leading
to either sub-optimality due to not exploring all combinations
or impractically long run-times. As a compromise, our geomet-
ric program model uses a restricted model of synthesis based
on gate-sizing to guide which sequential gates should be error-
detecting. Because synthesis tools employ far more than gate-
sizing during synthesis, this approach is also suboptimal. The
virtual resynthesis cell library approach solves this problem,
enabling the synthesis tool to understand the overhead of EDLs
and the timing constraints associated with their use. Thus,
in principle, it enables the choice of which sequential gates
to be error-detecting in the context of the full suite of logic
optimizations.

In practice, however, we must recognize that synthesis tools
are not typically asked to pick between such widely differing
sequential gates and thus may not be designed to do this well.
The results of resynthesis may, thus, depend on the specific
logic synthesis tool used and the proprietary algorithms sur-
rounding sequential gate selection and optimization. Moreover,
depending on the optimization algorithms of the synthesis tool,
the starting point of resynthesis may have an impact on the
results, a point we explore in our experimental results. In
particular, we can initially map all sequential gates in error
detecting pipeline stage to either error-detecting, non-error-
detecting, or a mix of error-detecting/non-error-detecting gates
based on timing. During re-synthesis, the synthesis tool must
focus on area reduction when all the latches are initially error-
detecting gates and on fixing timing violations when all the
latches are initially mapped to non-error-detecting gates.

IX. EXPERIMENTAL RESULTS

We implemented the four proposed approaches using Perl
and TCL scripts that interface a leading commercial logic
synthesis tool to the YALMIP Geometric Program solver
for MATLAB (version 2013b) [26] and evaluated them on
both flop and latch-based ISCAS89 benchmark circuits. All
experiments were run on two Intel Xeon E5-2450 v2 CPUs
with total 32 threads and 32GB of RAM. We compare the
area reduction obtained through the four approaches using
three different estimates of EDL overheads as described in
Section IV. Section IX-A presents detailed information of our
circuit examples and Sections IX-B through IX-D describe the
experimental setup for all four approaches. The resulting area
reductions are then described and compared in Section IX-E.

Table I: Circuit information of flop-based designs

Circuit Circuit Size P Area ‖NCE‖ Error-
‖C‖ ‖S‖ (ns) Orig. Resilient (H/M/L) rate

s1196 331 18 0.35 343 367 / 355 / 349 3 0.25%
s1238 415 18 0.5 267 283 / 275 / 271 2 0%
s1423 454 74 0.6 491 763 / 627 / 559 34 0%
s1488 318 6 0.4 248 296 / 272 / 260 6 4.35%
s5378 809 164 0.45 1029 1405 / 1217 / 1123 47 0.79%
s9234 530 132 0.5 789 1301 / 1045 / 917 64 0.52%

s13207 1562 460 0.5 2496 2712 / 2604 / 2550 27 0.18%
s15850 1935 448 0.8 2687 3303 / 2995 / 2841 77 3.31%
s35932 5443 1728 0.6 9582 12702 / 11142 / 10362 390 14.98%
s38417 5752 1490 0.7 8720 12328 / 10524 / 9622 451 0.04%
s38584 6684 1248 0.7 7975 9583 / 8779 / 8377 201 69.79%

Table II: Circuit information of latch-based designs

Circuit Circuit Size Area ‖NCE‖ Error-
‖C‖ ‖ES‖ ‖NES‖ Orig. Resilient (H/M/L) rate

s1196 331 18 19 322 362 / 342 / 332 5 18.29%
s1238 415 41 18 264 448 / 356 / 310 23 19.44%
s1423 454 74 93 549 949 / 749 / 649 50 14.67%
s1488 318 6 23 235 283 / 259 / 247 6 23.64%
s5378 809 164 187 964 1468 / 1216 / 1090 63 97.79%
s9234 530 132 169 769 1297 / 1033 / 901 66 2.66%

s13207 1562 460 520 2334 2902 / 2618 / 2476 71 25.8%
s15850 1935 448 518 2646 3958 / 3302 / 2974 164 9.93%
s35932 5443 1728 689 8933 11237 / 10085 / 9509 288 87.49%
s38417 5752 1490 1662 8048 14872 / 11460 / 9754 853 93.39%
s38584 6684 1248 1318 7387 12787 / 10087 / 8737 675 99.97%

A. Circuit Information

For each benchmark circuit, we set the maximum delay
through combinational logic, P , to achieve a reasonable num-
ber of initial near-critical end-points and we set W to 0.3P ,
modeling a resiliency window that is 30% of the max delay
between error detecting pipeline stages.

Table I shows the size of benchmark circuits that we use to
evaluate flop-based resilient design techniques, the maximum
delay used for synthesis, and how many end-points are near-
critical after synthesis (NCE), i.e., whose static worst-case
delay is larger than P - W . The table also shows the circuit
area before and after adding resiliency, considering high,
medium, and low EDL overheads. Lastly, it lists the error-
rate of each circuit as the percentage of simulation cycles for
which at least one end-point settles within W of the end of
the clock period when simulating the circuit with random input
patterns.

For latch-based resilient designs, we focus our experiments
on two-phase latch-based designs in which every other pipeline
stage is error-detecting, as proposed in [8]. The maximum
delay P used for synthesis is the same as each flop-based
design. Table II shows the size of the chosen benchmark
circuits, including the number of combinational gates, latches
in error detecting pipeline stages (ES), which are not retimed
and will not time-borrow, and latches in non-error-detecting
pipeline stages (NES), which are retimed and will time-borrow
up to time W . It also identifies how many end-points are
initially near-critical. Except for s1238, the number of ES is
the same as number of flops in flop-based design. In s1238, we
added an error-detecting stage of master latches to the primary
outputs to fix violating timing constraints.



Table III: Near-critical end-point reductions for BF and NBF tech-
niques. (T: # of endpoints with tightened constraints Act: # of
endpoints that actually became not near-critical)

Circuit

Near-critical End-point Reduction
Flop-based Designs Latch-based Designs

BF NBF BF NBF
T Act. T Act. T Act. T Act.

s1196 2 3 1 2 2 3 1 1
s1238 2 2 1 3 TO TO 1 1
s1423 TO TO 1 2 TO TO 1 10
s1488 2 2 1 2 0 0 1 0
s5378 TO TO 1 2 TO TO 1 15
s9234 TO TO 1 20 TO TO 1 14
s13207 TO TO 1 10 TO TO 1 19
s15850 TO TO 1 9 TO TO 1 35
s35932 TO TO 1 109 TO TO 1 2
s38417 TO TO 1 46 TO TO 1 91
s38584 TO TO 0 0 TO TO 1 79

B. Brute Force and Naive Brute Force Approaches

In the brute-force (BF) method, we tightened each com-
bination of near-critical end-points and report the best area
reduction among all combinations; while in the naive brute-
force (NBF) method, we tightened each near-critical end-point
independently and report the best area reduction among all
end-points. In particular, we tighten near-critical end-points by
adding set max delay timing constraints on those paths/end-
points to constrain them to be indeed non-near-critical after
resynthesis with the commercial synthesis tool. However, since
the synthesis tool does not understand EDL area overhead, it
may actually slow down existing non-near-critical paths to op-
timize logic area and these paths might then require EDL and
its associated overhead. Hence, we also force those non-critical
paths to remain non-critical using additional set max delay
constraints in the brute-force case. We did not force those
non-critical paths to remain non-critical in naive brute-force
method because we want to keep the same settings as in [8]
to be faithful to the previous work.

Table III shows data for the combination identified by both
the BF and NBF methods for both flop and latch-based design
examples. For each identified combination, we report the #
of end-points tightened (T) and the actual # of end-points
made not near-critical by resynthesis (Act). The sometimes
high difference between these two numbers suggests that there
is a large number of shared logic paths between tightened and
un-tightened end-points. The area ratios associated with these
identified combinations are shown later in this section. Due to
the high complexity of the brute-force approach, it completed
only on the smallest three circuits. The larger circuits timed
out, denoted TO, after 24 hours of wall clock time.

C. Geometric Program Based Iterative Algorithm Approach

Our geometric program based iterative algorithm (GPIA)
mathematically determines which near-critical paths should be
sped up to minimize area. As with the brute-force technique,
we use set max delay timing constraints to both speed-up the
identified near-critical end-points and force non-critical paths
to remain non-critical.

To calculate a gate’s upper and lower sizing bounds, we
compare the current size to the minimum/maximum size of
gates with the same functionality. For example, let the area of
gate i in the gate-level netlist be Ai and assume all gates with
same functionality have a minimum size with area (min Ai)

and maximum size with area (max Ai). Then, LBi and UBi

will be calculated in (20).

LBi =
min Ai

Ai
; UBi =

max Ai

Ai
; (20)

To analyze the impact of different threshold settings for the
GPIA, Table IV shows the area ratio from the integer program,
and clocked run-time of five different threshold settings and the
MIGP for the high EDL overhead case: A (Hth = 0.1, Lth =
0.4), B (Hth = 0.05, Lth = 0.2), C (Hth = 0.4, Lth = 0.1),
D (Hth = 0.2, Lth = 0.05), E (Hth = 0.2, Lth = 0.2). The
area ratios of the iterative algorithm are all similar to that of the
mixed integer geometric program but faster by an average of
5 times. This suggests our iterative algorithm is an effective
approach to solve the MIGP and is somewhat robust to the
choice of thresholds. In some circuits, the area reduction of the
iterative program is better than the integer program. This may
be because of differences in logic synthesis optimizations other
than gate sizing, such as restructuring and repeater insertion.
Note that we use the Hth = 0.05 and Lth = 0.2 setting
when we compare this approach to the other approaches below
because it achieves reasonable runtime and similar results to
the integer program.

Our GPIA technique only models gate-sizing based resyn-
thesis; however, the synthesis tools are not constrained to
use only gate-sizing, and can optimize the design using other
techniques, such as restructuring and buffer insertion. Table V
shows the area ratio obtained after resynthesis applying the
assignment of EDLs E obtained from the GPIA algorithm, as
well as the expected area ratio as measured by the change in
the geometric program’s cost function. It is quite interesting
to note that the area ratios from GPIA closely match that
predicted by its cost function. This suggests that, at least for
larger circuits, our gate-sizing model is an effective predictive
model for resynthesis. For smaller circuits, on the other hand,
the model seems to be less accurate. This may be due to the
fact that for such circuits the decision of whether or not a
single end-point should be error-detecting can make a large
difference in the area reduction.

D. Virtual Resynthesis Library Approach

For the virtual resynthesis cell library method, after regular
synthesis, all end-points are mapped to regular sequential gates
with the unmodified cell library, regardless if the end-point is
near-critical or not. The first input netlist setting we explored
(VLN) is where we do not change the input netlist before
reading in the virtual library. Thus, all end-points will be
mapped to nonEDL sequential gates before we re-compile the
netlist. Because these nonEDL gates now have setup-times
that mimic the TRW, timing at near-critical endpoints will be
violated. Hence, during re-synthesis, the synthesis tool needs
to perform timing optimization to fix such timing violations.
The second input netlist setting (VLE) is where change all end-
points to end with EDL. These EDL gates have higher area
but do not have higher setup-times. The synthesis tool can
now reduce area by smartly mapping some non-near-critical
end-points back to nonEDL sequential gates while optimizing
the combinational logic accordingly. The third input netlist



Table IV: Area ratio and run-time of the MIGP approach and the GPIA approach with different threshold settings for flop-based designs with
high EDL overhead

Circuit Area Ratio Clock Run-time
A B C D E MIGP A B C D E MIGP

s1196 0.89 0.89 0.89 0.89 0.89 0.89 29s 46s 43s 4.4m 1.2m 1m
s1238 0.92 0.92 0.92 0.92 0.92 0.92 49s 99s 49s 1.2m 1.6m 4m
s1423 0.77 0.77 0.68 0.68 0.68 0.68 41s 83s 1.4m 11.7m 6.6m 19m
s1488 0.98 1.00 1.03 0.96 0.96 0.92 52s 85s 1.1m 3.2m 10.2m 1.5m
s5378 0.77 0.77 0.75 0.75 0.75 0.75 2.6m 3.7m 3.4m 9.4m 7.4m 1hr
s9234 0.73 0.73 0.68 0.68 0.68 0.67 1.5m 3.6m 1.8m 6.6m 4.0m 14m
s13207 0.92 0.92 0.92 0.92 0.92 0.92 10m 12m 17.2m 26.4m 15.2m 2.8hr
s15850 0.83 0.83 0.85 0.85 0.85 0.83 15m 22m 24m 42.5m 46.9m 24hr
s35932 0.75 0.75 0.75 0.75 0.75 0.75 3hr 3hr 7hr 8.3hr 8.4hr 24hr
s38417 0.80 0.83 0.90 0.78 0.78 TO 3.2hr 5hr 10hr TO 8.8hr TO
s38584 0.84 0.84 0.84 0.84 0.84 TO 8.3hr 14.4hr 10.2hr 16.5hr 16.5hr TO
average 0.84 0.84 0.84 0.82 0.82 0.81 1.4hr 2.1hr 2.5hr 2.6hr 3.2hr 7.4hr

Table V: Area ratio of iterative algorithm from resynthesis (GPIA) and geometric program (Exp.) for flop-based designs

Circuit

Area Ratio
Flop-based Latch-based

High Overhead Medium Overhead Low Overhead High Overhead Medium Overhead Low Overhead
GPIA Exp. GPIA Exp. GPIA Exp. GPIA Exp. GPIA Exp. GPIA Exp.

s1196 0.89 0.77 0.91 0.81 0.92 0.81 0.92 0.80 0.92 0.80 0.93 0.80
s1238 0.92 0.84 0.95 0.86 0.96 0.87 0.99 0.91 1.02 0.94 1.04 0.95
s1423 0.77 0.72 0.89 0.83 0.97 0.91 0.84 0.84 0.88 0.89 0.91 0.92
s1488 1.00 0.86 1.03 0.88 1.04 0.89 1.00 1.00 1.00 1.00 1.00 1.00
s5378 0.77 0.75 0.87 0.85 0.95 0.93 0.80 0.92 0.90 0.95 0.97 0.97
s9234 0.73 0.72 0.85 0.87 0.94 0.93 0.75 0.78 0.91 0.87 1.06 0.93

s13207 0.92 0.90 0.95 0.94 0.97 0.96 0.84 0.78 0.91 0.86 0.97 0.91
s15850 0.83 0.81 0.91 0.89 0.96 0.94 0.78 0.76 0.88 0.84 0.95 0.90
s35932 0.75 0.75 0.86 0.86 0.92 0.93 0.85 0.87 0.92 0.93 0.95 0.96
s38417 0.83 0.81 0.91 0.90 0.97 0.94 0.82 0.84 0.89 0.90 0.94 0.94
s38584 0.84 0.84 0.91 0.91 0.95 0.95 0.65 0.66 0.79 0.79 0.89 0.89
average 0.84 0.80 0.91 0.87 0.96 0.91 0.84 0.83 0.91 0.89 0.97 0.92

setting (VLR) is where we map the sequential gates to either
nonEDLs and EDLs based on their timing. If the end-point
is near-critical, the sequential gate will be mapped to EDLs;
otherwise, it stays as a nonEDL.

We applied resynthesis to the three different input netlist
settings for ISCAS89 benchmark suite. However, some latch-
based designs have timing violations on non-near-critical
latches after resynthesis with the VLN setting, i.e., circuits
s1423, s5378, s9234, s13207, and s38417. To fix these viola-
tions, we manually change the violating latches (with larger
setup time) to EDL latches (with larger area) and adjust the
area overhead accordingly.

Table VI and VII show the experimental results for flop
and latch-based designs, respectively. Examining the average
area ratios across the benchmark suite, we see that the VLN
setting with both flop and latch-based design leads to better
results than the other settings in both the high and medium
overhead cases. The difference in the low overhead case is
relatively small. This may be explained by the observation
that the commercial synthesis tool seems to do a better job
at timing optimization compared to area optimization. Based
on these results, for comparison of the virtual resynthesis
library approach to the other three resynthesis approaches, we
will use the VLN setting. Lastly, we explored the benefits
of running a second resynthesis run on the VLN circuits
with manually fixed timing violations. The average area ratio
reduced by approximately 0.01 on all overheads (detailed
results not shown).

Table VI: Virtual resynthesis cell library flop-based experimental
results with different input netlist settings

Area Ratio
Circuit High Overhead Medium Overhead Low Overhead

VLN VLE VLR VLN VLE VLR VLN VLE VLR
s1196 0.99 0.95 0.96 0.96 0.93 0.94 0.96 0.90 0.92
s1238 0.96 0.95 0.97 0.95 0.96 0.96 0.97 0.95 0.99
s1423 0.87 0.98 0.91 0.94 0.97 0.95 0.98 0.97 0.97
s1488 1.07 0.96 0.96 1.02 0.97 0.97 0.98 0.95 0.95
s5378 0.89 1.01 0.98 0.94 1.00 0.98 0.97 0.99 0.99
s9234 0.75 0.94 0.95 0.87 0.96 0.96 0.95 0.98 0.98
s13207 0.91 1.05 0.94 0.93 0.99 0.95 0.94 0.97 0.95
s15850 0.90 1.00 0.96 0.95 1.00 0.97 0.98 0.99 0.97
s35932 1.00 0.98 0.99 1.01 1.00 1.00 1.02 1.02 1.01
s38417 0.87 1.03 0.98 0.93 1.01 0.98 0.97 0.99 0.98
s38584 0.83 0.92 0.94 0.91 0.96 0.96 0.95 0.99 0.97
average 0.91 0.98 0.96 0.95 0.98 0.97 0.97 0.97 0.97

Table VII: Virtual resynthesis cell library latch-based experimental
results with different input netlist settings

Area Ratio
Circuit High Overhead Medium Overhead Low Overhead

VLN VLE VLR VLN VLE VLR VLN VLE VLR
s1196 0.88 1.08 0.88 0.93 0.99 0.88 0.95 0.91 0.90
s1238 1.07 1.28 1.00 1.09 1.18 1.01 1.07 1.10 1.02
s1423 0.81 1.05 0.97 0.89 0.98 0.94 1.03 0.94 0.94
s1488 1.42 1.00 1.00 1.54 1.00 1.00 1.63 1.00 1.00
s5378 0.79 1.12 1.00 0.90 1.07 1.00 0.98 1.04 1.00
s9234 0.93 1.02 1.00 0.97 1.02 1.01 0.99 1.02 1.02

s13207 0.90 1.52 1.04 0.97 1.28 1.00 1.01 1.14 1.02
s15850 0.75 1.39 1.01 0.88 1.23 1.01 0.96 1.13 1.01
s35932 0.78 1.18 0.99 0.87 1.09 0.98 0.92 1.04 0.98
s38417 0.76 1.12 1.00 0.91 1.08 1.00 1.01 1.05 1.05
s38584 0.62 1.20 1.00 0.77 1.13 1.00 0.90 1.07 1.01
average 0.88 1.18 0.99 0.97 1.10 0.99 1.04 1.04 0.99



E. Comparison of Resynthesis Approaches

In this section, we compare the area ratios, run-time, and
change of error-rate on both flop and latch-based designs
across the four different proposed resynthesis approaches. For
the naive brute-force method, if all runs give area ratio more
than 1, we will report the area ratio as 1, which means we
choose the design obtained before resynthesis. For the GPIA
approach, if the near-critical end-point list for resynthesis
is different than obtained before resynthesis, we will run
resynthesis and report the area ratio even if it is over 1. If
the expected end-point list is the same as before resynthesis,
we will not do resynthesis and report the area ratio as 1. For
the VL approach, resynthesis will be done first and if the end-
point list after resynthesis is different than before resynthesis,
we report the area ratio (even if it is over 1). In addition, if
in the VL approach the expected end-point list is the same as
before resynthesis, we will not do resynthesis and report the
area ratio as 1.

In the following, we first report the results for the flop-
based and, then, for the latch-based designs.

1) Flop-based Designs: Table VIII shows the achieved
area ratios from our geometric-programming-based iterative
(GPIA) method, the two brute force methods, and the virtual
resynthesis cell library method. The logic synthesis tool reports
the logic area and how many paths are near-critical based on
value of W . We then calculate the resulting area by summing
up logic and total EDL area overhead and report the area ratios.
For the virtual resynthesis cell library method, since we already
added EDL area overhead into cell library, the logic area from
synthesis report already includes the EDL area. For the naive
brute-force approach, we speed up near-critical paths one at a
time and we only show the best area reduction among all of
them, as described in [8]; while for the brute-force method,
we speed up each combination of near-critical path at a time
and report the best area reduction among all combinations. For
those circuits for which it completes, the brute-force method
produces the best area reductions among the four methods.

Comparing across all four methods, the GPIA achieves the
largest area reduction next to the brute-force approach and
completes on all examples. In fact, when we analyzed the
examples where the GPIA failed to find the result identified
by the BF approach, we found that in two of the three cases
(s1196 and s1238) the GPIA approach identified and optimized
the second best combination of end-points. For the third circuit
(s1488), we know that the GPIA failed to find the same results
as the brute-force because the synthesis tool actually reduced
area even when we added tighter timing constraints, which is
a behavior inconsistent with our GPIA model. This suggests
that the GPIA’s simplified model of the shared combinational
logic between end-points is sufficient to find close to the best
combination of end-points as the brute-force method to re-
constrain.

When we compare results between the GPIA and naive
brute-force approaches, the GPIA approach achieves larger
area reduction in most cases. On average, our iterative al-
gorithm achieves 9% larger area reduction than naive brute-
force with high EDL area overhead, 4% larger improvement
with medium EDL area overhead, and 1% larger improvement

with low EDL area overhead. Finally, we compare the results
between the GPIA and virtual cell library (VL) methods. The
results in Table VIII, suggest that despite having access to
library models that effectively model the impact of resynthesis
choices, the commercial synthesis tool does not seem to per-
form as well as the GPIA approach. For the high and medium
EDL area overhead cases, the virtual cell library method on
average achieved only 56% of the area reduction of the GPIA
approach. For the low EDL area overhead cases, it achieved
75% of the area reduction of the GPIA algorithm, respectively.
Across all EDL area overheads, the virtual cell library method
achieves approximately 2/3rds of the area reduction of the
GPIA approach.

The iterative geometric program, naive brute-force and
brute-force approaches use multi-threaded computation. So,
Table IX reports both clock and CPU run-times. Each entry
in the table is the maximum run-time observed among the
three EDL overheads tested. The number of threads repre-
sents how many resynthesis runs execute in parallel during
the naive brute-force and brute-force approaches. Hence, in
these cases the clock run-time and the number of threads are
inversely proportional. For the iterative geometric program, the
mathematical solver is also implemented with multi-threading;
however, the number of threads is not programmable. Although
our iterative geometric program is slower than naive brute-
force, the run-times are still reasonable. Because the virtual
resynthesis library only requires one synthesis run, it is an
average of 135 times faster than the iterative algorithm. Thus,
it is a run-time efficient means of optimizing resilient designs.

It is also important to note that speeding-up near critical
paths may not only improve area, but also improve perfor-
mance by reducing the error-rate. Although our methods only
target minimizing area, we observe, on average, a drop in error-
rates, as shown in Table X. For the GPIA approach, except
for s1488, the circuits’ error rate are lowered and for the VL
approach, 9 out of 11 circuits have lower error rates. The new
error rates of many designs after GPIA resynthesis become 0.
Note that there are two reasons that error rate can be 0. First, all
near-critical end-points can become non-near-critical through
resynthesis. This occurs in circuits s1196, s5378 and s35932.
Second, near-critical end-points remain but the data path does
not trigger errors in our simulations. This occurs in circuit
s13207. There are three cases (s1488 in VL with low overhead,
s35932 in NBF with all overheads, and s38417 in GPIA with
low overhead for which the new error rates increase to more
than 5%). For resilient schemes with high error penalties, this
may be unacceptable. One way to address this is to adjust
the TRW from 30% to 20% without changing their worst-case
delay. The error rate of s1488 drops to 4% and the error rate
of s35932 reduces to 20%. For s38417, reducing the TRW
does not decrease error rate; however, we found all errors are
caused by one particular flip-flop. Interestingly, if we manually
constrain that flip-flop to be non-near-critical and resynthesize,
the error rate drops to 0.04% and the area ratio changes
from 0.97 to 0.96. The various changes of error rates are
interesting because it motivates future work exploring adding
a notion of error-rate into the cost function to simultaneously
target area and performance. In fact, more generally, it would
be interesting to minimize power consumption for a given



Table VIII: Area ratios comparison for flop-based designs: (GPIA: Iterative algorithm, NBF: Naive Brute-force, BF: Brute-force, VL: Virtual
Library)

Area Ratio
Circuit High Overhead Medium Overhead Low Overhead

GPIA NBF BF VL GPIA NBF BF VL GPIA NBF BF VL
s1196 0.89 0.92 0.88 0.99 0.91 0.94 0.90 0.96 0.92 0.95 0.92 0.96
s1238 0.92 0.91 0.88 0.96 0.95 0.94 0.91 0.95 0.96 0.95 0.92 0.97
s1423 0.77 0.83 TO 0.87 0.89 0.91 TO 0.94 0.97 0.95 TO 0.98
s1488 1.00 0.95 0.92 1.07 1.03 0.96 0.97 1.02 1.04 0.97 0.97 0.98
s5378 0.77 0.92 TO 0.89 0.87 0.95 TO 0.94 0.95 0.98 TO 0.97
s9234 0.73 0.86 TO 0.75 0.85 0.92 TO 0.87 0.94 0.95 TO 0.95
s13207 0.92 0.95 TO 0.91 0.95 0.95 TO 0.93 0.97 0.95 TO 0.94
s15850 0.83 0.96 TO 0.90 0.91 0.98 TO 0.95 0.96 0.99 TO 0.98
s35932 0.75 0.93 TO 1.00 0.86 0.96 TO 1.01 0.92 0.98 TO 1.02
s38417 0.83 0.97 TO 0.87 0.91 0.98 TO 0.93 0.97 0.99 TO 0.97
s38584 0.84 1.00 TO 0.83 0.91 1.00 TO 0.91 0.95 1.00 TO 0.95
average 0.84 0.93 0.89 0.91 0.91 0.95 0.93 0.95 0.96 0.97 0.94 0.97

Table IX: Run-time comparison for flop-based designs

Run-time
Circuit GPIA NBF BF VL

CLOCK CPU CLOCK CPU CLOCK CPU CLOCK
s1196 1.3m 11.6m 1m 2.5m 1m 4m 0.5m
s1238 2.1m 19m 0.5m 2m 0.5m 2m 0.5m
s1423 1.7m 14m 3.5m 28m TO TO 0.5m
s1488 1.7m 14m 1.5m 5m 2m 15m 0.5m
s5378 7m 1.3hr 5m 39m TO TO 0.5m
s9234 2.2m 17.3m 6m 53m TO TO 0.5m
s13207 11.5m 1.77hr 3m 25m TO TO 0.7m
s15850 18.5m 2.78hr 8m 64m TO TO 0.7m
s35932 2.7hr 22.19hr 45m 5hr TO TO 1.5m
s38417 4.8hr 32hr 1hr 6hr TO TO 1.6m
s38584 12.3hr 57.7hr 32m 2.7hr TO TO 1.4m

Table X: Error-rates (%) of flop-based designs

Old Error-rate
Circuit Error- Overhead GPIA NBF BF VL

rate Change New Change New Change New Change New

s1196 0.25
H -0.25 0 -0.08 0.17 -0.25 0 -0.16 0.09
M -0.25 0 -0.08 0.17 -0.25 0 0.08 0.33
L -0.25 0 -0.08 0.17 -0.25 0 -0.25 0

s1238 0 H/M/L 0 0 0 0 0 0 0 0
s1423 0 H/M/L 0 0 0 0 0 0 0 0

s1488 4.35
H 2.98 7.33 0.56 4.91 -4.28 0.07 3.15 7.5
M 2.98 7.33 0.56 4.91 3.5 7.85 5.7 10.05
L 2.98 7.33 0.56 4.91 3.5 7.85 7.32 11.67

s5378 0.79
H -0.79 0 -0.29 0.5 TO TO -0.34 0.45
M -0.79 0 -0.29 0.5 TO TO -0.26 0.53
L -0.79 0 -0.29 0.5 TO TO -0.08 0.71

s9234 0.52 H/M/L -0.52 0 -0.37 0.15 TO TO -0.38 0.14

s13207 0.18
H -0.18 0 0 0.18 TO TO -0.18 0
M -0.18 0 0 0.18 TO TO -0.15 0.03
L -0.17 0.01 0 0.18 TO TO -0.15 0.03

s15850 3.31 H -1.03 2.28 0.4 3.71 TO TO -1.64 1.67
M/L -1.67 1.64 0.4 3.71 TO TO -1.65 1.66

s35932 14.98 H/M/L -14.98 0 59.65 74.63 TO TO -14.98 0

s38417 0.04
H -0.04 0 0.81 0.85 TO TO 0.07 0.11
M -0.03 0.01 0.2 0.24 TO TO 0.6 0.64
L 28.32 28.36 0.2 0.24 TO TO 0.47 0.51

s38584 69.79
H -10.88 58.91 0 69.79 TO TO -8.73 61.06
M -14.67 55.12 0 69.79 TO TO -7.2 62.59
L -7.63 62.16 0 69.79 TO TO -4.15 65.64

average 8.56 -1.53 7.03 5.48 14.04 0.22 1.75 -1.68 6.89

performance considering voltage scaling.

2) Latch-based design: Table XI shows achieved area
reductions from the four proposed approaches on our latch-
based resilient designs. We see similar trends as in the flop-
based designs. In particular, the GPIA algorithm achieves
larger improvements than both the naive brute-force and virtual
library method. With high EDL overhead, GPIA has 11%
larger area reduction than NBF and 4% larger than VL; with
medium EDL overhead, GPIA has 6% larger area reduction
than NBF and VL; with low EDL overhead, GPIA is 1% better

NBF but 7% better than VL. The area reductions obtained by
the GPIA approach for circuit s1196 are far away from the
best result (achieved by brute-force). But, as in the flip-flop
results, this may be explained by the fact that, after brute-force
resynthesis the regular logic area unexpectedly became smaller
than before resynthesis, even though we tightened the timing
constraints to reduce the number of EDLs. In other words,
the logic synthesis engine during brute force resynthesis of
this example unexpectedly found a more area efficient solution
that was also faster. For s1488, the new near-critical end-points
list remains the same as before resynthesis through GPIA and
NBF. For VL, some near-critical end-points are removed but
the area ratios go up rapidly.

The run-time comparison of all approaches on latch-based
designs is reported in Table XII. As in the flop-based results,
the virtual resynthesis cell library method is by far the fastest
because it only requires one synthesis run. For the GPIA
algorithm, even though we only add a relatively few additional
constraints compared to the flop-based design, the average
run-time of the latch-based designs is doubled compared to
the flop-based designs. If we want to run larger circuits than
s35854, we may need to either choose different threshold
settings or use the virtual library method.

When we optimize the area of flop-based design using the
GPIA method, most of the error-rates went down to less than
10% (recall Table X). For the latch-based design using the
GPIA approach, the error-rate reduction follows the same trend
as the area reduction and on average it reduces the error rate
by 20.79%; however, some error-rates remain over 20%, as
seen in Table XIII. The error recovery penalty of flop-based
resilient templates (often over 10 clock cycles [6]) is much
larger than latch-based templates which are often one clock
cycle or less [7], [28]. Consequently, for optimal operation,
the error rate for latch-based resilient designs can be as high
as 20%, as reported in [28], and the desired error rate may
often be achieved by simply removing specific EDLs.

X. CONCLUSIONS

We presented four different approaches to minimize the
area of timing resilient design through resynthesis. The first
is a brute-force check-all-combinations approach but is so
complex that can only be used on very low complex circuits.
The second is a naive brute-force approach that has lower
time complexity, because it only considers one near-critical
end-point at a time, at the cost of losing any benefit of
optimizing multiple end-points simultaneously. The third is



Table XI: Area ratio of latch-based designs: (GPIA: Iterative algorithm, NBF: Naive Brute-force, BF: Brute-force, VL: Virtual resynthesis cell
library)

Area Ratio
Circuit High Overhead Medium Overhead Low Overhead

GPIA NBF BF VL GPIA NBF BF VL GPIA NBF BF VL
s1196 0.92 0.93 0.84 0.88 0.92 0.95 0.86 0.93 0.93 0.96 0.87 0.95
s1238 0.99 0.97 TO 1.07 1.02 0.97 TO 1.09 1.04 0.98 TO 1.07
s1423 0.84 0.91 TO 0.81 0.88 0.93 TO 0.89 0.91 0.94 TO 1.03
s1488 1.00 1.00 1.00 1.42 1.00 1.00 1.00 1.54 1.00 1.00 1.00 1.63
s5378 0.80 0.94 TO 0.79 0.90 0.97 TO 0.90 0.97 0.98 TO 0.98
s9234 0.75 0.94 TO 0.93 0.91 0.98 TO 0.97 1.06 0.99 TO 0.99
s13207 0.84 0.98 TO 0.90 0.91 0.99 TO 0.97 0.97 0.99 TO 1.01
s15850 0.78 0.93 TO 0.75 0.88 0.96 TO 0.88 0.95 0.97 TO 0.96
s35932 0.85 1.00 TO 0.78 0.92 1.00 TO 0.87 0.95 1.00 TO 0.92
s38417 0.82 0.95 TO 0.76 0.89 0.97 TO 0.91 0.94 0.98 TO 1.01
s38584 0.65 0.95 TO 0.62 0.79 0.97 TO 0.77 0.89 0.98 TO 0.90
average 0.84 0.95 0.92 0.88 0.91 0.97 0.93 0.97 0.97 0.98 0.94 1.04

Table XII: Run-time comparisons for latch-based designs

Run-time
Circuit GPIA NBF BF VL

CLOCK CPU CLOCK CPU CLOCK CPU CLOCK
s1196 1.5m 6.6m 1m 3m 3.6m 33.6m 24.18s
s1238 1.3m 6.5m 3m 20m TO TO 23.73s
s1423 4.4m 25.48m 5m 35m TO TO 29.51s
s1488 1.13m 4.98m 1.5m 5m 6m 1hr 24.52s
s5378 10.8m 50.77m 7m 60m TO TO 27.89s
s9234 5.53m 32.93m 6m 53m TO TO 26.88s

s13207 41.5m 4.2hr 7m 75m TO TO 47.44s
s15850 24.7m 2.4hr 8m 2hr TO TO 45.47s
s35932 15hr 64hr 30m 3hr TO TO 3.2m
s38417 17hr 64hr 3hr 9hr TO TO 65.83s
s38584 24hr 120hr 2hr 7hr TO TO 69.78s

Table XIII: Error-rates (%) of latch-based designs

Old Error-rate
Circuit Error- Overhead GPIA NBF BF VL

rate Change New Change New Change New Change New

s1196 18.29
H 0 18.29 -7.48 10.81 -9.99 8.3 10.22 28.51

M/L -1.4 16.89 -7.48 10.81 -5.21 13.08 10.22 28.51

s1238 19.44
H -8.91 10.53 -0.02 19.42 TO TO -7.46 11.98

M/L -8.91 10.53 -0.02 19.42 TO TO -6.69 12.75

s1423 14.67 H -14.67 0 -14.53 0.14 TO TO -14.67 0
M/L -14.67 0 -6.19 8.48 TO TO -14.67 0

s1488 23.64
H 0 23.64 0 23.64 0 23.64 -23.1 0.54
M 0 23.64 0 23.64 0 23.64 -23.14 0.5
L 0 23.64 0 23.64 0 23.64 -23.13 0.51

s5378 97.79
H -6.88 90.91 -97.78 0.01 TO TO 1.13 98.92
M -6.88 90.91 -97.78 0.01 TO TO 1.16 98.95
L -6.88 90.91 -97.78 0.01 TO TO 1.11 98.9

s9234 2.66
H -0.09 1.67 -2.65 0.01 TO TO 0.05 2.71
M -1.12 1.54 -2.65 0.01 TO TO -0.02 2.64
L -1.12 1.54 -2.65 0.01 TO TO 0.05 2.71

s13207 25.8 H -25.78 0.02 -25.79 0.01 TO TO -25.78 0.02
M -25.78 0.02 -25.79 0.01 TO TO -3.45 22.35
L -25.76 0.04 -25.79 0.01 TO TO -25.78 0.02

s15850 9.93
H -5.58 4.35 2.29 12.22 TO TO 7.24 17.17
M -6.42 3.51 2.29 12.22 TO TO -6.82 3.11
L 2.03 11.96 2.29 12.22 TO TO 6.95 16.88

s35932 87.49 H/M/L -15.02 72.47 0.02 87.51 TO TO -11.42 76.07

s38417 93.39
H -59.52 33.87 -3.46 89.93 TO TO -93.19 0.2
M -60.66 32.73 -3.46 89.93 TO TO -93.23 0.16
L -86.63 6.76 -3.46 89.93 TO TO -93.26 0.13

s38584 99.97
H -91.25 8.72 -28.82 71.15 TO TO -49.48 50.49
M -75.83 24.14 -28.82 71.15 TO TO -50.58 49.39
L -82.46 17.51 -28.82 71.15 TO TO -49.53 50.44

average 44.82 -20.79 24.03 -15.70 29.13 -3.40 17.56 -18.52 26.31

a geometric program based approach that uses a gate-sizing
based delay model and iterative relaxation algorithm (GPIA).
This approach captures both logic and EDL area overhead and
has an implicit model of all the shared logic paths. The last
approach is a virtual resynthesis cell library method which
has the lowest time complexity among the four approaches.
It involves manipulating the synthesis cell library to duplicate
sequential cells such that one group increases the setup time
to match the TRW window and the other group increases area

to match the expected EDL area overhead.

Our experimental results show that our GPIA approach
achieves area reductions that compare favorably across these
four approaches. The GPIA algorithm completes within 24
hours for all examples and the average area reduction is up to
16%. The results suggest that a gate-sizing based model can be
used to effectively guide resynthesis. However, for the larger
circuits, the run-time of the GPIA based approach is still high.
As an alternative, the proposed virtual resynthesis cell library
approach obtains an average of approximately 2/3rds of the
area reductions of the mathematical program based approach
with fast run times associated with only a single synthesis run.

We must emphasize that resilient designs can exhibit
high average performance only when few or no timing error
happens. Currently, our proposed approaches only focus on
reducing total area; however, these optimizations cannot guar-
antee the error-rate also reduces. Towards this goal, it may be
possible to model an approximate measure of error-rate and/or
performance in our GPIA objective function. As we mention in
Section V, modeling all sets of error-detecting sequential gates
within the mathematical program is unrealistic. An interesting
area of future work is to develop heuristic algorithms for
error-rate reduction based on a modified GPIA that targets the
reduction of specific instances of errors. Ultimately, however,
we may wish to further extend our GPIA model to minimize
perhaps a more critical objective function, the energy consump-
tion of the resilient system with and without voltage scaling.
Finally, because the length of individual paths can greatly vary
between a logic-level netlist and the final place-and-routed
design, it is important to incorporate these methods within a
comprehensive place-and-route flow for resilient designs.
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