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Abstract—Threshold voltage assignment is a very effective
technique to reduce leakage power consumption in modern inte-
grated circuit (IC) design. As feature size continues to decrease,
the layout constraints (called MinIA constraints) on the implant
area, which determines the threshold voltage of a device, are
becoming increasingly difficult to satisfy. It is necessary to take
these constraints into consideration during the placement stage.
In this paper, we propose to resolve the MinIA constraint viola-
tions of a given placement by performing simultaneous detailed
placement and threshold voltage refinement. We first present an
optimal and efficient mixed integer-linear programming (MILP)-
based algorithm to handle intra-row MinIA constraints. We then
extend the MILP-based algorithm to handle both inter-row and
intra-row MinIA constraints. Experimental results demonstrate
that our algorithms only perturb the original placement and
threshold voltage assignment solutions minimally to eliminate all
violations and are fast in practice.

I. INTRODUCTION

Multiple threshold voltages (multi-Vt) are commonly em-
ployed in advanced power-aware high-performance chip de-
sign. For example, a chip design can make use of standard
cells operating at standard Vt (SVT), low Vt (LVT) and ultra-
low Vt (ULVT). Cells operating at lower threshold voltage are
faster but more leaky. So, to attain high performance while
controlling the leakage power, designers can use cells with
lower Vt on critical timing paths and cells with higher Vt on
non-critical paths.

There are physical constraints associated with the threshold
voltage assignment. During fabrication, local Vt implant areas
can be formed at different locations of a chip. The Vt of a
placed cell is determined by the ion implantation of the implant
area that it belongs to. Manufacturing restrictions for the Vt
implant areas led to the minimum width and spacing design
rules [1]–[3]. First, each Vt implant area must have a certain
minimum width W . Second, two Vt implant areas of the same
type must be separated by a certain minimum spacing S.
We call these the intra-row minimum implant area (MinIA)
constraints. The intra-row MinIA constraints are illustrated in
Figure 1, which shows a standard cell row with five standard
cells. Cell b is assigned a threshold voltage different from
the rest of the cells. Cell b is not wide enough and hence it
will cause a minimum implant width violation. Cells d and e
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belong to two separate Vt implant areas of the same type that
are too close to each other. Hence they will cause a minimum
implant spacing violation. Note that although the spacing
between cells b and c are less than the required minimum
implant spacing, they are of different threshold voltage and so
will not cause any minimum spacing violation.

Fig. 1. Intra-row minimum implant width and spacing constraints.

There are many works on multiple threshold voltage assign-
ment for leakage power minimization, e.g., [4]–[8]. However,
those works did not consider the MinIA constraints. Conse-
quently, the threshold voltage assignment may result in implant
areas violating the MinIA design rules.

Filler cell insertion is a common way to fix intra-row
MinIA violations as illustrated in Figure 2. For a narrow Vt-
island, if there is sufficient whitespace adjacent to it, then a
filler cell of the same implant type can be inserted into the
whitespace to enlarge the Vt-island to satisfy the minimum
width constraint as shown in Figure 2(a). Two Vt-islands
of the same type separated by a small whitespace can be
merged into one island by inserting a filler cell of the same
implant type into the whitespace to eliminate the minimum
spacing constraint violation as shown in Figure 2(b). Filler cell
insertion is supported by commercial tools to fix the minimum
implant area violation. For instance, Synopsys IC Compiler
[9] offers a threshold-voltage-aware filler cell insertion flow
which allows the user to define the Vt filler cell to be inserted
into each whitespace according to the threshold voltages of
the cells on the two sides of the whitespace. For example, the
user can specify rules to always insert LVT filler cell in the
whitespace between LVT and SVT cells, and always insert
ULVT filler cell in the whitespace between ULVT and LVT
cells or between ULVT and SVT cells.

In the past, intra-row MinIA constraints are not an important
design consideration as intra-row MinIA violations are rela-
tively easy to fix by filler cell insertion. However, as feature
size keep diminishing, the critical features are printed by
multiple patterning or other expensive processes while the less-
critical implant areas are not. Thus the implant areas scale at a
slower rate and hence become larger comparing to the feature
size. As a result, intra-row MinIA constraints have become
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Fig. 2. Filler cell insertion to fix intra-row MinIA violations.

more difficult to satisfy after the 22nm technology node [1].
Filler cell insertion into existing whitespace alone is usually
not enough to fix all violations as illustrated in Figure 3. In
Figure 3(a), cell a would still violate the minimum implant
width constraint after filler cell insertion. In Figure 3(b), cells c
and e violates the minimum implant spacing constraint but the
implant areas of cells c and e cannot be merged by filler cell
insertion as cell d of a different implant type is between them.

Fig. 3. Examples of intra-row MinIA violations that cannot be fixed by filler
cell insertion.

Furthermore, at 10nm node and below it becomes necessary
to consider new inter-row minimum implant width constraints
[10] as well. Consider the layout in Figure 4 in which two
cells b and d with the same Vt on adjacent rows form a narrow
staircase. If the width of the abutting region is less than W ,
the placement is prohibited. With the emergence of both intra-
row and inter-row MinIA constraints, it becomes unavoidable
to take into account these new placement constraints in order
to produce a legal layout.

Fig. 4. Inter-row minimum implant width constraint.

In this paper, we consider a problem of refining standard
cell placement and threshold voltage to address the manu-
facturability issue posed by the MinIA design rules for low
power IC design in advanced process nodes. We have already
pointed out that even if only intra-row MinIA rule violations
are targeted, filler cell insertion alone is usually not enough
to fix them all. We note that typical placement utilization in
a chip is much less than 100% which gives much flexibility

in moving the cells within each standard cell row. Shifting
the cells by a short distance can resolve both intra-row and
inter-row MinIA violations (directly or by facilitating filler
cell insertion) with minimal impact on timing and routing
congestion. In addition, MinIA rule violations can also be fixed
by appropriately re-assigning the threshold voltages of some
cells. Doing this may cause a little sacrifice on power but may
reduce the cell displacement required. Hence, we propose to
fix all MinIA violations by simultaneously performing detailed
placement refinement and threshold voltage re-assignment.

For technology nodes in which only intra-row MinIA design
rules are concerns, we propose a mixed integer linear pro-
gramming (MILP)-based algorithm to fix all MinIA constraint
violations while minimizing the total displacement of the cells
from their original locations and the total power overhead. For
technology nodes in which both intra-row and inter-row MinIA
design rules need to be handled, we propose an algorithm by
extending the MILP-based algorithm. Both of our algorithms
guarantee to always fix all MinIA rule violations, and are
efficient.

The rest of the paper is organized as follows. We review
some related works in Section II. In Section III, we define
our optimization problem formally. In Section IV, we present
some useful observations. Then in Section V and Section VI,
we introduce our mixed integer linear programming based
algorithms to handle only intra-row rules and both inter-
row/intra-row rules, respectively. The experimental results are
reported in Section VII. Finally, we conclude the paper in
Section VIII.

II. PREVIOUS WORKS

Tseng et al. [11] and Han et al. [10] tried to address the
minimum implant area constraints and some other cell spacing
constraints at the detailed placement stage. Tseng et al. [11]
considered only intra-row MinIA constraints and proposed
a cluster-based detailed placement algorithm which clusters
cells with the same Vt first. On the other hand, both inter-
row and intra-row MinIA constraints are considered in Han et
al. [10] using an integer linear programming (ILP) approach.
However, the ILP formulation in [10] utilizes a huge number of
integer variables. For a layout with |C| cells and |S| placement
sites, the number of integer variables is O(|C| · |S|) in its
formulation. So, it has to partition a layout into a large number
of small windows of cells and solve them independently in
parallel (with 40 threads in [10]), and the process has to be
repeated a number of times with a different set of windows
each time in order to resolve violations among cells in different
windows. Both [10] and [11] did not allow the threshold
voltage of a cell to be changed.

On the other hand, post-placement refinement is a popular
way to resolve different kinds of manufacturability issues (e.g.,
[12]–[14]). In particular, to fix intra-row MinIA constraint vi-
olations, Kahng and Lee [1] presented a placement refinement
heuristic. The heuristic identifies all narrow cells that violate
the minimum implant width constraint and tries to fix each
by performing the following procedures in order: (1) filler
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cell insertion into the existing whitespace, (2) Vt swapping1,
(3) moving neighboring cells to create new whitespace for
filler cell insertion, and (4) downsizing neighboring cells to
create new whitespace for filler cell insertion. Unfortunately,
the iterative heuristic is not optimal and fixing one violation
may create a new violation next to it. So, it is not guaranteed
that all violations can be fixed at the end. And we note that
since their approach only consider forming a larger implant
area for a narrow cell with its immediate left and right whites-
pace/neighbors, the success rate will likely reduce for future
technology nodes when average cell size decreases further. In
comparison, we propose to apply whitespace re-distribution,
filler cell insertion, and Vt re-assignment concurrently which
do not have the shortcomings described above.

III. PROBLEM DEFINITION

In this section, we give the formulation of the minimum
implant area-aware detailed placement and threshold voltage
refinement problem. We assume that a circuit has been placed
and power-optimized using conventional methods. So, we have
an initial detailed placement of the circuit and the initial
threshold voltage assignment of each cell, but there are intra-
row and/or inter-row MinIA constraint violations. Our goal is
to eliminate all MinIA constraint violations while preserving
the quality of the initial solution. We make the following
assumption as in [1]. The left or the right end of an implant
area is never located within a cell. The MinIA-aware Detailed
Placement and Vt Refinement problem is formally defined
below.

Problem 1 (MinIA-aware Detailed Placement and Vt Refine-
ment). Given an initial detailed placement of a netlist and
an initial threshold voltage assignment of each standard cell,
a minimum implant width W , a minimum implant spacing S
between same implant type, and the allowable displacement
range of each cell from its original location. The problem is
to find simultaneously a Vt re-assignment, a legal placement2,
and a filler cell insertion solution such that the total cell
displacement and leakage power overhead are as small as
possible.

In order to preserve timing, we restrict the displacement of
each cell from its original location. In particular, we assume
that there is an allowable displacement range for each cell
depending on its timing criticality. A non-timing critical cell
may have a large allowable displacement range while a highly
timing critical cell may have a zero allowable displacement
range. Since the circuit has already been power-optimized
so that cells with sufficient timing slack have already been
swapped to higher threshold voltage, the Vt of each cell is
allowed to be reduced but not raised.

1Vt swapping in [1] is limited to changing the Vt of a narrow cell to
the Vt of its left/right neighboring cells, or changing the Vt of its left/right
neighboring cells to the narrow cell’s Vt.

2In this paper, a legal placement means that all cells are placed in valid
placement sites without cell overlap within the given placement region such
that there is no MinIA design rule violation after filler cell insertion.

IV. USEFUL OBSERVATIONS

Before presenting our proposed approach, we first make
some useful observations which we are going to take advan-
tage of. First, the heuristic in [1] always inserts just a single
type of filler cell into the whitespace between two regular cells.
But we note that a better approach is to divide the whitespace
into a left subspace and a right subspace (a subspace can be
empty) such that each is inserted with its own desired filler cell
type. For example, in Figure 5, inserting just a single filler cell
type into the whitespace between cell a and b can fix either the
intra-row MinIA width violation on the left or on the right of
the whitespace as in Figure 5(b) and Figure 5(c), respectively.
However, dividing the whitespace into two subspaces and
insert two filler cell types as in Figure 5(d) will fix both intra-
row MinIA width violations on the left and on the right at the
same time. And it is easy to see that the left (right) subspace
should always be inserted with filler cell type matching the
implant type of the cell on its left (right). So, we propose
a MILP model that will automatically determine the optimal
division for each whitespace assuming that the left (right)
subspace is always inserted with filler cell type matching the
implant type of the cell on its left (right).

Fig. 5. A better approach of filler cell insertion.

Second, the minimum spacing S is no larger than the
minimum width W in practice. So, if a cell row is made up
of abutting implant areas all satisfying the minimum width
constraint with no empty gap, then the minimum spacing
constraint for the same implant type will be automatically
satisfied. It is because two implant areas of the same type will
have at least one implant area of a different type in between
them, hence their separation will be at least W (≥ S). As
explained in the paragraph above, our proposed MILP model
assumes that all whitespaces in a row will be inserted with
filler cells leaving no empty gap in the row, thus it is sufficient
to consider minimum implant width constraint only.

V. HANDLING INTRA-ROW MINIA DESIGN RULES

In this section, we present an algorithm targeting the
technology nodes in which intra-row MinIA design rules are
applicable but inter-row MinIA design rules are not. First, we
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observe that we may solve the MinIA-aware Detailed Place-
ment and Vt Refinement problem by solving a subproblem
for each row independently. Then, by combining the optimal
solution for each subproblem, we can get the optimal solution
for the whole problem. Here, we propose an efficient MILP
model for handling the subproblem.

We assume that the cells in row r are indexed from 1 to nr
from the left to the right. The k-th cell in row r is denoted
by Cr,k. We assume that there are three levels of threshold
voltages which are SVT, LVT, and ULVT, though our model
can be easily extended to any number of threshold voltage
levels. Below are the inputs to the MinIA-aware detailed
placement and Vt refinement problem.
• nr: number of cells in row r.
• Lr: length of row r.
• W : minimum implant width.
• Wr,k: width of cell Cr,k.
• Xr,k: original location of cell Cr,k’s left boundary.
• δminr,k , δmaxr,k : [ δminr,k , δmaxr,k ] is the range of allowed

displacement for cell Cr,k (δminr,k ≤ 0 and δmaxr,k ≥ 0).
• ∆S

r,k,∆
L
r,k,∆

UL
r,k : power penalties if cell Cr,k’s threshold

voltage is re-assigned to SVT, LVT, ULVT, respectively.
The outputs of the MinIA-aware detailed placement and Vt

refinement problem are as follows.
• aSr,k, a

L
r,k, a

UL
r,k : 1 if cell Cr,k’s threshold voltage is re-

assigned to SVT, LVT, ULVT, respectively; 0 otherwise.
• δr,k: final displacement of cell Cr,k from its original

location.
• mr,k: an intermediate location between the final locations

of cells Cr,k and Cr,k+1 that divides the whitespace
between cells Cr,k and Cr,k+1 into two subspaces such
that the left (right) subspace is inserted with filler cell
type matching the implant type of cell Cr,k (Cr,k+1).

Our MILP model for row r is given below.

Min. α
∑
k

(
∆S
r,k ·aSr,k + ∆L

r,k ·aLr,k + ∆UL
r,k ·aULr,k

)
+ β

∑
k

δ̄r,k

s.t. aSr,k + aLr,k + aULr,k = 1 ∀k (1)
aτr,k = 0 ∀k, τ s.t. cell Cr,k cannot

be assigned threshold voltage τ (2)
aSr,k, a

L
r,k, a

UL
r,k = 0 or 1 ∀k (3)

δminr,k ≤ δr,k ≤ δmaxr,k ∀k (4)

δ̄r,k ≥ δr,k ∀k (5)
δ̄r,k ≥ −δr,k ∀k (6)
Xr,k + δr,k +Wr,k ≤ mr,k ≤ Xr,k+1 + δr,k+1

∀1 ≤ k ≤ nr − 1 (7)
0 ≤ Xr,1 + δr,1 (8)
Xr,nr

+ δr,nr
+Wr,nr

≤ Lr (9)
dr,k ≤ 1− aSr,k+1 + 1− aSr,k ∀1 ≤ k ≤ nr − 1 (10)

dr,k ≥ aSr,k+1 − aSr,k ∀1 ≤ k ≤ nr − 1 (11)

dr,k ≤ 1− aLr,k+1 + 1− aLr,k ∀1 ≤ k ≤ nr − 1 (12)

dr,k ≥ aLr,k+1 − aLr,k ∀1 ≤ k ≤ nr − 1 (13)

dr,k ≤ 1− aULr,k+1 + 1− aULr,k ∀1 ≤ k ≤ nr − 1 (14)

dr,k ≥ aULr,k+1 − aULr,k ∀1 ≤ k ≤ nr − 1 (15)
dr,k = 0 or 1 ∀1 ≤ k ≤ nr − 1 (16)
mr,k+j −mr,k−1 ≥ (dr,k−1 + dr,k+j − 1)W

∀1 ≤ k ≤ nr and
∀j ≥ 0 s.t. (k + j ≤ nr and∑j

i=0Wr,k+i < W ) (17)
dr,0 = 1 (18)
dr,nr

= 1 (19)
mr,0 = 0 (20)
mr,nr

= Lr (21)

The objective of the MILP is to minimize a weighted sum
of power overhead and total cell displacement. The power
overhead is given by

∑
k(∆S

r,k ·aSr,k+∆L
r,k ·aLr,k+∆UL

r,k ·aULr,k )

while the total displacement of all cells is given by
∑
k δ̄r,k. α

and β are user-defined weighting constants. Constraints (1)-(3)
ensure that each cell is re-assigned to a legal threshold voltage.
In particular, we use constraint (2) to forbid any cell to be re-
assigned to a threshold voltage higher than its initial thresh-
old voltage to avoid timing violation. Constraint (4) bounds
the displacement for each cell based on the given allowed
displacement range. As a negative displacement represents a
displacement to the left and a positive displacement represents
a displacement to the right, we use constraints (5)-(6) to get
a tight lower bound for the magnitude of the displacement of
cell Cr,k denoted by δ̄r,k. Moreover, since δ̄r,k appears in the
minimization objective, it will force δ̄r,k to be exactly equal to
the magnitude of the displacement of cell Cr,k. Constraint (7)
ensures that the cells in the row will not overlap and the
division point of the whitespace between any two adjacent
cells must be legal, i.e., between the two cells’ final locations.
Constraints (8)-(9) ensure that the leftmost and the rightmost
cells must lie within the given placement region.

We introduce binary variable dr,k which indicates if the
pair of adjacent cells Cr,k and Cr,k+1 are re-assigned distinct
threshold voltages or not. Therefore, we want dr,k to be equal
to 1 if and only if cells Cr,k and Cr,k+1 are re-assigned distinct
threshold voltages. It is accomplished by constraints (10)-(16).
If cells Cr,k and Cr,k+1 are re-assigned distinct threshold
voltages, then the conjunction of constraints (11), (13) and
(15) is equivalent to dr,k ≥ 1 while the conjunction of
constraints (10), (12), and (14) is equivalent to dr,k ≤ 1,
hence dr,k will be 1. On the other hand, if cells Cr,k and
Cr,k+1 are re-assigned the same threshold voltage, then the
conjunction of constraints (11), (13) and (15) is equivalent
to dr,k ≥ 0 while the conjunction of constraints (10), (12),
and (14) is equivalent to dr,k ≤ 0, hence dr,k will be 0.
If
∑j
i=0Wk+i < W , then it is possible that cells Cr,k to

Cr,k+j would form a Vt-island that violates the minimum
width constraint. To ensure that it will never happen, we
impose constraint (17) whenever

∑j
i=0Wk+i < W . Note that

cells Cr,k to Cr,k+j will form a Vt-island only if cell Cr,k’s
Vt is different from that of cell Cr,k−1 (i.e., dr,k−1 = 1)
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and cell Cr,k+j’s Vt is different from that of cell Cr,k+j+1

(i.e., dr,k+j = 1). In that case, constraint (17) will become
mr,k+j − mr,k−1 ≥ W enforcing that such island is large
enough. And constraint (17) is trivially satisfied unless both
dr,k−1,r,k and dr,k+j are 1. Finally, constraints (18)-(21) take
care of the boundary conditions.

We note that our MILP is guaranteed to be feasible since
aULr,k = 1 for all k, δr,k = 0 for all k, and mr,k = Xr,k+1

for k = 1, . . . , nr − 1 is always a feasible solution to it.
That is, one way (not the best way) to resolve all intra-row
MinIA constraint violations is to re-assign all cells’ threshold
voltage to ULVT and fill all whitespace with ULVT filler cells
without moving any cell. Our approach always tries to find
the best feasible solution to fix all intra-row MinIA constraint
violations with the minimum power overhead and total cell
displacement.

A. A Simpler and Faster MILP Model

In this subsection, we discuss a possible simplification to
our proposed MILP. Instead of using binary variable dr,k
which indicates if cells Cr,k and Cr,k+1 are re-assigned
distinct threshold voltages or not, we may introduce binary
variable d′r,k such that d′r,k must be 1 if cells Cr,k and
Cr,k+1 are re-assigned distinct threshold voltages. And we
may replace constraints (10)-(19) by constraints (22)-(28) be-
low. If cells Cr,k and Cr,k+1 are re-assigned distinct threshold
voltages, then the conjunction of constraints (22), (23) and (24)
is equivalent to d′r,k ≥ 1, hence d′r,k will be 1. Otherwise, the
value of d′r,k can be freely set by the MILP solver.

d′r,k ≥ aSr,k+1 − aSr,k ∀1 ≤ k ≤ nr − 1 (22)

d′r,k ≥ aLr,k+1 − aLr,k ∀1 ≤ k ≤ nr − 1 (23)

d′r,k ≥ aULr,k+1 − aULr,k ∀1 ≤ k ≤ nr − 1 (24)
d′r,k = 0 or 1 ∀1 ≤ k ≤ nr − 1 (25)
mr,k+j −mr,k−1 ≥ (d′r,k−1 + d′r,k+j − 1)W

∀1 ≤ k ≤ nr and
∀j ≥ 0 s.t. (k + j ≤ nr and∑j

i=0Wr,k+i < W ) (26)
d′r,0 = 1 (27)
d′r,nr

= 1 (28)

As explained previously, suppose
∑j
i=0Wk+i < W , then

we need to make sure that mr,k+j − mr,k−1 ≥ W only
if cell Cr,k’s Vt is different from that of cell Cr,k−1 and
cell Cr,k+j’s Vt is different from that of cell Cr,k+j+1. But
we know that when cell Cr,k’s Vt is different from that of
cell Cr,k−1 and cell Cr,k+j’s Vt is different from that of
cell Cr,k+j+1, both d′r,k and d′r,k+j will be equal to 1, so
constraint (26) will become mr,k+j−mr,k−1 ≥W as desired.
Otherwise, the MILP solver is free to set the value of at least
one of d′r,k or d′r,k+j to satisfy constraint (26) trivially.

B. Efficiency of Our Model

We note that in the detailed placement legalization method
of [10], the intra-row MinIA design rules are enforced by

introducing a 0-1 variable between every pair of adjacent
placement sites in a row to indicate if the pair have the same
Vt or not, and by defining for every W consecutive placement
sites in a row a set of W constraints on these variables. On
the other hand, we introduce a 0-1 variable dr,k between every
pair of adjacent cells in a row, and define one constraint (17)
for every chain of consecutive cells with total length less than
W . Since the number of cells in a row is at least a few times
less than the number of placement sites in a row, we can save
a lot on the number of integer variables and constraints.

Conventionally, placement of cells should be left-aligned
with placement sites, i.e., Xr,k + δr,k should be integral.
In our model, we simply defined variables mr,k and δr,k
as continuous variables and do not need to restrict them to
be integer variables. This approach dramatically reduces the
number of integer variables and hence significantly speeds
up the algorithm. If Vt re-assignment is not considered, our
model will even become a linear program without any integer
variable. We show in the following that an optimal integral
(i.e., legal) placement solutions can always be obtained.

Lemma 1. An integral optimal solutions can always be
obtained for our MILP formulation.

Proof. For our MILP formulation, all the parameters in the
constraints (Xr,k,Wr,k,W, δ

min
r,k , δmaxr,k , Lr) are integers. If we

fix the binary variables in our MILP, all the constraints are of
the form: {

A ≤ v ≤ B
C ≤ v − v′ ≤ D

where v and v′ are continuous variables, and A, B, C, and D
are some integer constants. Consider the feasible region, which
is a convex polytope formed by these constraints, the vertices
of it must be integral. This implies that there exist integral
optimal solutions for our MILP formulation. It is also known
that an integral optimal solution will always be obtained using
a simplex method based algorithm [15].

C. Dealing with Fixed Macros

In practice, there can be many fixed macros in the given
placement that cannot be moved. Our approach can be easily
adapted to handle that. We just need to scan the design once
and divide each row of cells into sub-rows separated by the
fixed macros. Then we can formulate an MILP for each sub-
row with the left end point and the right end point of the
sub-row as the boundaries when refining the placement of the
cells in the sub-row. Hence, we form and solve an independent
MILP for each sub-row.

VI. HANDLING BOTH INTRA-ROW AND INTER-ROW
MINIA DESIGN RULES

In this section, we present an algorithm targeting the tech-
nology nodes in which both intra-row and inter-row MinIA
design rules are applicable. For such advanced technology
nodes, it is also necessary to ensure that the Vt islands of
the same type on adjacent rows will not form any narrow
staircase with width less than W . We observe that a narrow
staircase of the same Vt can be formed as in Figure 6(a) or
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Figure 6(b). In Figure 6(a), the Vt of cells Cr,k and Cr+1,k′+1

are identical and are different from cells Cr,k+1 and Cr+1,k′

while W > mr,k−mr+1,k′ > 0. In Figure 6(b), the Vt of cells
Cr,k+1 and Cr+1,k′ are identical and are different from cells
Cr,k and Cr+1,k′+1 while W > mr+1,k′ −mr,k > 0. So, an
optimal MILP formulation under both intra-row and inter-row
MinIA design rules can be obtained by combining the MILPs
for all the rows described in the previous section and adding
inter-row constraints for the inter-row MinIA design rules.

Fig. 6. Formation of narrow staircases.

We describe the additional inter-row constraints below. First,
we note that if the final values of mr,k and mr+1,k′ are at least
W apart, then a narrow staircase like the ones in Figure 6 can
never be formed. Now, since the feasible range for variable
mr,k is between Xr,k + δminr,k + Wr,k and Xr,k+1 + δmaxr,k+1,
we can figure out in advance if the final values of mr,k and
mr+1,k′ (k = 1, 2, . . . , nr; k

′ = 1, 2, . . . , nr+1) will always
be at least W apart. In this way, we can filter out a lot of
unnecessary inter-row constraints.

We propose to check the feasible ranges for mr,k and
mr+1,k′ , and consider three different cases. Case 1 is that the
feasible range for mr,k and that for mr+1,k′ do not overlap and
are at least W apart. In this case, we do not need to introduce
inter-row constraints between mr,k and mr+1,k′ . Case 2 is
that the feasible range for mr,k does not overlap with that for
mr+1,k′ but the two ranges are less than W apart. Case 3 is
that the feasible range for mr,k overlaps with that for mr+1,k′ .
Next, we describe the inter-row constraints for cases 2 and 3.

For case 2, the feasible range for mr,k does not overlap
with that for mr+1,k′ but the two ranges are less than W
apart. We can distinguish two subcases depending on whether
the final value of mr,k will always be greater than or always
be smaller than that of mr+1,k′ . If the final value of mr,k will
always be greater than that of mr+1,k′ , we add constraint (29)
below to prevent the scenario shown in Figure 6(a). It is easy
to see that unless aτr,k = 1, aτr+1,k′+1 = 1, aτr,k+1 = 0, and
aτr+1,k′ = 0, the right hand side of constraint (29) will be
negative and constraint (29) will be trivially satisfied. When
aτr,k = 1, aτr+1,k′+1 = 1, aτr,k+1 = 0, and aτr+1,k′ = 0, which
means the Vt of cells Cr,k and Cr+1,k′+1 are identical but
are different from cells Cr,k+1 and Cr+1,k′ , constraint (29)
becomes mr,k−mr+1,k′ ≥W . As a result, the scenario shown
in Figure 6(a) cannot occur.

mr,k −mr+1,k′ ≥
(aτr,k + aτr+1,k′+1 − aτr,k+1 − aτr+1,k′ − 1)W

for τ = S/L/UL (29)

Similarly, if the final value of mr,k will always be smaller
than that of mr+1,k′ , we add constraint (30) below to ensure
that the scenario shown in Figure 6(b) cannot occur.

mr+1,k′ −mr,k ≥
(aτr,k+1 + aτr+1,k′ − aτr,k − aτr+1,k′+1 − 1)W

for τ = S/L/UL (30)

For case 3, the feasible range for mr,k overlaps with that
for mr+1,k′ . In this case, the final value of mr,k can be
greater than, less than, or equal to that of mr+1,k′ . If the
final values of mr,k and mr+1,k′ are equal, neither scenario
shown in Figure 6 can occur. But we have to handle the other
two possibilities. We introduce binary variable gr,k,r+1,k′ such
that gr,k,r+1,k′ must be 1 if the final value of mr,k is greater
than that of mr+1,k′ . Similarly, we introduce binary variable
lr,k,r+1,k′ such that lr,k,r+1,k′ must be 1 if the final value
of mr,k is less than that of mr+1,k′ . We add the inter-row
constraints (31)-(36) below, where M is a large constant.

gr,k,r+1,k′ = 0 or 1 (31)
mr,k −mr+1,k′ ≤M · gr,k,r+1,k′ (32)
mr,k −mr+1,k′ ≥

(aτr,k + aτr+1,k′+1 − aτr,k+1 − aτr+1,k′ − 1)W

−M(1− gr,k,r+1,k′)

for τ = S/L/UL (33)
lr,k,r+1,k′ = 0 or 1 (34)
mr+1,k′ −mr,k ≤M · lr,k,r+1,k′ (35)
mr+1,k′ −mr,k ≥

(aτr,k+1 + aτr+1,k′ − aτr,k − aτr+1,k′+1 − 1)W

−M(1− lr,k,r+1,k′)

for τ = S/L/UL (36)

Due to constraint (32), binary variable gr,k,r+1,k′ must
be 1 if mr,k is greater than mr+1,k′ , otherwise it can be
set freely by the MILP solver. When mr,k is greater than
mr+1,k′ , constraint (33) will ensure that the scenario shown in
Figure 6(a) cannot occur. Otherwise, constraint (33) is trivially
satisfied by setting gr,k,r+1,k′ to 0. The other subcase where
mr,k is less than mr+1,k′ is symmetrical, and is captured
by constraints (34)-(36) to prevent the scenario shown in
Figure 6(b).

A. Speedup Techniques

Unfortunately, modelling the entire layout using a single
MILP as described above could still be computationally ex-
pensive except for small layouts. So, we use two techniques
to speed up the solution process.

Firstly, instead of handling the whole layout at once, we
divide the whole layout horizontally into multiple strips.
Each strip is a smaller layout consisting of several rows. We
formulate a MILP for each strip. To ensure that there is no
inter-row MinIA rule violation between two neighboring strips,
we process the strips in the order from the topmost strip to
the bottom one, and when we formulate the MILP for a strip,
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we take into account the the last row in the strip above the
current strip and treat it as fixed.

Secondly, we only add inter-row constraints on an as-
needed basis. We will start with zero inter-row constraint,
only if there are inter-row MinIA rule violations detected, we
will introduce inter-row constraints between the corresponding
variables mr,k and mr+1,k′ according to whether it belongs
to case 2 or case 3 above. For example, suppose we find a
narrow staircase of the same Vt like the one in Figure 6(a).
Furthermore, the feasible range for mr,k overlaps with that
for mr+1,k′ , then it is case 3. And since it is a narrow
staircase of the type shown in Figure 6(a), we will add
constraints (31)-(33) to get rid of it. And in particular, we
may instantiate constraint (33) with τ being the current Vt
of cells Cr,k and Cr+1,k′ . This may require a few iterations
before a solution with no inter-row MinIA rule violation is
obtained. The process is summarized in Figure 7. Note that
due to this technique, the number of 0-1 integer variables in
our MILP is only O(|C|) where |C| is the number of cells in
a strip.

Fig. 7. The proposed technique to add inter-row constraints to our MILP on
an as-needed basis.

VII. EXPERIMENTAL RESULTS

We adopt the circuits from the ICCAD 2012 placement con-
test benchmark suite for our experiments. We ran a routability-
driven placer [16] to obtain the initial placement for each
circuit. Some key characteristics of the benchmarks are listed
in Table I. Percentage of narrow cells denotes the proportion
of cells with width less than the minimum implant width
which is seven placement sites in our experiments. Besides, the
ratio of cells assigned to threshold voltage SVT/LVT/ULVT
initially is roughly 7:2:1. Cells assigned to SVT, LVT, and
ULVT initially are assumed to be non-timing-critical, more

timing-critical, and most timing- critical, respectively. We set
the allowable displacement for a cell according to its timing
criticality. The allowable displacement for a cell varies from
zero to ten placement sites. In each benchmark, there are a
number of fixed nodes (unmovable macros and unmovable
cells) given. In our experiments, we assume that the unmovable
macros have unknown Vt while the Vt of unmovable cells are
generated in the same manner as the movable cells. Since the
benchmarks did not come with any power information, we
make the following assumption when computing the power
penalty. The power penalty of changing the threshold voltage
of a cell is proportional to the width of the cell. If the threshold
voltage of a cell with width Wc is changed from SVT to LVT,
or LVT to ULVT, or SVT to ULVT, then the incurred power
penalty is 2Wc, or 3Wc, or 5Wc.

TABLE I
BENCHMARKS CHARACTERISTICS.

#Cells Utilization (%) % of narrow cells
superblue1 817K 69 65
superblue3 887K 73 43
superblue4 561K 70 51
superblue5 750K 77 45
superblue7 1.33M 76 33

superblue10 1.14M 70 62
superblue16 680K 69 58
superblue18 467K 67 38

The number of intra-row and inter-row MinIA constraint
violations for the initial placement of each benchmark are
shown in Table II. Unless otherwise stated, the simpler MILP
model in Section V.A was used to obtain the refinement results
reported in this section. All experiments were conducted on
a 3.3GHz Linux machine with 128GB memory. Gurobi [17]
was used to solve the MILPs.

TABLE II
NUMBER OF INTRA-ROW AND INTER-ROW VIOLATIONS IN THE INITIAL

PLACEMENTS.

# intra-row vio. # inter-row vio.
superblue1 251597 86600
superblue3 208303 32246
superblue4 145748 40459
superblue5 209445 27020
superblue7 252163 160217

superblue10 409542 81473
superblue16 171005 18245
superblue18 100791 32647

In our first set of experiments, we assume that only intra-
row MinIA design rules are applicable. As a baseline for
comparison, we found the minimum power overhead to fix
all intra-row MinIA constraint violations by optimal threshold
voltage re-assignment and filler cell insertion without any
placement perturbation. The baseline results were obtained by
imposing a zero allowable displacement range for all cells in
our MILP. Note that it is equivalent to setting α = 1 and
β = ∞. The results are shown in the left part of Table III.
It can be seen that none of the circuits can satisfy the intra-
row MinIA design rules by applying filler cell insertion alone
even with the intelligent division of each whitespace for filler
cell insertion presented in Section IV. Moreover, we have to
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reduce the threshold voltage for as much as 17% of the cells
to fix all intra-row MinIA constraint violations for superblue1
which has the highest proportion of narrow cells.

Then we tried different settings for the weighting con-
stants α and β in the objective function of our MILP. Firstly,
we tried α = 1 and β = 0, which means we do not try
to minimize the total cell displacement as long as each cell
is moved within its allowable range. The results are shown
in the middle part of Table III. The average and maximum
displacement per cell in terms of number of placement sites are
reported. For reference, the minimum cell width in all designs
is two placement sites. It can be seen that cell movement,
or equivalently, whitespace re-distribution can facilitate filler
cell insertion to fix intra-row MinIA constraint violation, so
the amount of cells that has to change threshold voltage is
cut down largely compared to the baseline. As a result, the
power penalty associated with threshold voltage reduction is
also reduced by 77% on average compared to the baseline.
Secondly, we adjusted the values of α and β to minimize the
power overhead and total cell displacement at the same time.
The results are shown in the right part of Table III. It can
be seen that cell displacement can be effectively reduced by
over 15 times on average while maintaining virtually the same
power overhead reduction.

For comparison, we also implemented a simple algorithm
similar to the one proposed in [1] to insert filler cells, change
threshold voltages of cells, and move cells heuristically to fix
intra-row MinIA constraint violations. The results are reported
in Table IV. We found that due to the limited local view of
the heuristic, it failed to resolve all violations at the end for
all benchmarks.

TABLE IV
RESULTS BY A HEURISTIC SIMILAR TO [1] FOR FIXING INTRA-ROW

MINIA CONSTRAINT VIOLATIONS.

Intra-row Vt(S/L/UL) Avg. Max. CPU
vio. left (%) disp. disp. time (s)

superblue1 27660 57.8 / 24.4 / 17.8 0.08 4 12
superblue3 22597 61.5 / 23.1 / 15.3 0.06 5 10
superblue4 15385 59.8 / 23.7 / 16.5 0.06 5 5
superblue5 28759 62.9 / 23.5 / 13.6 0.08 5 8
superblue7 16864 62.6 / 22.9 / 14.5 0.03 5 28
superblue10 60437 60.0 / 23.8 / 16.2 0.12 5 26
superblue16 16422 58.3 / 24.4 / 17.3 0.07 5 10
superblue18 10056 62.5 / 23.0 / 14.5 0.05 5 7

average 24772 60.7 / 23.6 / 15.7 0.07 4.9 13

In our second set of experiments, we consider both intra-
row MinIA and inter-row MinIA design rules. The extended
MILP-based approach was applied such that every benchmark
was divided into strips of ten rows each. For ease of compar-
ison, we have duplicated the results under intra-row MinIA
rules only from the rightmost five columns of Table III into
Table V. In order to address inter-row MinIA design rules,
both the power penalty and cell displacement are increased.
The runtime is increased a few times because it usually takes
a few iterations of MILP to resolve all inter-row MinIA rule
violations.

In Table VI, we show the speedup of adopting the simplified
MILP model proposed in Section V.A over the non-simplified

MILP model by repeating the experiment above using the non-
simplified MILP model. The runtime is about 2.79 times faster
on average with the simplification.

TABLE VI
RUNTIME REDUCTION WITH THE PROPOSED MILP SIMPLIFICATION.

Non-simplified Simplified
MILP MILP

CPU time (s) CPU time (s)
superblue1 7481 1789
superblue3 5322 1290
superblue4 1456 722
superblue5 1258 739
superblue7 5069 1780

superblue10 3559 1506
superblue16 4651 1347
superblue18 782 491

ratio 2.79 1

In addition, we also implemented an alternative MILP
formulation for detailed placement and Vt refinement using
the constraint modeling method for intra-row and inter-row
MinIA rules presented in [10]. We compared the MILP file
sizes and runtimes of the alternative MILP formulation against
ours for a single strip consisting of the first ten rows of each
benchmark3 in Table VII. We set a timeout limit of 5000s
for a single strip. It can be seen that our MILP file sizes are
two to three orders of magnitude smaller than the reference
MILP formulation. The time it took to solve our MILP was
also up to thousands of times faster. In fact, timeout occurred
for most benchmarks with the alternative MILP formulation.
For the sub-problem from superblue1, our machine ran out
of memory when solving the alternative MILP formulation.
We verified that the two MILP formulations gave the same
objective function values when timeout did not occur.

VIII. CONCLUSIONS

MinIA constraints have become more difficult to satisfy
as average cell size continues to decrease in advanced pro-
cesses. We considered a MinIA-aware detailed placement and
threshold voltage refinement problem for low power chip
design utilizing multiple threshold voltages. An optimal row-
based algorithm based on mixed-integer linear programming
was proposed when only intra-row MinIA constraints are
of concern. We also extended it to handle both intra-row
and inter-row MinIA constraints. Cell movement, intelligent
whitespace division for filler cell insertion, and threshold
voltage re-assignment are considered simultaneously in our
algorithms. Experimental results showed that with limited total
cell displacement, the power overhead for fixing all MinIA rule
violations can be reduced significantly.
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