
1

Flexible Packed Stencil Design with Multiple Shaping Apertures and
Overlapping Shots for E-beam Lithography

Chris Chu, Fellow, IEEE and Wai-Kei Mak, Member, IEEE

Abstract—Electron-beam lithography has long been employed
for mask writing but the write time is increasing due to
the escalating mask pattern complexity. Besides, electron-beam
direct write (EBDW) is being pursued as an alternative solution
for chip production in the sub-22nm regime. To improve the
throughput of e-beam lithography, character projection method
is commonly employed and a critical problem is to pack as many
useful characters as possible onto the stencil. In this paper,
we consider three enhancements in packed stencil design over
previous works. First, the fact that the pattern of a character
can be located anywhere within its enclosing projection region
is exploited to facilitate flexible blank space sharing. Second,
the use of multiple shaping apertures with different sizes is
explored. Third, the use of overlapping shots for printing some
characters is investigated. For the packed stencil design problem
with flexible blank space sharing and multiple shaping apertures,
two dynamic programming based algorithms are proposed, one
allows overlapping shots and the other does not. Experimental
results show that the proposed enhancement and the associated
algorithm can significantly reduce the total shot count and hence
improve the throughput of e-beam lithography.

Index Terms—Character projection, E-beam lithography, Sten-
cil design

I. INTRODUCTION

There is intense interest and demand for increasing the
throughput of e-beam lithography for use in advanced mask
lithography and direct wafer writing applications. E-beam
lithography has long been employed for mask writing but
the write time is increasing due to the escalating mask pat-
tern complexity. Besides, the semiconductor industry is also
exploring e-beam direct write (EBDW) as a solution [1]–[3]
for manufacturing chips at ever smaller process nodes for its
superior resolution and depth of focus over optical lithography.

The character projection method is known to be an effective
way to enhance the throughput of e-beam lithography. In the
character projection method, complex patterns called charac-
ters can be directly printed onto a wafer/mask substrate [4],
[5]. An e-beam writing system has a stencil which can hold
a set of characters. Patterns in a circuit that correspond to a
character in the stencil can be projected in one shot. However,
other patterns that do not match any character need to be
fractured into constituent rectangles. Then each constituent
rectangle requires its own shot and has to be printed in the
variable shaped beam (VSB) mode [6].

This work was supported in part by the Ministry of Science and Technology
under grant MOST 103-2220-E-007-002.

Chris Chu is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50010

Wai-Kei Mak is with the Department of Computer Science, National Tsing
Hua University, 101 Kuan Fu Rd. Sec. 2, Hsinchu, Taiwan 300 R.O.C.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Fig. 1. (a) Four adjacent characters placed without overlapping their blank
spaces. (b) The same characters are placed with their blank spaces overlapping
to reduce the overall area as considered in [10]–[12]. (c) Flexible blank space
sharing by relocating the character patterns within their projection regions to
further reduce the overall area as considered in this paper and [13].

Traditionally, a standard stencil adopts a grid-based layout
with pre-designated spots for characters [7], [8] as illustrated
in Fig. 1(a). Each character pattern can be of any size or
shape up to the maximum allowed size, which is dictated
by the shaping aperture. Since there is a fixed number of N
pre-designated character spots on the grid, one just needs to
pick the N most beneficial characters and put them into these
spots. While this arrangement is simple, it is too restrictive.
It was pointed out in [8] and [9] that by carefully arranging
and packing the different sized characters on a stencil, the
final number of characters that can be put on a stencil can
be greatly increased. It is because two adjacent characters can
be placed with their blank spaces overlapping as illustrated in
Fig. 1(b). This will allow more patterns on the wafer to be
shot as characters leading to reduced write time and cost.

Packed stencil design has been studied in [10]–[12]. But
they all overlooked the fact that the location of the pattern of
a character is free to be adjusted within its enclosing projection
region. For example, consider the characters in Fig. 1(a), we
can reduce the total area occupied by the three characters even
further compared to Fig. 1(b) through flexible blank space
sharing by re-locating the pattern of each character within
its own enclosing projection region as illustrated in Fig. 1(c).
We were the first to point out this flexibility and proposed
a nearly optimal approximation algorithm for character and
stencil co-optimization in [13].

We note that all previous works including [13] are limited to
the case that there is only a single shaping aperture, but the use
of multiple shaping apertures with different sizes is possible
[4], [14] as shown in Fig. 2. Since the enclosing projection
region size of a character is determined by the shaping aperture
size, using a smaller shaping aperture for smaller character
patterns is helpful for packing more characters into the stencil

2

Fig. 2. A e-beam writing system with three shaping apertures.

and thus reducing the writing time further. Here we first
address the packed stencil design problem with flexible blank
space sharing and multiple shaping apertures. We propose
a 3-stage algorithm MSA for the problem and show that it
can effectively increase the number of packed characters on a
stencil and significantly reduce the total shot count compared
to the state of the art.

In addition, we consider the usage of overlapping shots for
printing some characters. We show that selectively printing
some characters using multiple shots is also an effective way
to increase the number of packed characters on a stencil and
reduce the total shot count. For the best result, we propose a
second algorithm MSA-OS for flexible packed design which
take advantage of the use of flexible blank space sharing,
multiple shaping apertures, and overlapping shots at the same
time.

Our main contributions are as follows.

1) We present an improved algorithm MSA for packed
stencil design with multiple shaping apertures compared
to our preliminary work [15]. In particular, the second
and third stages of MSA are re-designed and lead to
even better experimental results than [15].

2) To the best of our knowledge, this is the first work
to investigate the usage of overlapping shots to print
some characters in packed stencil design. We show that
more characters can be put into the stencil as a result of
intelligently using overlapping shots.

3) We design the MSA-OS algorithm for packed stencil
design with multiple shaping apertures and overlapping
shots. It yields 3.6 times and 2.3 times shot count
reduction on average compared with [11] and [13],
respectively, under two shaping apertures.

The rest of the paper is organized as follows. In Section II,
we introduce some preliminary information. In Section III,
some basic properties for packed stencil design with multiple
shaping apertures are derived, and then the MSA algorithm
is presented. In Section IV, we develop the theory of shot
composition when using overlapping shots and present the
MSA-OS algorithm. Finally, we present some experimental
comparisons with [11] and [13] and a conclusion in Section V.

Fig. 3. The projection region and safe printing region for a character.

II. PRELIMINARIES

Refer to the general e-beam machine in Fig. 2, it has
multiple differently sized shaping apertures. The aperture
selecting deflector can control the direction of the e-beam to
shoot it through one of the shaping apertures. Subsequently,
the character selecting deflector can direct the e-beam to
shoot through any desired character on the stencil. Note that
the dimensions of the projection region on the stencil when
an e-beam is shot through a particular shaping aperture are
dependent on the dimensions of the corresponding shaping
aperture.

Due to scattering of electrons, features that are too close
to the boundary of projection region may not be printed
accurately. Hence, we define a safe printing region as follows.

Def. 1. A safe printing region is the part of projection region
that is at least a safety margin S away from the boundary as
shown in Fig. 3.

In order to print characters on the wafer with no loss of
accuracy, the pattern of each character must lie within the
safe printing region. In addition, the pattern of any character A
cannot overlap with the e-beam projection region of another
character B. Otherwise, part of character A would be printed
erroneously when printing character B. However, the blank
space of two neighboring characters may overlap and is
desirable to overlap in order to reduce the total area occupied
by the characters.

We assume that standard cells are implemented by the
characters. To minimize wastage of stencil area, the heights
of different character projection regions should all be set to
2S plus the standard cell image height. In addition, characters
on the stencil should be arranged in a row-based manner and
each character pattern is always placed within its projection
region such that the top blank space and the bottom blank
space are equal to S. In this way, the bottom blank space of a
row of characters can completely overlap with the top blank
space of the row of characters below as in Fig. 4 and we
can pack the maximum possible number of rows of characters
into the stencil. Finally, we assume that the blank space of a
character can lie outside of the available character area of the
stencil [9], [13] as in Fig. 4.

Next, we introduce the common notations used in the rest
of the paper.

• K denotes the number of choices for character projection
region widths, which is equal to the number of available
shaping apertures.

3

Fig. 4. Row-based stencil design.

• S denotes the safety margin from the safe printing region
to the projection region boundary for an e-beam shot.

• W denotes the width of the available character area of
the stencil.

• R denotes the number of character rows that can fit in
the stencil.

• n denotes the number of different characters extracted
from a circuit.

• wc denotes the width of the pattern of character c. For
simplicity, we will refer to the width of the pattern of a
character as the character width in the rest of the paper.

• wmin and wmax denote the minimum character width and
the maximum character width in the circuit.

• rc denotes the number of occurrence of character c in a
the circuit.

• nV SBc denotes the number of e-beam shots required to
print character c by the VSB method.

III. STENCIL DESIGN WITH FLEXIBLE BLANK SPACE
SHARING AND MULTIPLE SHAPING APERTURES

In this section, we focus on the packed stencil design
problem with multiple shaping apertures under flexible blank
space sharing. The problem is formally stated below.

Problem 1. Suppose the values of K, S, W , and R for an e-
beam machine with multiple shaping apertures are given. A set
of n characters extracted from a circuit and the values of wc,
rc, and nV SBc

for each character c are also given. We have to
(i) determine K different character projection region widths,
(ii) select the characters to be put on the stencil along with
the character projection region width for each character, and
(iii) pack the characters on the stencil in a row-based manner
with flexible blank space sharing to maximize the total shot
saving by character projection for printing the entire circuit
under the following constraints.
(C1) The pattern of each character must lie within the safe
printing region of the character’s projection region.
(C2) The pattern of each character cannot lie within the
projection region of any other character.
(C3) The patterns of all characters must lie within the avail-
able character area of the stencil.

Note that in order to satisfy condition (C1), we must use a
character projection region width no smaller than wc+2S for
character c because it requires the effective printing region to
be at least as wide as wc.

Before presenting our solution to the above flexible packed
stencil design problem, we first show that it is not an easy
problem.

Lemma 1. The flexible packed stencil design problem with
multiple shaping apertures is NP-complete.

Proof. The flexible packed stencil design problem with mul-
tiple shaping apertures is a generalization of the single-row
character packing problem in [13], which only considers a
single shaping aperture. It is proved in [13] that the single-
row character packing is NP-complete. Hence, our problem is
also NP-complete.

A. MSA Algorithm Outline

As the problem of flexible packed stencil design with
multiple shaping aperture is very complicated, we present a
3-stage algorithm MSA here. Firstly, we propose a dynamic
programming algorithm to determine K shaping aperture sizes
(or equivalently, K projection region widths) and select a
set of most beneficial characters that roughly can be packed
on the stencil. Secondly, we distribute the selected characters
to different rows and construct tight linear packing for each
row. At last, we refine the solution by checking if any of
the remaining characters can be added to the end of the tight
linear packing of some row. The outline of the MSA algorithm
is given in Algorithm 1.

Algorithm 1 MSA
Stage 1: Determine K projection region widths and select a

set of characters to be put on the stencil by dynamic
programming.

Stage 2: Assign the characters selected in Stage 1 to rows on
the stencil and construct tight linear packing for each
row.

Stage 3: Pack some of the remaining characters at the end of
each row, if possible.

Stages 1 and 2 of our algorithm are based on the key
concepts of tight linear packing and effective character width.
So, we will first introduce them in Section III.B. Then, we will
describe the details of Stage 1 of Algorithm 1 in Section III.C
and the details of Stages 2 and 3 in Section III.D.

B. Tight Linear Packing and Effective Character Width

In this subsection, we introduce some definitions and derive
some useful properties related to packed stencil design with
multiple shaping apertures under flexible blank space sharing.

Def. 2. A linear packing of a group of characters is a packing
of all the given characters in a row with flexible blank space
sharing satisfying constraints (C1) and (C2).

Def. 3. The width of a linear packing is the total span of the
packing excluding the left blank space of the leftmost character
and the right blank space of the rightmost character. (See
Fig. 5.)

In the following discussion, we assume that the characters
in a linear packing are indexed from left to right by 1, 2, 3,
And the enclosing projection region width for character c is
denoted by Ec (see Fig. 6).

4

Fig. 5. A tight linear packing. Characters with even indexes are shifted down
a bit to show the projection regions of all characters more clearly.

Fig. 6. A character c shown with its character width wc and enclosing
projection width Ec.

Def. 4. A tight linear packing is a linear packing such that for
any two neighboring characters i and i + 1, the right blank
space of character i and the left blank space of character i+1
are exactly equal and completely overlap. (See Fig. 5 for an
example.)

In a tight packing, the blank space on the two sides of each
character, except the first and the last characters, is completely
shared with its two neighboring characters. This motivates us
to define the effective width of a character as its character
width plus half of its blank space width.

Def. 5. The effective width of a character c is defined as wc+
(Ec − wc)/2, i.e., wc+Ec

2 .

We may conveniently express the width of a tight linear
packing and bound the width of an arbitrary linear packing in
terms of the effective width of its characters as in Lemma 2
below.

Lemma 2. For a linear packing P of m characters, let W (P)
denote the width of P , wi(P) and Ei(P) denote the character
width and enclosing projection width of the i-th character (i =
1, 2, . . . ,m), s0(P) denote the width of the left blank space of
the first character, and sm(P) denote width of the right blank
space of the last character in P .
For a tight linear packing Pt,

W (Pt) =

m∑
i=1

wi(Pt) + Ei(Pt)

2
− s0(Pt)

2
− sm(Pt)

2
(1)

For an arbitrary linear packing Pa,

W (Pa) ≥
m∑
i=1

wi(Pa) + Ei(Pa)

2
− s0(Pa)

2
− sm(Pa)

2
(2)

Proof. For a tight linear packing Pt, the right blank space of
the i-th character and the left blank space of the (i + 1)-th
character are exactly equal and completely overlap for i =
1, 2, . . . ,m − 1. So, its width can be expressed as W (Pt) =∑m

i=1 wi(Pt) +
∑m−1

i=1 si(Pt) where si(Pt) denote the width
of the right blank space of the i-th character in Pt.

For the i-th character in Pt, we have si−1(Pt) + wi(Pt) +
si(Pt) = Ei(Pt) since its left and right blank spaces are equal
to si−1(Pt) and si(Pt), respectively. Hence,

∑m
i=1(si−1(Pt)+

wi(Pt) + si(Pt)) =
∑m

i=1Ei(Pt). It implies that 2 ×∑m−1
i=1 si(Pt) =

∑m
i=1Ei(Pt) −

∑m
i=1 wi(Pt) − s0(Pt) −

sm(Pt). So, the width of a tight linear packing Pt can be
re-written as

W (Pt) =

(
m∑
i=1

wi(Pt) +

m∑
i=1

Ei(Pt)− s0(Pt)− sm(Pt)

)
/2

=

m∑
i=1

wi(Pt) + Ei(Pt)

2
− s0(Pt)

2
− sm(Pt)

2
.

For an arbitrary linear packing Pa, we let gi(Pa) be the
width of the gap between the i-th and (i + 1)-th character
patterns in Pa for i = 1, 2, . . . ,m − 1, and let g0(Pa)
be s0(Pa) and gm(Pa) be sm(Pa). Then Pa’s width can
be expressed as W (Pa) =

∑m
i=1 wi(Pa) +

∑m−1
i=1 gi(Pa).

Note that gi−1(Pa) + wi(Pa) + gi(Pa) ≥ Ei(Pa) for each
character i. It implies that 2×

∑m−1
i=1 gi(Pa) ≥

∑m
i=1Ei(Pa)−∑m

i=1 wi(Pa)− s0(Pa)− sm(Pa). So,

W (Pa) ≥
m∑
i=1

wi(Pa) + Ei(Pa)

2
− s0(Pa)

2
− sm(Pa)

2
.

By applying Lemma 2, we can derive an upper bound of the
difference between the width of a tight linear packing and the
width of the minimum width linear packing and get Lemma 3.
Note that the bound provided by this lemma is tighter than the
corresponding one in our preliminary work [15].

Lemma 3. Given a group of m characters with known
enclosing projection widths, the width of any tight linear
packing is less than Bmax−2S away from the minimum width
linear packing where Bmax is the maximum blank space of a
character.

Proof. Consider a tight packing Pt and an optimal packing
P ∗.

By Equation (1) and Equation (2), we get

W (Pt)−W (P ∗) ≤ (s0(P
∗)+ sm(P ∗)− s0(Pt)− sm(Pt))/2

as
∑m

i=1 wi(Pt) =
∑m

i=1 wi(P
∗).

Since s0(P
∗) ≤ E1(P

∗) − w1(P
∗) − S and sm(P ∗) ≤

Em(P ∗)−wm(P ∗)− S, while s0(Pt) ≥ S and sm(Pt) ≥ S,
it implies that

W (Pt)−W (P ∗)

≤ ((E1(P
∗)− w1(P

∗)− S) + (Em(P ∗)− wm(P ∗)− S)
−S − S)/2

≤ ((Bmax − S) + (Bmax − S)− S − S)/2
= Bmax − 2S

Hence, the width of Pt is less than Bmax−2S away from the
width of P ∗.

By Lemma 3, it is clear that if we can construct a tight
linear packing, it will be a near optimal linear packing. Next,
we propose an efficient way to construct a tight linear packing
given m characters. Note that the way proposed here is more

5

Fig. 7. Tight linear packing construction.

general than the one in our preliminary work [15] as any
character can be used as the first character.

Lemma 4. Given a group of m characters with known
enclosing projection widths, a tight linear packing can be
constructed with any character as the first character and the
remaining characters ordered in increasing blank space, i.e.,
Ei − wi ≤ Ei+1 − wi+1 for i = 2, . . . ,m− 1.

Proof. We can prove the lemma by induction on m.
1. The base case that m = 1 is trivially true.
2. We show that if the statement is true for m = m′ − 1,
then it is also true for m = m′. Suppose the statement is true
for m = m′ − 1 and we have a group C of m′ characters.
Let f be an arbitrary character in C and cm′ be the character
in C \ {f} with the largest blank space. By the assumption,
we can construct a tight packing P1..m′−1 for C \ {cm′} with
f as the first character and the remaining characters ordered
in increasing blank space, i.e., Ei − wi ≤ Ei+1 − wi+1 for
i = 2, . . . ,m′ − 2. Now we can append cm′ to the right end
of P1..m′−1 in such a way that the left blank space of cm′

completely overlaps with the right blank space of cm′−1 as
shown in Fig. 7. It follows that the left blank space of cm′

must be no smaller than the safety margin S since the right
blank space of cm′−1 is at least S. But it remains to show that
the resultant right blank space of cm′ is also at least S for the
constructed packing to be a feasible tight linear packing. Let
δ denote the left blank space of cm′ (equivalently, the right
blank space of cm′−1). The resultant right blank space of the
m′-th character is equal to Em′−wm′−δ. Since Em′−wm′ ≥
Em′−1−wm′−1, so Em′−wm′−δ ≥ Em′−1−wm′−1−δ ≥ S.
Hence, the constructed packing is a tight linear packing and
satisfies Ei − wi ≤ Ei+1 − wi+1 for i = 2, . . . ,m′ − 1.

C. Projection Region Width and Character Selection by DP

In Stage 1 of Algorithm 1, in order to determine the
projection region widths and characters to be put into the
stencil, we merge all rows of the stencil into a single row
and use dynamic programming to maximize the overall shot
saving subject to a total effective character width constraint.

Assume the characters are sorted in increasing order of
width. We define S[e, i, k, w] as the maximum shot saving
using at most k different projection region widths for print-
ing a subset of the first i characters such that the largest
projection region width is e and the total effective width of
the subset is at most w. The ranges of the parameters are
wmin + 2S ≤ e ≤ wmax + 2S, 0 ≤ i ≤ n, 1 ≤ k ≤ K, and
0 ≤ w ≤ RW .

S[e, i, k, w] can be expressed recursively as follow:

S[e, 0, k, w] = 0 for all e, k, w
S[e, i, k, 0] = 0 for all e, i, k
S[e, i, k, w]

= max

S[e, i− 1, k, w]ri(nV SBi
− 1) + S[e, i− 1, k, w − wi+e

2]
if wi + 2S ≤ e and wi+e

2 ≤ w
0 otherwiseS[wi + 2S, i, k − 1, w]

if k > 1 and wi + 2S ≤ e
0 otherwise

for all e, i 6= 0, k, w 6= 0

In the recursive expression above, S[e, i, k, w] is the maxi-
mum over three cases. In the first case, character i is skipped.
In the second case, character i is selected. It results in a shot
saving of ri(nV SBi

−1) and a reduction of remaining effective
width by wi+e

2 . In the third case, another projection region
width of wi + 2S is used.

One key insight in the above recursion is that each time
we decrease e, we can safely skip over all e not equal to
wi + 2S for any 1 ≤ i ≤ n for the following reason. First, a
projection region width smaller than w1+2S is not useful at all
since it is too small for printing any character. Second, using a
projection region width e(> w1+2S) not equal to wi+2S for
any 1 ≤ i ≤ n offers no advantage since a projection region
width e′ = max{wi + 2S : 1 ≤ i ≤ n and wi + 2S < e} is
always better than e. e′ can print the same characters as e and
results in a smaller effective width than e.

The maximum possible shot saving when we can se-
lect K different projection region widths subject to a to-
tal effective width constraint of RW is given by S∗ =
max1≤i≤n {S[wi + 2S, n,K,RW]} since it is sufficient to
consider all wi+2S for 1 ≤ i ≤ n as the largest project region
width selected as explained above. It is clear that the above
recursion to compute the values of S[e, i, k, w] for all e, i, k, w
can be implemented as a dynamic program. However, as we
will see in Section V, the memory requirement for typical
problem instances can be up to tens of gigabytes. In other
words, this dynamic programming formulation is not practical.

In order to reduce the memory requirement, we take advan-
tage of the fact that many characters have the same width.
Instead of considering each character separately, we group
characters of the same width together. Let Gj be the group
of characters of width wj . Assume that the characters within
each group are sorted in decreasing order of shot saving.

We define S ′[e, j, k, w] as the maximum shot saving using
at most k different projection region widths for printing some
subset of characters in the first j groups such that the largest
projection region width is e and the total effective width of
the subset is at most w.

S ′[e, j, k, w] can be expressed recursively as follow:

6

S ′[e, 0, k, w] = 0 for all e, k, w
S ′[e, j, k, 0] = 0 for all e, j, k
S ′[e, j, k, w]

= max

S ′[e, j − 1, k, w]
max1≤i≤|Gj |R(e, j, k, w, i)S
′[wj + 2S, j, k − 1, w]

if k > 1 and wj + 2S ≤ e
0 otherwise

for all e, j 6= 0, k, w 6= 0

where R(e, j, k, w, i) is the shot saving if the first i characters
in Gj (i.e., the i highest shot saving characters in Gj)1

are included in the stencil. Let Gj [i] be the set of the first
i characters in Gj . Then R(e, j, k, w, i) is given by the
following expression:

R(e, j, k, w, i)

=

∑

c∈Gj [i]

rc(nV SBc
− 1) + S ′[e, j − 1, k, w − i× wj + e

2
]

if wj + 2S ≤ e and i× wj+e
2 ≤ w

0 otherwise

The three cases for S ′[e, j, k, w] are similar to those for
S[e, i, k, w] except that a set of i characters in Gj is selected
instead of a single character in the second case. Note that
S ′∗ = max1≤j≤g {S ′[wj + 2S, g,K,RW]} where g = num-
ber of groups gives the maximum possible shot saving when
we can select K different projection region widths subject to a
total effective width constraint of RW since the first g groups
of characters is equivalent to all n characters. In other words,
the values of S ′∗ and S∗ are the same.

D. Tight Packing Construction

For Stages 2 and 3 of Algorithm 1, which tightly pack the
selected characters and some remaining characters into the
stencil, we introduce a procedure (Procedure 1) that is different
from and more sophisticated than the one in our preliminary
work [15]. Lines 1-17 of Procedure 1 correspond to Stage 2
and Lines 18-21 correspond to Stage 3. We assume that E is
the set of K projection region widths selected in Stage 1 of
Algorithm 1.

For a selected character c, it should always use the small-
est available character projection region width no less than
wc + 2S in order to reduce wastage of stencil area. Hence,
projection region width Ec for each character is set as in Line 2
of Procedure 1. Since the characters were selected based on
the assumption that there is a single row of width RW rather
than R rows of width W , there is a chance that not all selected
characters can be packed onto the stencil. So, in order to
maximize the final shot saving after packing, we will pack
a character with higher efficiency onto the stencil with higher
priority as in Lines 5-16. The efficiency θc of a character c
is defined as its shot saving per unit effective width, i.e.,
θc = 2rc(nV SBc

− 1)/(wc + Ec).

1It will not lose optimality here because if an optimal decision requires i
characters from Gj , then it must be the i highest shot saving characters in
Gj since all characters in Gj have the same width.

Procedure 1 Character Packing for MSA
1: for each selected character c do
2: Set Ec to be the smallest value in E s.t. Ec ≥ wc+2S;
3: c’s efficiency θc = 2rc(nV SBc

− 1)/(wc + Ec);
4: end for
5: Sort all selected characters in decreasing order of effi-

ciency;
6: j = 1;
7: for each character c in sorted order do
8: if c can be inserted into row j according to Equation (3)

then
9: Insert c into row j;

10: else if j < R then
11: Insert c into row j + 1;
12: j = j + 1;
13: else
14: break;
15: end if
16: end for
17: For each row, construct a tight packing by putting its

maximum blank space character f first and then other
characters in increasing blank space, and setting the left
blank space of f to Ef − wf − S;

18: Sort the rows in increasing order of remaining usable
width;

19: for each row j in sorted order do
20: Tightly pack at the end of row j a remaining character

with largest possible shot saving without exceeding the
stencil width, if possible;

21: end for

We utilize a simple condition to check whether a set of
characters C can be packed within a row without exceeding
the stencil width W . Suppose∑

c∈C

wc + Ec

2
− Ef − wf

2
≤W (3)

where f is the maximum blank space character in C, then all
characters in C can be packed within a row of the stencil. The
above is a sufficient condition since Lemma 4 and Equation (1)
imply that there exists a tight packing of C with width no more
than

∑
c∈C(wc+Ec)/2− (Ef −wf −S)/2−S/2 if we use f

as the first character and set the width of its left blank space
to Ef − wf − S.

We note that the packing procedure above is similar in
spirit to that of the CASCO algorithm we introduced in [13].
But it is more general here because Ec is not necessarily the
same for all character c. In addition, here we improved the
chance of inserting an extra character at the end of the rows
by processing the rows in increasing order of remaining usable
width as in Lines 18-21.

We illustrate Procedure 1 by an example. Consider a stencil
with 2 rows, W = 20, and S = 1. Suppose 2 projection
region widths of 15 and 10 are selected. Besides, suppose 5
characters indexed 1 to 5 with widths w1 = 7, w2 = 6, w3 =
12, w4 = 7, w5 = 10 and efficiencies θ1 = 5, θ2 = 4, θ3 =
3, θ4 = 2, θ5 = 1 are selected. Therefore, Line 2 will set

7

Fig. 8. An example illustrating Procedure 1.

E1 = 10, E2 = 10, E3 = 15, E4 = 10, and E5 = 15. Line
5 will sort the characters in the order of 1, 2, 3, 4, 5. Line 8
will insert character 1 and then character 2 into row 1. After
that, character 3 cannot be inserted into row 1 and it will be
inserted into row 2. Line 8 cannot insert character 4 into row
2 (as (12 + 15)/2 + (7 + 10)/2− (15− 12)/2 = 20.5 > 20).
Hence the for loop in Lines 7-16 is exited. After constructing
the tight packings for all rows in Line 17, the rows will be
sorted in the order of 1, 2 in Line 18. Finally, character 4 will
be packed at the end of row 2 in Line 20. The final stencil
design is shown in Figure 8.

E. Time and Space Complexity Analysis

First, we consider the time complexity for Stage 1 of
the MSA algorithm. It takes O(n log n) time to sort all the
characters in increasing width. If the memory saving technique
is not applied, it is apparent that computing S[e, i, k, w] for
wmin + 2S ≤ e ≤ wmax + 2S, 0 ≤ i ≤ n, 1 ≤ k ≤ K, and
0 ≤ w ≤ RW by dynamic programming takes O(πnKRW)
time where π = wmax − wmin + 1. If the memory saving
technique is applied, it requires some extra time on sorting
each group Gj in decreasing shot saving. The extra sorting
time is bounded by O(πn log n). So, without the memory
saving technique, Stage 1 takes O(n log n + πnKRW) time
which is O(πnKRW) in practice. With the memory saving
technique, it takes O(πn log n+πnKRW) time which is also
O(πnKRW) in practice. Second, the time spent on Stages 2
and 3 (i.e., Procedure 1) is dominated by the time for sorting
the selected characters in decreasing efficiency, i.e., O(n log n)
time. As a result, the overall time complexity of MSA is
O(πnKRW).

We analyze the space complexity of both the original
version and the memory-efficient version of MSA below. For
the original version, the only major memory requirement is
to store S[e, i, k, w] for all e, i, k, w. So its space complexity
is O(πnKRW). For the memory-efficient version, note that
R(e, j, k, w, i) is a function and we do not store its values. So
the only major memory requirement is to store S ′[e, j, k, w]
for all e, j, k, w. As the number of groups is bounded by π, the
space complexity is O(π2KRW). As the number of groups
are typically at least tens of times less than the number of
characters, the memory requirement of the memory-efficient
version is much less than the original version. We show in
Section V that S ′[e, j, k, w] can be stored in less than 1
gigabyte in practice.

Fig. 9. (a) Two fixed projection widths of an e-beam writing system. (b)
Character A can be printed in two shots but not one. (c) Character B can be
printed in one shot or two shots.

IV. USING OVERLAPPING SHOTS

Older generations of e-beam machine for mask writing or
direct writing of wafers did not support overlapping shots.
However, employing new model-based mask data preparation
(MB-MDP) and new generation e-beam machines allow writ-
ing with overlapping e-beam shots. With careful simulation,
MB-MDP enables shot overlapping, dose modulation of in-
dividual e-beams and character projection to draw complex
shapes accurately with less shot count [16], [17].

The benefits of allowing some characters to be printed in
more than one shot are illustrated in Fig. 9. Suppose an e-beam
machine has two shaping apertures and can produce shots of
widths Esmall and Elarge (Fig. 9(a)). It is clear that there is no
way to print the wide character A in Fig. 9(b) using only one
shot. However, A can be printed using two overlapping shots
as in Fig. 9(b).2 In Fig. 9(c), though character B can be printed
in one shot of width Elarge, this option requires a significant
amount of blank space on both sides of the character pattern
to be reserved on the stencil. On the other hand, character B
can be printed in two shots of projection width Esmall each
such that a minimum amount of blank space on both sides
of the character pattern needs to be reserved on the stencil as
shown on the right of Fig. 9(c). So, in some cases, we may
want to print B in two shots of width Esmall each instead of
a single shot of width Elarge.

In this section, we address the flexible packed stencil design
problem with multiple shaping apertures and overlapping
shots. We consider Problem 2 below which assumes that we
use K shaping apertures and the K different shaping aperture
sizes (hence K projection region widths) are given. If the K
projection region widths are not given, they can be determined
by enumerating all combinations of K distinct projection
widths from wmin + 2S to wmax + 2S.

2We note that the overlapped part of the two e-beam shots will receive a
higher dose and cause the patterns within the overlapped part to be printed
larger. So, the character pattern must be pre-adjusted accordingly by careful
simulation in order to obtain the intended final shapes accurately.

8

Problem 2. Suppose the values of S, W , and R for an e-
beam machine with a set E of K fixed shaping aperture sizes
are given. A set of n characters extracted from a circuit and
the values of wc, rc, and nV SBc

for each character c are
also given. Each character may be printed by one shot or two
overlapping shots by the character projection method. We have
to (i) select the characters to be put on the stencil along with
the character projection region width and shot composition
for each character, and (ii) pack the characters on the stencil
in a row-based manner with flexible blank space sharing to
maximize the total shot saving by character projection for
printing the entire circuit under the following constraints.
(C1) The pattern of each character must lie within the safe
printing region of the character’s projection region.
(C2) The pattern of each character cannot lie within the
projection region of any other character.
(C3) The patterns of all characters must lie within the avail-
able character area of the stencil.

We propose a 3-stage algorithm MSA-OS below (Algorithm
2) for Problem 2.

Algorithm 2 MSA-OS
Stage 1: Select a set of characters to be put on the stencil and

determine the shot composition of each character by
dynamic programming.

Stage 2: Assign the resultant characters of Stage 1 to rows
on the stencil and construct tight linear packing for
each row.

Stage 3: Pack some of the remaining characters at the end of
each row, if possible.

Stages 2 and 3 of Algorithm 2 are similar to those of
Algorithm 1 with some modification that will be explained
in Section IV.B. In Stage 1, we use dynamic programming to
simultaneously select a set of characters and determine the shot
composition of each selected character such that the resultant
characters can roughly be packed on the stencil to maximize
the potential shot saving.

A. Character Selection and Shot Composition Determination

For simplicity, here it is assumed that no more than two
shots are used to compose each character.3 Before describing
the dynamic program for character selection and shot compo-
sition determination, we first present a useful lemma related
to shot composition of character to best utilize it. It shows
how shot composition of a character c can help minimize the
amount of blank space reserved on either side of the character
pattern on the stencil to the safety margin S.

Lemma 5. Suppose wc > E′−2S, wc > E′′−2S, and wc ≤
E′ + E′′ − 4S. Then we can print character c by combining
two shots with projection widths E′ and E′′. Moreover, we
can do it in such a way that the enclosing width of the two

3The ideas presented here can be readily extended when we use no more
than three shots (or even more) for each character. But using more than two
shots to compose a character may not be necessary in practice especially when
there are multiple shaping apertures.

Fig. 10. A shot composition for character c that results in an enclosing width
of wc + 2S.

shots becomes wc + 2S and the effective width of c on the
stencil becomes wc + S.

Proof. Note that wc > E′ − 2S and wc > E′′ − 2S imply
that the character width of c exceeds the safe printing region
width of either shot, so either shot alone is insufficient to
print character c in its entirety. However, by arranging the
safe printing regions of two such shots side-by-side, we can
obtain a single safe printing region of width up to (E′−2S)+
(E′′ − 2S) = E′ + E′′ − 4S. Hence, character c with wc ≤
E′ + E′′ − 4S can be printed by composing two shots with
projection widths E′ and E′′.

Moreover, wc > E′ − 2S and wc > E′′ − 2S imply that
E′ ≤ wc + 2S and E′′ ≤ wc + 2S. Hence, it is possible
to partially overlap the two shots as in Fig. 10 to obtain a
single safe printing region of width wc in an enclosing width
of wc + 2S. By definition, the effective width of character c
under an enclosing width of wc + 2S is (wc + (wc + 2S))/2
= wc + S.

To select the appropriate characters and determine their shot
compositions for packing onto the stencil, we merge all row
of the stencil into a single row and use dynamic programming
to maximize the overall shot saving subject to a total effective
character width constraint.

We group the characters of the same width together. Let
Gj be the group of characters of width wj . Let the characters
within group Gj be cj1, cj2, . . ., cj|Gj |. Subsequently, when
we say the first p characters of Gj , we mean cj1, cj2, . . ., cjp.
Let E denote the given set of K different projection widths.

We define Ŝ[j, w] as the maximum shot saving using the
projection region widths in E for printing some subset of
characters in the first j groups such that the total effective
width of the subset is at most w.
Ŝ[j, w] can be expressed recursively as follow:

Ŝ[0, w] = 0 for all w
Ŝ[j, 0] = 0 for all j
Ŝ[j, w]

= max

{
Ŝ[j − 1, w]

max1≤i≤|Gj | R̂(j, w, i)
for all j 6= 0, w 6= 0

where R̂(j, w, i) is the maximum possible shot saving using
the projection region widths in E for printing some subset of
characters in the first j groups such that the total effective
width of the subset is at most w and exactly i characters in
Gj are printed.

We consider how to determine R̂(j, w, i). If we want to

9

print any character in Gj in one shot, we should always
use the smallest feasible projection region width available to
minimize the resultant effective character width. So, let E1

j be
the smallest projection region width in E that is no smaller
than wj + 2S. If all given K projection region widths are
smaller than wj + 2S, then E1

j = ∞. Let E2
j be the largest

projection region width in E such that wj > E2
j − 2S and

wj ≤ 2E2
j − 4S. By Lemma 5, only if there exists such E2

j ,
we consider printing some characters in Gj in two shots using
projection region width E2

j . We use a Boolean value TWOj

to indicate if there exists such E2
j or not.

If TWOj is true, the advantage of printing a character in
Gj by two shots instead of one is that effective width of the

character will be reduced from
wj+E1

j

2 to wj+S by Lemma 5.
But the disadvantage is that the shot saving for it will be
reduced by rc from rc(nV SBc

− 1) to rc(nV SBc
− 2). If

i characters in Gj are to be printed and TWOj is true, we
may choose to print i′(≤ i) of them by one shot each and
the others by two shots each, in which case the total effective
width of these i characters denoted by wj(i, i

′) will be equal

to i′ × wj+E1
j

2 + (i− i′)× (wj + S).
By the analysis above, R̂(j, w, i) is given by the following

expression:

R̂(j, w, i)

=

max 0≤i′≤i ∧ wj(i,i′)≤w{T̂j(|Gj |, i, i′)
+Ŝ[j − 1, w − wj(i, i

′)]}
if TWOj is true∑

c∈Gj [i]

rc(nV SBc − 1) + Ŝ[j − 1, w − i×
wj + E1

j

2
]

if TWOj is false and i× wj+E1
j

2 ≤ w
0 otherwise

where T̂j [|Gj |, i, i′] is the maximum shot saving of printing i
characters in Gj such that i′ of them are printed by one shot
each and i− i′ of them are printed by two shots each.
T̂j [|Gj |, i, i′] can in turn be pre-computed by dynamic

programming. Let T̂j [p, i, i′] denote the maximum shot saving
of printing i characters from the first p characters in Gj such
that i′ of them are printed by one shot each and i− i′ of them
are printed by two shots each (0 ≤ p ≤ |Gj |, 0 ≤ i ≤ p,
0 ≤ i′ ≤ i). We have

T̂j [0, i, i
′] = 0 for all i, i′

T̂j [p, 0, 0] = 0 for all p
T̂j [p, i, i

′]

= max

{
T̂j(p− 1, i, i′) if i ≤ p− 1
0 otherwise
rcjp(nV SBcjp

− 1) + T̂j(p− 1, i− 1, i′ − 1)

if p ≥ 1, i ≥ 1, i′ ≥ 1
0 otherwise
rcjp(nV SBcjp

− 2) + T̂j(p− 1, i− 1, i′)

if p ≥ 1, i ≥ 1, i > i′

0 otherwise

In the recursive expression for T̂j [p, i, i′], we have three

cases since character cjp can be skipped (case 1), chosen and
printed in one shot (case 2), or chosen and printed in two shots
(case 3).

B. Tight Packing Construction

In Stage 1 of Algorithm 2, we compute Ŝ[g,RW] where g
is the number of groups. The characters selected and the shot
composition for each selected character are recorded. Then
Stages 2 and 3 of Algorithm 2 for packing the characters
into the stencil are performed by Procedure 2. For a selected
character c composed of one shot, we should use the smallest
projection region width in E that is no smaller than wc + 2S
which corresponds to Line 3 of Procedure 2. On the other
hand, for a selected character c composed of two shots, we
should utilize the minimum possible enclosing width which
is wc + 2S as in Line 5 of Procedure 2. As a result, the
efficiency for a character c printed in one shot is θc =
2rc(nV SBc

− 1)/(wc + Ec). The efficiency for a character c
printed in two shots is θc = rc(nV SBc−2)/(wc+S). The rest
of the character packing procedure for MSA-OS is similar to
that for MSA.

Procedure 2 Character Packing for MSA-OS
1: for each selected character c do
2: if c is composed of one shot then
3: Set Ec to be the smallest value in E s.t. Ec ≥ wc+2S;
4: c’s efficiency θc = 2rc(nV SBc

− 1)/(wc + Ec);
5: else
6: Ec = wc + 2S;
7: c’s efficiency θc = rc(nV SBc

− 2)/(wc + S);
8: end if
9: end for

10: The rest of the procedure is exactly the same as Lines 5-21
of Procedure 1.

C. Determination of Projection Widths

Algorithm MSA-OS assumes that K different projection
widths are already given. If not, we can try all combinations of
K distinct projection widths from wmin + 2S to wmax + 2S.
Note that T̂j [|Gj |, i, i′] in Section IV.A just has to be pre-
computed once since it is not related to what projection region
widths we use. In other words, when we change to another set
of K projection region widths, we do not need to re-compute
T̂j [|Gj |, i, i′] again.

D. Time and Space Complexity Analysis

We analyze the runtime of the MSA-OS algorithm. Similar
to the MSA algorithm, Stages 2 and 3 of MSA-OS take
O(n log n) time. For Stage 1, it takes O(n3) time to compute
T̂j [|Gj |, i, i′] for each group Gj . So, computing T̂j [|Gj |, i, i′]
for all g groups take O(gn3) time. Computing each R̂(j, w, i)
takes O(n) time, hence computing each Ŝ[j, w] takes O(n2)
time. As a result, computing Ŝ[j, w] for 0 ≤ j ≤ g and
0 ≤ w ≤ RW takes O(gn3 + gRW × n2) time which is
O(gRWn2) in practice. The overall runtime of MSA-OS is
O(gRWn2).

10

If the K projection region widths need to be determined by
enumeration, MSA-OS should be called C(π,K) times where
π = wmax−wmin+1, as there are C(π,K) combinations of
K distinct projection widths from wmin + 2S to wmax + 2S.
Thus the total runtime is C(π,K)×O(gRWn2) = O(πK ×
gRWn2).

We analyze the space complexity of MSA-OS below. Note
that R̂(j, w, i) is a function and we do not store its values. The
memory requirement to store Ŝ[j, w] for all j, w is O(gRW).
The memory requirement to store T̂j [p, i, i′] for all j, p, i, i′ is
O(gn3). Hence the space complexity is O(g(RW + n3)).

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

We implemented our approaches MSA and MSA-OS in
C and obtained the executable codes of E-BLOW [11] and
CASCO [13] for comparison. All experiments were done on
a Linux server powered by a 2.67 GHz Intel processor with
47 GB of memory. For each circuit, the result and runtime
of MSA-OS were obtained by trying all combinations of K
distinct projection widths from wmin + 2S to wmax + 2S.

In the first experiment, benchmarks 1D-1 to 1D-4 from
[11] were used. The available character area of the stencil
is 1000µm× 1000µm, and the number of character candidate
in each benchmark is 1000. Recall that E-BLOW assumes the
left and right blank spaces of each character to be fixed while
MSA and MSA-OS consider the re-location of the pattern of
each character within the safe printing region. We set the safety
margin S to the minimum left/right blank space of the original
characters in each benchmark. Besides, E-BLOW and CASCO
assume that there is only a single shaping aperture and hence
a single projection region width (i.e., K = 1). For MSA and
MSA-OS, we tried K = 1 and K = 2. Table I reports the
comparison on total shot count, number of characters put on
the stencil, and runtime. It also reports the shot count when
using VSB only for reference.

Table I shows that even for K = 1 (i.e., all characters must
use the same projection region width), MSA can reduce the
shot count by 29.328×, 1.767× and 1.107× over VSB only, E-
BLOW and CASCO, respectively. By allowing each character
to be printed by two shots, MSA-OS can further cut the shot
count almost by half. MSA-OS (K = 1) has better shot count
than MSA (K = 1) because overlapping shots is enabled. As
a result, some characters that cannot be printed in MSA can be
printed in MSA-OS. Also, a smaller projection region width
may be used and hence more characters may be packed. The
significant improvement over E-BLOW is partially because it
performs only simple blank space sharing while MSA and
MSA-OS perform flexible blank space sharing. Besides, E-
BLOW does not attempt to find the optimal projection region
width while our algorithms do.

Next, if we use two different sized shaping apertures (i.e.,
K = 2), a huge shot count reduction over using single shaping
aperture can be obtained for both MSA and MSA-OS. MSA
with K = 2 results in 3.02× and 1.89× shot count reduction
compared to E-BLOW and CASCO, respectively. MSA-OS
with K = 2 results in as much as 3.60× and 2.25× shot count
reduction compared to E-BLOW and CASCO, respectively.

TABLE III
THE VALUES OF THE PROJECTION REGION WIDTHS DETERMINED BY MSA

AND MSA-OS.

wmin wmax MSA MSA-OS

+2S +2S K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

1D-1 13 37 37 35,37 35 15,37

1D-2 15 39 39 29,39 32 25,39

1D-3 15 41 41 27,41 34 19,33

1D-4 15 43 43 29,43 25 19,33

1D-1h 13 37 37 25,37 21,29,37 23 19,29 17,25,33

1D-2h 15 39 39 27,39 21,29,39 23 19,27 19,27,34

1D-3h 15 41 41 27,41 23,33,41 24 17,27 17,27,33

1D-4h 15 43 43 27,43 23,33,43 25 17,27 17,21,37

Note that for benchmark 1D-1, although MSA (K = 2),
MSA-OS (K = 1) and MSA-OS (K = 2) use all 1000
characters, the shot count of MSA-OS (K = 1) is higher
than those of the other two. The reason is that while MSA-
OS (K = 1) can print all 1000 characters, 278 (which
equals 10696 − 10418) of the characters are printable only
if overlapping shots (i.e., 2 shots) are used. Hence, the shot
count is higher by 278.

For more testing, we generated some harder benchmarks
(1D-1h to 1D-4h). We generated 200 extra character candi-
dates into each of the original benchmarks while keeping the
same stencil size. Table II reports the results of MSA and
MSA-OS with K = 1, K = 2, and K = 3. It also reports the
shot count when using VSB only for reference. As expected,
the shot count reduction and the number of characters that can
be put on the stencil by MSA increase with the value of K.
And the greatest reduction occurs when K switches from 1
to 2. Besides, MSA-OS is significantly better than MSA. For
K = 1, 2 and 3, MSA-OS reduces the shot count over MSA
by 2.19×, 1.44× and 1.20×, respectively. However, MSA-OS
is much slower than MSA.

The values of the projection region widths determined by
MSA and MSA-OS for all benchmarks are listed in Table III.
We note in order not to miss out the widest characters,
MSA always uses the largest projection region width values.
However, MSA-OS often skips the larger projection region
width values as widest characters can be covered using two
shots. Hence, MSA-OS can pack more characters on the stencil
and achieve higher shot saving.

We show in Table IV the memory requirement of MSA.
The proposed character grouping technique in Section III.C
can reduce the memory requirement of the dynamic program
by roughly 40×. The resultant memory requirement after
adopting the technique is less than 1 GB in each case. The
memory requirement of MSA-OS is insignificant (far less than
1 GB).

Finally, we note that our algorithms also work for multi-
beam direct write system [1], where multiple beam columns
furnished with their own stencils write different regions of a
wafer in parallel. As identical dies are typically manufactured
on a wafer, the stencil design for all beam columns in a multi-
beam system should be the same and is not different from a
single beam system.

11

TABLE I
COMPARISON OF E-BLOW [11], CASCO [13], MSA AND MSA-OS.

VSB only E-BLOW [11] CASCO [13] MSA (K = 1) MSA (K = 2) MSA-OS (K = 1) MSA-OS (K = 2)

#shots #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s)

1D-1 770543 29536 934 1.91 14491 970 <0.005 12553 983 6.08 10418 1000 17.06 10696 1000 56.40 10418 1000 939.46

1D-2 770543 44544 863 1.74 27812 898 <0.005 24742 913 5.86 10734 997 16.06 13939 996 51.93 10516 999 882.14

1D-3 770543 78704 758 2.35 57698 791 <0.005 52902 807 5.83 27192 909 16.76 21219 973 54.27 18114 986 913.33

1D-4 770543 107460 699 2.96 79930 734 <0.005 75388 746 6.08 42651 846 18.78 31366 917 53.30 27750 938 974.37

Normalized 29.328 1.767 0.943 0.375 1.107 0.984 0.000 1.000 1.000 1.000 0.586 1.092 2.878 0.558 1.136 9.053 0.491 1.148 155.493

TABLE II
RESULTS BY OUR ALGORITHMS FOR DIFFERENT VALUES OF K ON HARDER BENCHMARKS.

VSB only MSA (K = 1) MSA (K = 2) MSA (K = 3) MSA-OS (K = 1) MSA-OS (K = 2) MSA-OS (K = 3)

#shots #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s) #shots #ch CPU(s)

1D-1h 922770 55416 992 7.26 25064 1123 22.58 17520 1164 42.65 20080 1191 76.78 17031 1195 1201.74 14940 1196 10666.56

1D-2h 922770 83363 913 6.96 46837 1028 21.29 36250 1076 40.04 34759 1114 73.03 31037 1133 1116.45 30073 1127 9900.95

1D-3h 922770 131776 808 7.00 85705 915 21.95 71875 954 55.39 66473 992 68.14 59868 1023 1158.40 59312 1019 11072.46

1D-4h 922770 164524 747 7.47 112184 858 24.41 96048 894 42.99 89169 924 67.35 80419 959 1263.46 79426 958 12826.80

Normalized 10.083 1.000 1.000 1.000 0.587 1.135 3.143 0.470 1.182 6.324 0.456 1.221 9.955 0.406 1.249 165.141 0.391 1.246 1547.666

TABLE IV
MEMORY USAGE (GB) OF MSA WITH AND WITHOUT USING THE MEMORY

SAVING TECHNIQUE.

MSA with memory saving MSA without memory saving

K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

1D-1 0.136 0.271 0.407 5.236 10.436 15.670

1D-2 0.131 0.262 0.392 5.044 10.087 15.092

1D-3 0.141 0.282 0.422 5.041 10.082 15.087

1D-4 0.156 0.311 0.467 5.205 10.377 15.582

1D-1h 0.136 0.271 0.407 6.282 12.564 18.800

1D-2h 0.131 0.262 0.392 6.051 12.102 18.154

1D-3h 0.141 0.282 0.422 6.048 12.096 18.144

1D-4h 0.156 0.311 0.467 6.245 12.490 18.696

REFERENCES

[1] T. Maruyama, Y. Machida, and S. Sugatani. CP based EBDW throughput
enhancement for 22nm high volume manufacturing. In Proceedings of
SPIE 7637, page 76371S, Feb. 2010.

[2] T. Maruyama, Y. Machida, S. Sugatani, H. Takita, H. Hoshino, T. Hino,
M. Ito, A. Yamada, T. Iizuka, S. Komatsu, M. Ikeda, and K. Asada. CP
element based design for 14nm node EBDW high volume manufactur-
ing. In Proceedings of SPIE 8323, page 832314, April 2012.

[3] B.J. Lin. Future of multiple-e-beam direct-write systems. In Proceedings
of SPIE 8323, March 2012.

[4] R. Inanami, S. Magoshi, S. Kousai, A. Ando, T. Nakasugi, I. Mori,
K. Sugihara, and A. Miura. Maskless lithography: Estimation of
the number of shots for each layer in a logic device with character
projection-type low-energy electron-beam direct writing system. In
Proceedings of SPIE 5037, pages 1043–1050, June 2003.

[5] H. Yasuda, A. Yamada, and M. Yamabe. Multi column cell (MCC) e-
beam exposure system for mask writing. In Proceedings of SPIE 7028,
page 70280B, 2008.

[6] H.C. Pfeiffer. Variable spot shaping for electron-beam lithography.
Journal of Vaccum Science and Technology, 15(3):887–890, May 1978.

[7] M. Sugihara, T. Takata, K. Nakamura, R. Inanami, H. Hayashi,
K. Kishimoto, T. Hasebe, Y. Kawano, Y. Matsunaga, K. Murakami, and
K. Okumura. Cell library development methodology for throughput
enhancement of electron beam direct-write lithography systems. In
Proceedings of International Symposium on System-on-Chip, pages 137–
140, Nov. 2005.

[8] A. Fujimura. Design for e-beam: Design insights for direct-write
maskless lithography. In Proceedings of SPIE 7823, pages 137–140,
Sept. 2010.

[9] K. Yoshida, T. Mitsuhashi, S. Matsushita, L.L. Chau, T.D. T. Nguyen,
D. MacMillen, and A. Fujimur. Stencil design and method for improving
character density for cell projection charged particle beam lithography.
US Patent, Dec. 31 2009.

[10] K. Yuan, B. Yu, and D. Z. Pan. E-beam lithography stencil planning
and optimization with overlapped characters. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 31(2):167–179, Feb.
2012.

[11] B. Yu, K. Yuan, J.-R. Gao, and D.Z. Pan. E-BLOW: e-beam lithography
overlapping aware stencil planning for MCC system. In Proc. of DAC,
2013.

[12] J. Kuang and E.F.Y. Young. A highly-efficient row-structure stencil
planning approach for e-beam lithography with overlapped characters.
In Proceedings of International Symposium on Phyiscal Design, pages
109–116, 2014.

[13] W.K. Mak and C. Chu. E-beam lithography character and stencil co-
optimization. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 33(5):741–751, May 2014.

[14] R. Inanami. Electron beam exposure apparatus, electron beam exposure
method and method of manufacturing semiconductor device. US Patent,
Nov. 11 2008.

[15] C. Chu and W.K. Mak. Flexible packed stencil design with multiple
shaping apertures for e-beam lithography. In Proceedings of Asia and
South Pacific Design Automation Conference, pages 137–142, 2014.

[16] G.S. Chua, W.L. Wang, B.I. Choi, Y. Zou, C. Tabery, T. Nguyen, and
A. Fujimura. Optimization of mask shot count using MB-MDP and
lithography simulation. In Proceedings of SPIE 8166, page 816632,
2011.

[17] Aki Fujimura, David Kim, Ingo Bork, and Christophe Pierrat. Writing
32nm-hp contacts with curvilinear assist features. In Proceedings of
SPIE 7823, Photomask Technology, 2010.

12

PLACE
PHOTO
HERE

Chris Chu received the B.S. degree in computer
science from the University of Hong Kong, Hong
Kong, in 1993. He received the M.S. degree and
the Ph.D. degree in computer science from the
University of Texas at Austin in 1994 and 1999,
respectively.

Dr. Chu is a Professor in the Electrical and
Computer Engineering Department at Iowa State
University. His area of expertises include CAD of
VLSI physical design, and design and analysis of
algorithms.

Dr. Chu is currently an associate editor for IEEE TCAD. He has served
on the technical program committees of several major conferences including
DAC, ICCAD, ISPD, ISCAS, DATE, ASP-DAC, and SLIP.

Dr. Chu received the IEEE TCAD best paper award at 1999 for his work
in performance-driven interconnect optimization. He received another IEEE
TCAD best paper award at 2010 for his work in routing tree construction. He
received the ISPD best paper award at 2004 for his work in efficient placement
algorithm. He received another ISPD best paper award at 2012 for his work
in floorplan block shaping algorithm. He received the ASPDAC best paper
award at 2014 for his work in stencil design for electron-beam lithography.
He received the Bert Kay Best Dissertation Award for 1998-1999 from the
Department of Computer Sciences in the University of Texas at Austin. He
is a Fellow of IEEE.

PLACE
PHOTO
HERE

Wai-Kei Mak received the B.S. degree from the
University of Hong Kong, Hong Kong, in 1993, and
the M.S. and Ph.D. degrees from the University of
Texas at Austin, U.S., in 1995 and 1998, respec-
tively, all in computer science.

Dr. Mak is now a Professor with the Depart-
ment of Computer Science, National Tsing Hua
University, Hsinchu, Taiwan. He was an Assistant
Professor with the Department of Computer Science
and Engineering, University of South Florida, U.S.,
from 1999 to 2003. His current research interests

include VLSI physical design automation, and CAD for field-programmable
technologies.

Dr. Mak is a recipient of the IEEE/ACM Asia and South Pacific Design
Automation Conference 2014 Best Paper Award for his work in e-beam
lithography throughput optimization. His lab won the first place at the FPT
2008 Logic Block Clustering Contest, the third place at the IEEE CEDA
PATMOS 2011 Timing Analysis Contest, and the second place at the TAU
2013 Variation-Aware Timing Analysis Contest. He has served on the Program
and/or the Organizing Committee of Asia South Pacific Design Automation
Conference, the International Conference on Field Programmable Logic
and Applications, and the International Conference on Field-Programmable
Technology (FPT). He was the Technical Program Chair of FPT in 2006
and was the General Chair of the same conference in 2008. Since 2009, he
has been a Steering Committee Member of the International Conference on
Field-Programmable Technology.

