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SDS: An Optimal Slack-Driven Block Shaping
Algorithm for Fixed-Outline Floorplanning
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Abstract—This paper presents an efficient, scalable, and op-
timal slack-driven shaping algorithm for soft blocks in non-
slicing floorplan. The proposed algorithm is called SDS. SDS
is specifically formulated for fixed-outline floorplanning. Given
a fixed upper bound on the layout width, SDS minimizes the
layout height by only shaping the soft blocks in the design.
Iteratively, SDS shapes some soft blocks to minimize the layout
height with the guarantee that the layout width would not exceed
the given upper bound. Rather than using some simple heuristic
as in previous work, the amount of change on each block is
determined by systematically distributing the global total amount
of available slack to individual block. During the whole shaping
process, the layout height monotonically reduces and eventually
converges to an optimal solution. Two optimality conditions are
presented to check the optimality of a shaping solution for fixed-
outline floorplanning. In practice, to terminate the process of
convergence early, we propose two different stopping criteria.
We also extend SDS to handle other floorplanning problems, e.g.,
classical floorplanning. To validate the efficiency and effectiveness
of SDS, comprehensive experiments are conducted on MCNC and
HB benchmarks. Compared with previous work, SDS achieves
the best experimental result with a significantly faster runtime.

Index Terms—Block shaping, fixed-outline floorplanning, very
large scale integration physical design.

I. Introduction

FLOORPLANNING is a very crucial step in modern very
large scale integration (VLSI) designs. A good floorplan

solution has a positive impact on the placement, routing,
and even manufacturing. In the floorplanning step, a design
contains two types of blocks: hard and soft. A hard block is
a circuit block with both area and aspect ratio1 fixed, while a
soft one has fixed area, yet flexible aspect ratio. Shaping such
soft blocks plays an important role in determining the top-
level spatial structure of a chip, because the shapes of blocks
directly affect the packing quality and the area of a floorplan.
But, due to the ever-increasing complexity of integrated cir-
cuits (ICs), the problem of shaping soft blocks is not trivial.
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A. Previous Work
In slicing floorplan, researchers proposed various soft-block

shaping algorithms. Stockmeyer [1] proposed the shape curve
representation used to capture different shapes of a subfloor-
plan. Based on the shape curve, it is straightforward to choose
the floorplan solution with the minimum cost, e.g., minimum
floorplan area. Zimmermann [2] extended the shape curve
representation by considering both slicing line directions when
combining two blocks. Yan et al. [3] generalized the notion
of slicing tree [4] and extended the shape curve operations.
Consequently, one shape curve captures significantly more
shaping and floorplan solutions.

Different from slicing floorplan, the problem of shaping soft
blocks to optimize the floorplan area in nonslicing floorplan is
much more complicated. Sutanthavibul et al. [5] formulated
the shaping problem as a mixed integer linear program.
Because it is quite time consuming to solve it optimally,
the original problem was divided into multiple smaller sub-
problems each of which contained 10–12 blocks. As a result,
each sub-problem was solved optimally, but the optimality of
the solution on the original problem was not guaranteed. Both
Pan et al. [6] and Wang et al. [7] tried to extend the slicing tree
and shape curve representations to handle nonslicing floorplan.
But their extensions are limited to some specific nonslicing
structures. Instead of using the shape curve, Kang et al. [8]
adopted the bounded sliceline grid structure [9] and proposed
a greedy heuristic algorithm to select different shapes for
each soft block, so that total floorplan area was minimized.
Moh et al. [10] formulated the shaping problem as a geometric
programming and searched for the optimal floorplan area
using standard convex optimization. Following the same
framework as in [10], Murata et al. [11] improved the
algorithm efficiency via reducing the number of variables and
functions. But the algorithm still took a long time to find
a good solution. Young et al. [12] showed that the shaping
problem for minimum floorplan area can be solved optimally
by Lagrangian relaxation technique. Lin et al. [13] changed
the problem objective to minimizing the half perimeter of a
floorplan, and solved it optimally by the min-cost flow and
trust region method.

All of the above shaping algorithms for nonslicing floor-
plan were targeting at classical floorplanning, i.e., minimizing
the floorplan area. But, in the nanometer scale era classical
floorplanning cannot satisfy the requirements of hierarchical
design. In contrast, fixed-outline floorplanning [14] enabling
the hierarchical framework is preferred by modern ASIC
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designs. Adya et al. [15] introduced the notion of slack in
floorplanning, and proposed a slack-based algorithm to shape
the soft blocks. Such shaping algorithm was applied inside
an annealing-based fixed-outline floorplanner. There are two
problems with this shaping algorithm.

1) It is a simple greedy heuristic, in which each time
every soft block is shaped to use up all its slack in one
direction. Thus, the resulting solution has no optimality
guarantee.

2) It is not formulated for fixed-outline floorplanning. The
fixed-outline constraint is simply considered a penalty
term in the cost function of annealing.

Considering the fixed-outline constraint, Lin et al. [16] deter-
mined the block shape using second-order cone programming.
But in their problem formulation, the aspect ratio constraint on
each block was ignored. They had to rely on a postprocessing
step to re-shape the block in order to satisfy the aspect ratio
constraint. So, in nonslicing floorplan it is necessary to design
an efficient and optimal shaping algorithm that is specifically
formulated for fixed-outline floorplanning and considers the
aspect ratio constraints.

B. Our Contributions

This paper presents an efficient, scalable and optimal slack-
driven shaping (SDS) algorithm2 for soft blocks in nonslicing
floorplan. SDS is specifically formulated for fixed-outline
floorplanning. Given a fixed upper bound on the layout width,
SDS minimizes the layout height by only shaping the soft
blocks in the design, while satisfying the aspect ratio constraint
on each block. If such upper bound is set as the width of
a predefined fixed outline, SDS is capable of optimizing the
area for fixed-outline floorplanning. As far as we know, none
of previous work in nonslicing floorplan is able to solve this
problem optimally. In SDS, soft blocks are shaped iteratively.
At each iteration, we only shape some of the soft blocks to
minimize the layout height, with the guarantee that the layout
width would not exceed the given upper bound. The amount
of change on each block is determined by systematically
distributing the global total amount of available slack to
individual block. During the whole shaping process, the layout
height is monotonically reducing, and eventually converges
to an optimal solution. Note that in [15] without a global
slack distribution, all soft blocks are shaped greedily and
independently by some simple heuristic. In their work, both
the layout height and width are reduced in one shot (i.e., not
iteratively) and the solution is stuck at a local minimum.

Essentially, we have five main contributions.
• Basic Slack-Driven Shaping: The basic SDS algorithm is

a very simple shaping technique. Iteratively, it identifies
some soft blocks, and shapes them by a slack-based
shaping scheme. The algorithm stops when there is no
identified soft block. The runtime complexity in each
iteration is linear time. The basic SDS can achieve an
optimal layout height for most cases.

• Optimality Conditions: To check the optimality of the
shaping solution returned by the basic SDS, two optimal-

2A preliminary version of SDS was presented in [17].

ity conditions are proposed. We prove that if either one
of the two conditions is satisfied, the solution returned by
the basic SDS is optimal.

• Slack-Driven Shaping: Based on the basic SDS and the
optimality conditions, we propose the slack-driven shap-
ing algorithm. In SDS, a geometric programming method
is applied to improve the nonoptimal solution produced
by the basic SDS. SDS always returns an optimal shaping
solution.

• Stopping Criteria: To early terminate the process of
convergence in SDS, two stopping criteria are proposed.
The first one is a simple heuristic based on the amount
of change on the shaping solution for the last a few iter-
ations. The second one is nonheuristic, and it guarantees
that difference between the resulting and optimal shaping
solutions is within the user-specified error margin.

• Extension of SDS: We extend SDS to handle two other
floorplanning problems: 1) to minimize the layout width
with the given layout height upper bound, and 2) to
minimize the layout area, i.e., classical floorplanning.

To show the efficiency of SDS, we compare it with the two
shaping algorithms in [12] and [13] on MCNC benchmarks.
Experimental results show that SDS consistently generates
better solution on each circuit with significantly faster runtime.
On average SDS is 253× and 33× faster than [12] and [13],
respectively, to produce solutions of similar quality. For fixed-
outline floorplanning, we also run SDS on HB benchmarks.
Experimental results show that on average after 6%, 10%,
22%, and 47% of the total iterations, the layout height is within
10%, 5%, 1%, and 0.1% difference from the optimal solution,
respectively. For classical floorplanning, using HB benchmarks
we show that SDS can significantly reduce the layout area by
just shaping the soft blocks.

The rest of this paper is organized as follows. Section II
describes the problem formulation. Section III introduces the
basic SDS algorithm. Section IV discusses the optimality of
a shaping solution and presents two optimality conditions.
Section V describes the algorithm flow of SDS. Section VI
presents the stopping criteria. Section VII describes the exten-
sion of SDS on other floorplanning problems. Experimental
results are presented in Section VIII. Finally, this paper ends
with a conclusion and the direction of future work.

II. Problem Formulation

In the design, suppose we are given n blocks. Each block i

(1 ≤ i ≤ n) has fixed area Ai. Let wi and hi denote the width
and height of block i, respectively. The range of wi and hi are
given as Wmin

i ≤ wi ≤ Wmax
i and Hmin

i ≤ hi ≤ Hmax
i . If block

i is a hard block, then Wmin
i = Wmax

i and Hmin
i = Hmax

i . Let xi

and yi denote the x and y coordinates of the bottom-left corner
of block i, respectively. To model the geometric relationship
among the blocks, we use the horizontal and vertical constraint
graphs Gh and Gv, where the vertices represent the blocks and
the edges between two vertices represent the nonoverlapping
constraints between the two corresponding blocks. In Gh,
we add two dummy vertices 0 and n + 1 that represent the
left-most and right-most boundary of the layout, respectively.
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Similarly, in Gv we add two dummy vertices 0 and n + 1
that represent the bottom-most and top-most boundary of the
layout, respectively. The area of the dummy vertices is 0. We
have x0 = 0 and y0 = 0. Vertices 0 and n+ 1 are defined as the
source and the sink in the graphs, respectively. Thus, in both
Gh and Gv, we add one edge from the source to each vertex
that does not have any incoming edge, and add one edge from
each vertex that does not have any outgoing edge to the sink.

In our problem formulation, we assume the constraint
graphs Gh and Gv are given. Given an upper bound on the
layout width as W , we want to minimize the layout height yn+1

by only shaping the soft blocks in the design, such that the
layout width xn+1 ≤ W . This problem can be mathematically
formulated as follows.

Problem 1: Height minimization with fixed upper-bound
width.

Minimize yn+1

subject to xn+1 ≤ W

xj ≥ xi + wi, ∀(i, j) ∈ Gh

yj ≥ yi + hi, ∀(i, j) ∈ Gv

Wmin
i ≤ wi ≤ Wmax

i , 1 ≤ i ≤ n

Hmin
i ≤ hi ≤ Hmax

i , 1 ≤ i ≤ n

wihi = Ai, 1 ≤ i ≤ n

x0 = y0 = 0, w0 = h0 = 0

If W is set as the width of a predefined fixed outline, Problem 1
can be applied in fixed-outline floorplanning.

III. Basic Slack-Driven Shaping

This section presents the basic SDS algorithm that solves
Problem 1 optimally in our experiments.

First of all, we introduce some notations used in the discus-
sion. Given the constraint graphs and the shape of the blocks,
without violating the nonoverlapping constraints, we can pack
the blocks to four lines, i.e., the left (LL), right (RL), bottom
(BL), and top (TL) lines. LL, RL, BL and TL are set as
“x = 0,” “x = W ,” “y = 0” and “y = yn+1,” respectively. Let �xi

denote the difference of xi between the two layouts generated
by packing blocks to RL and LL, respectively. Similarly, �yi

denotes the difference of yi between the two layouts generated
by packing blocks to TL and BL, respectively. For block i

(1 ≤ i ≤ n), the horizontal slack sh
i and vertical slack sv

i are
calculated as follows:

sh
i = max(0, �xi

), sv
i = max(0, �yi

).

In Gh, given any path3 from the source to the sink, if for all
blocks on this path, their horizontal slacks are equal to zero,
then we define such path as a horizontal critical path (HCP).
The length of one HCP is the summation of the width of blocks
on this path. Similarly, we can define the vertical critical path
(VCP) and the length of one VCP is the summation of the
height of blocks on this path. Note that, since we set RL as
the “x = W” line, if xn+1 < W , then there is no HCP in Gh.

The algorithm flow of the basic SDS is simple and straight-
forward. The soft blocks are shaped iteratively. At each
iteration, we apply the following two operations.

3By default, all paths in this paper are from the source to the sink in the
constraint graph.

1) Shape the soft blocks on all VCPs by increasing the
width and decreasing the height. This reduces the lengths
of the VCPs.

2) Shape the soft blocks on all HCPs by decreasing the
width and increasing the height. This reduces the lengths
of the HCPs.

The purpose of the first operation is to minimize the layout
height yn+1 by decreasing the lengths of all VCPs. As men-
tioned previously, if xn+1 < W then there is no HCP. Thus, the
second operation is applied only if xn+1 = W . This operation
seems to be unnecessary, yet actually is critical for the proof
of the optimality conditions. The purpose of this operation
will be explained in Section IV. At each iteration, we first
globally distribute the total amount of slack reduction to the
soft blocks, and then locally shape each individual soft block
on the critical paths based on the allocated amount of slack
reduction. The algorithm stops when we cannot find any soft
block to shape on the critical paths. During the whole shaping
process, the layout height yn+1 is monotonically decreasing
and thus the algorithm always converges.

In the following sections, we first identify which soft blocks
to be shaped (which we called target soft blocks) at each
iteration. Secondly, we mathematically derive the shaping
scheme on the target soft blocks. Finally, we present the
algorithm flow of the basic SDS.

A. Target Soft Blocks

For a given shaping solution, the set of n blocks can be
divided into the following seven disjoint subsets (1 ≤ i ≤ n):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Subset I = {i is hard}
Subset II = {i is soft} ∩ {sh

i �= 0, sv
i �= 0}

Subset III = {i is soft} ∩ {sh
i = 0, sv

i = 0}
Subset IV = {i is soft} ∩ {sh

i �= 0, sv
i = 0} ∩ {wi �= Wmax

i }
Subset V = {i is soft} ∩ {sh

i �= 0, sv
i = 0} ∩ {wi = Wmax

i }
Subset VI = {i is soft} ∩ {sh

i = 0, sv
i �= 0} ∩ {hi �= Hmax

i }
Subset VII = {i is soft} ∩ {sh

i = 0, sv
i �= 0} ∩ {hi = Hmax

i }.
Based on the definitions of critical paths, we have the follow-
ing observations.4

Observation 1: If block i ∈ subset II, then i is not on any
HCP nor VCP.

Observation 2: If block i ∈ subset III, then i is on both
HCP and VCP, i.e., at the intersection of some HCP and some
VCP.

Observation 3: If block i ∈ subset IV or V, then i is on
some VCP but not on any HCP.

Observation 4: If block i ∈ subset VI or VII, then i is on
some HCP but not on any VCP.

As mentioned previously, yn+1 can be minimized by reduc-
ing the height of the soft blocks on the vertical critical paths,
and such block-height reduction will result in a decrease on
the horizontal slacks of those soft blocks. From the above
observations, only soft blocks in subsets III, IV, and V are on
the vertical critical paths. However, for block i ∈ subset III,
sh
i = 0, which means its horizontal slack cannot be further

reduced. And for block i ∈ subset V, wi = Wmax
i , which means

4Please refer to [15, Theorem 1] for the proof of these observations.
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its height cannot be further reduced. As a result, to minimize
yn+1 we can only shape blocks in subset IV. Similarly, we
conclude that whenever we need to reduce xn+1 we can only
shape blocks in subset VI. For the hard blocks in subset I,
they cannot be shaped anyway.

So the target soft blocks are the ones in subsets IV and VI.

B. Shaping Scheme

Let δh
i denote the amount of increase on wi for block i ∈

subset IV, and δv
i denote the amount of increase on hi for block

i ∈ subset VI. In the remaining part of this section, we present
the shaping scheme to shape the target soft block i ∈ subset IV
by setting δh

i . Similar shaping scheme is applied to shape the
target soft block i ∈ subset VI by setting δv

i . By default, all
blocks mentioned in the following part are referring to the
target soft blocks in subset IV.

We use “i ∈ p” to denote that block i is on a path p in Gh.
Suppose the maximum horizontal slack over all blocks on p is
sp

max. Basically, sp
max gives us a budget on the total amount of

increase on the block width along this path. If
∑

i∈p δh
i > sp

max,
then after shaping, we have xn+1 > W , which violates the
constraint “xn+1 ≤ W”. So we have to set δh

i accordingly,
such that

∑
i∈p δh

i ≤ sp
max for all p in Gh.

To determine the value of δh
i , we first define a distribution

ratio α
p
i (αp

i ≥ 0) for block i ∈ p. We assign the value of α
p
i ,

such that ∑
i∈p

α
p
i = 1.

Lemma 1: For any path p in Gh, we have∑
i∈p

α
p
i sh

i ≤ sp
max.

Proof: Because sp
max = MAXi∈p(sh

i ), this lemma can be
proved as follows:∑

i∈p

α
p
i sh

i ≤
∑
i∈p

α
p
i sp

max = sp
max

∑
i∈p

α
p
i = sp

max.

Based on Lemma 1, for a single path p, it is obvious that if
δh
i ≤ α

p
i sh

i (i ∈ p), then we can guarantee
∑

i∈p δh
i ≤ sp

max.
More generally, if there are multiple paths going through

block i (1 ≤ i ≤ n), then δh
i needs to satisfy the following

inequality:

δh
i ≤ α

p
i sh

i , ∀p ∈ Ph
i (1)

where Ph
i is the set of paths in Gh going through block i.

Inequality (1) is equivalent to the following inequality:

δh
i ≤ MIN

p∈Ph
i

(αp
i )sh

i . (2)

Essentially, (2) gives an upper bound on the amount of increase
on wi for block i ∈ subset IV.

For block i ∈ p, the distribution ratio is set as follows:

α
p
i =

⎧⎪⎨
⎪⎩

0, i is the source or the sink
Wmax

i −wi∑
k∈p

(Wmax
k − wk)

, otherwise.

(3)

The insight is that if we allocate more slack reduction to
the blocks that have potentially more room to be shaped, the
algorithm will converge faster. We allocate zero amount of
slack reduction to the dummy blocks at the source and the
sink in Gh. Based on (3), (2) can be rewritten as follows
(1 ≤ i ≤ n):

δh
i ≤ (Wmax

i − wi)sh
i

MAXp∈Ph
i
(
∑

k∈p(Wmax
k − wk))

. (4)

From the above inequality, to calculate the upper bound of
δh
i , we need to obtain the value of three terms, (Wmax

i − wi),
sh
i and MAXp∈Ph

i
(
∑

k∈p(Wmax
k − wk)). The first term can be

obtained in constant time. Using the longest path algorithm,
sh
i for all i can be calculated in linear time. A trivial approach

to calculate the third term is via traversing each path in Gh.
This takes exponential time, which is not practical. Therefore,
we propose a dynamic programming (DP) based approach that
only takes linear time to calculate the third term.

In Gh, suppose vertex i (0 ≤ i ≤ n + 1) has incoming edges
coming from the vertices in the set V in

i , and outgoing edges
going to the vertices in the set V out

i . Let P in
i denote the set of

paths that start at the source and end at vertex i in Gh, and
Pout

i denote the set of paths that start at vertex i and end at
the sink in Gh. For the source of Gh, we have V in

0 = φ and
P in

0 = φ. For the sink of Gh, we have V out
n+1 = φ and Pout

n+1 = φ.
We notice that MAXp∈Ph

i
(
∑

k∈p(Wmax
k −wk)) can be calculated

recursively by the following equations:

MAX
p∈P in

0

(
∑
k∈p

(Wmax
k − wk)) = 0

MAX
p∈Pout

n+1

(
∑
k∈p

(Wmax
k − wk)) = 0

MAX
p∈P in

i

(
∑
k∈p

(Wmax
k − wk)) = MAX

j∈V in
i

(MAX
p∈P in

j

(
∑
k∈p

(Wmax
k − wk)))

+(Wmax
i − wi) (5)

MAX
p∈Pout

i

(
∑
k∈p

(Wmax
k − wk)) = MAX

j∈V out
i

(MAX
p∈Pout

j

(
∑
k∈p

(Wmax
k − wk))

+(Wmax
i − wi) (6)

MAX
p∈Ph

i

(
∑
k∈p

(Wmax
k − wk)) = MAX

p∈P in
i

(
∑
k∈p

(Wmax
k − wk))

+ MAX
p∈Pout

i

(
∑
k∈p

(Wmax
k − wk))

−(Wmax
i − wi). (7)

Based on the equations above, the DP-based approach can
be applied step by step as follows (1 ≤ i ≤ n).

1) We apply topological sort algorithm on Gh.
2) We scan the sorted vertices from the source to the sink,

and calculate MAXp∈P in
i

(
∑

k∈p(Wmax
k − wk)) by (5).

3) We scan the sorted vertices from the sink to the source,
and calculate MAXp∈Pout

i
(
∑

k∈p(Wmax
k − wk)) by (6).

4) MAXp∈Ph
i
(
∑

k∈p(Wmax
k − wk)) is obtained by (7).

It is clear that by the DP-based approach, the whole process
of calculating the upper bound of δh

i for all i takes linear time.
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Fig. 1. Flow of basic slack-driven shaping.

C. Flow of Basic Slack-Driven Shaping

The algorithm flow of basic SDS is shown in Fig. 1. In this
flow, for each block i in the design, we set its initial width wi =
Wmin

i (1 ≤ i ≤ n). Based on the input Gh, Gv and initial block
shape, we can calculate an initial value of xn+1. If such initial
value is already bigger than W , then Problem 1 is not feasible.

At each iteration we set δv
j = β × MINp∈Pv

j
(αp

j )sv
j for target

soft block j ∈ subset VI. By default, β = 100%, which means
we set δv

j exactly at its upper bound. One potential problem
with this strategy is that the layout height yn+1 may remain
the same, i.e., never decreasing. This is because after one
iteration of shaping, the length of some noncritical vertical
path increases, and consequently its length may become
equivalent to the length of the VCP in the previous iteration.
Accidentally, such scenario may keep cycling forever, and
thus yn+1 would never decrease. This issue can be solved, as
long as δv

j is set less than its upper bound. In this way, after
one iteration of shaping we can guarantee that the length of
the VCP will be shorter than the one in the previous iteration.
Theoretically, any β < 100% can break the cycling scenario
and guarantee the algorithm convergence. But because in
SDS any amount of change that is less than 0.0001 would be
masked by numerical error, we can actually calculate a lower
bound of β, and obtain its range as follows:

0.01

MINp∈Pv
j
(αp

j )sv
j

% < β < 100%.

In the implementation, whenever we detect that yn+1 does not
change for more than two iterations, we will set β = 90% for
the next iteration. For δh

j , we always set it at its upper bound.
Because in each iteration the total increase on width or

height of the target soft blocks would not exceed the budget,
we can guarantee that the layout would not be outside of the
four lines after shaping. As iteratively we set TL to the updated
“y = yn+1” line, yn+1 will be monotonically decreasing during
the whole shaping process. Different from TL, as we set RL

to the fixed “x = W” line, during the shaping process xn+1

may be bouncing, i.e., sometimes increasing and sometimes

Fig. 2. Example of a nonoptimal solution from the basic SDS. (a) Nonop-
timal solution. (b) Optimal solution.

decreasing, yet always no more than W . The shaping process
stops when there is no target soft block.

IV. Optimality Conditions

Sometimes, in the basic SDS the layout height yn+1 may
converge to a nonoptimal solution of Problem 1, as the one
case shown in Fig. 2(a). The layout in Fig. 2(a) contains four
soft blocks 1, 2, 3, and 4, where Ai = 4, Wmin

i = 1 and Wmax
i =

4 (1 ≤ i ≤ 4). The given upper bound width W = 5. In the
layout, w1 = w3 = 4 and w2 = w4 = 1. There is no target soft
block on any one of the four critical paths (i.e., two HCPs and
two VCPs), so the basic SDS returns yn+1 = 5. But the optimal
layout height should be 3.2, when w1 = w2 = w3 = w4 = 2.5
as shown in Fig. 2(b).

In this section, we will look into this issue and present the
optimality conditions for the shaping solution returned by the
basic SDS.

Let L represent a shaping solution generated by the basic
SDS in Fig. 1. All proofs in this section are established based
on the fact that the only remaining soft blocks that could be
shaped to possibly improve L are the ones in subset III. This
is because L is the solution returned by the basic SDS and
in L there is no soft block that belongs to subsets IV nor VI
any more. This is also why we need apply the second shaping
operation in the basic SDS. Its purpose is not reducing xn+1,
but eliminating the soft blocks in subset VI. For the soft blocks
in the other subsets (i.e., II, V and VII), in Section III we have
already explained the reason why they cannot be shaped to
improve any shaping solution. From Observation 2, we know
that any block in subset III is always at the intersection of some
HCP and some VCP. Therefore, to improve L it is sufficient
to just consider shaping such intersection soft blocks.

Before we present the optimality conditions, we define two
concepts.

• Hard critical path: If all intersection blocks on one
critical path are hard blocks, then this path is a hard
critical path.

• Soft critical path: A critical path, which is not hard, is a
soft critical path.

Lemma 2: If there exists one hard VCP in L, then L is
optimal.

Proof: Since all intersection blocks on this VCP are hard
blocks, there is no soft block that can be shaped to possibly
improve this VCP. Therefore, L is optimal.

Lemma 3: If there exists at most one soft HCP or at most
one soft VCP in L, then L is optimal.
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Fig. 3. Examples of three optimal cases in L.

Proof: As proved in Lemma 2, if there exists one hard
VCP in L, then L is optimal. So in the following proof we
assume there is no hard VCP in L. For any hard HCP, as all
intersection blocks on it are hard blocks, we cannot change
its length by shaping those intersection blocks anyway. So we
can basically ignore all hard HCPs in this proof.

Suppose L is nonoptimal. We should be able to identify
some soft blocks and shape them to improve L. As mentioned
previously, it is sufficient to just consider shaping the
intersection soft blocks. If there is at most one soft HCP or
at most one soft VCP, there are only three possible cases in
L. (As we set TL as the “y = yn+1” line, there is always at
least one VCP in L.)

1) There is no soft HCP, and there is one or multiple soft
VCPs [e.g., Fig. 3(a)].
In this case, L does not contain any intersection soft
blocks.

2) There is one soft HCP, and there is one or multiple soft
VCPs [e.g., Fig. 3(b)].
In this case, L has one or multiple intersection soft
blocks. Given any one of such blocks, say i. To improve
L, hi has to be reduced. But this increases the length of
the soft HCP, which violates “xn+1 ≤ W” constraint.
Note that, if such constraint is violated, there is no way
to reduce the length back to less than or equal to W ,
because all the blocks that are not intersection blocks on
this soft HCP must either be hard blocks or soft blocks
in subset VII. So, none of the blocks can be shaped to
improve L.

3) There is one or multiple soft HCPs, and there is one soft
VCP [e.g., Fig. 3(c)].
In this case, L has one or multiple intersection soft
blocks. Given any one of such blocks, say i. Similarly,
it can be proved that “xn+1 ≤ W” constraint will be
violated, if hi is reduced. So, none of the blocks can be
shaped to improve L.

As a result, for all the above cases, we cannot find any soft
block that could be shaped to possibly improve L. This means
our assumption is not correct. Therefore, L is optimal.

Note that, in both Lemmas 2 and 3 we are proving that at
certain point (i.e., when the optimality condition in the lemma
is satisfied) there is absolutely nothing that can be done by
any algorithm to possibly further improve the solution. This
ensures that the shaping solution we obtained at this certain
point is a global optimum, rather than a local minimum.

V. Flow of Slack-Driven Shaping

Using the conditions presented in Lemmas 2 and 3, we
can determine the optimality of the output solution from the
basic SDS. Therefore, based on the algorithm flow in Fig. 1,

Fig. 4. Flow of slack-driven shaping.

we propose the SDS algorithm shown in Fig. 4. SDS always
returns an optimal solution for Problem 1.

The differences between SDS and the basic version are
starting from line 15 in Fig. 4. When there is no target soft
block, instead of terminating the algorithm, SDS will first
check the optimality of L, and if it is not optimal, L will
be improved via geometric programming. The algorithm stops
when an optimal solution is obtained.

As mentioned previously, if the solution L generated by
the basic SDS is not optimal, we only need to shape the
intersection soft blocks to improve L. In this way, the problem
now becomes shaping the intersection blocks to minimize
the layout height yn+1 subject to layout width constraint
“xn+1 ≤ W .” In other words, it is basically the same as
Problem 1, except that we only need to shape a smaller number
of soft blocks (i.e., the intersection soft blocks). This problem
is a geometric program. It can be transformed into a convex
problem and solved optimally by any convex optimization
technique. However, considering the runtime, we do not need
to rely on geometric programming to converge to an optimal
solution. We just run one step of some iterative convex
optimization technique (e.g., deepest descent) to improve L.
Then we can go back to line 7, and apply the basic SDS again.
It is clear that SDS always converges to the optimal solution
because as long as the solution is not optimal, the layout height
will be improved.

In modern VLSI designs, the usage of intellectual prop-
erty and embedded memory blocks becomes more and more
popular. As a result, a design usually contains tens or even
hundreds of big hard macros, i.e., hard blocks. Due to their
big sizes, after applying the basic SDS most likely they are
at the intersections of horizontal and vertical critical paths.
Moreover, in our experiments we observe that there is always
no more than one soft HCP or VCP in the solution returned
by the basic SDS. Consequently, we never need to apply
the geometric programming method in our experiments. We
believe that for most designs the basic SDS algorithm is
sufficient to achieve an optimal solution for Problem 1.

VI. Stopping Criteria

As shown in Fig. 4, SDS stops when the layout height
becomes optimal. This is the default stopping criterion in SDS.
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While considering other objectives, e.g., the runtime, it may
not be necessary to wait until SDS achieves an optimal solu-
tion. Thus, to terminate the algorithm early, in this section we
presents two stopping criteria that could be adopted in SDS.

A. One Simple Stopping Criterion

Because during the shaping process in SDS, the layout
height is monotonically reducing and eventually converges to
an optimal solution, one simple way to set a stopping criterion
is to consider a threshold value on the amount of change on
the layout height in the last a few iterations. For example, if
the amount of change on the layout height is less than 1%
during the last 10 iterations, then SDS will stop.

B. Stopping Criterion With Guaranteed Suboptimality Bound

The stopping criterion mentioned previously is a simple
heuristic, in which we do not have any guarantee on the error
bound between the resulting and optimal shaping solutions. In
this section, we present a more sophisticated and nonheuris-
tic stopping criterion. Given a user-specified error margin ε

(ε > 0), we can guarantee that when SDS stops under this
criterion, the resulting solution is ε-suboptimal.

Let LD denote the Lagrange dual problem of Problem 1, d

denote the value of the objective function from one feasible
solution in LD, and Y denote the optimal layout height in
Problem 1. Based on the theory of duality [18], the value of
the objective function from any feasible solution in LD yields
a lower bound on Y . That is

d ≤ Y. (8)

For any intermediate layout height y′ obtained by SDS, we
can calculate the gap value defined as y′ − d. Based on
Inequality (8), if such gap value is smaller than ε, that is

y′ − d ≤ ε (9)

then we can guarantee y′ − Y ≤ ε, which means the solution
y′ is ε-suboptimal.

In the Appendix, we mathematically derive the Lagrange
dual problem LD and explain the calculation of d. So, at each
shaping iteration in SDS, using Inequality (9) we can check if
the current shaping solution is ε-suboptimal or not. If it is, SDS
stops. Otherwise, the algorithm moves to the next iteration.

VII. Extension of SDS

In this section, we extend SDS to handle two other floor-
planning problems: 1) to minimize the layout width with the
given layout height upper bound, and 2) to minimize the layout
area, i.e., classical floorplanning.

To solve these two floorplanning problems, we simply just
need to change the way we set the right (RL) and top (TL)
lines defined in Section III. The soft blocks are still shaped
iteratively, and the shaping scheme remains the same as the
one presented in Section III-B. The description on the different
settings on RL and TL for various floorplanning problems is
presented in Table I. In this table, the second row shows the
setting we employed for solving Problem 1, while the third

TABLE I

Different Settings on RL and T L for Three Problems and

Optimality of Solutions Achieved by SDS

Floorplanning Right Line Top Line Optimal
Problem RL TL ?

Minimize yn+1, Set to“x = W” Set to “y = yn+1” Yes
s.t. xn+1 ≤ W permanently at each iteration

Minimize xn+1, Set to “x = xn+1” Set to “y = H” Yes
s.t. hn+1 ≤ H at each iteration permanently

Minimize Set to “x = xn+1” Set to “y = yn+1” No
xn+1yn+1 at each iteration at each iteration

W and H are the fixed upper bounds for layout width and height,
respectively.

TABLE II

Comparison on Runtime Complexity

Algorithm Runtime Complexity

Young et al. [12] O(m3 + km2)

Lin et al. [13] O(kn2mlog(nC))
Basic SDS O(km)

k is the total number of iterations, n is the total number of blocks in the
design, m is the total number of edges in Gh and Gv, and C is the
biggest input cost.

and fourth rows show the settings for solving the two extended
problems, respectively.

Because of the symmetrical nature of the two problems
listed in the second and third rows in Table I, it is obvious
that SDS can solve the problem in the third row optimally as
well. Regarding the classical floorplanning problem, i.e., the
one listed in the fourth row, SDS iteratively minimize both
the layout width and height. Different from the fixed-outline
floorplanning, both the layout width and height are converging
during the whole shaping process. The optimality of the final
solution depends on the initial layout, so SDS may not always
achieve optimal layout area.

VIII. Experimental Results

This section presents the experimental results. All exper-
iments were run on a Linux server with AMD Opteron
2.59 GHz CPU and 16 GB memory. We use two sets of
benchmarks, MCNC [12] and HB [19]. For each circuit, the
corresponding input Gh and Gv are provided by a floorplanner.
The range of the aspect ratio for any soft block in the circuit
is set to [ 1

3 , 3]. In SDS, if the amount of change on the width
or height of any soft block is less than 0.0001, we would not
shape such block because any change smaller than that would
be masked by numerical error. Such numerical error, which
is unavoidable, comes from the truncation of an infinite real
number so as to make the computation possible and practical.

A. Experiments on Fixed-Outline Floorplanning

For fixed-outline floorplanning, after the input data is read,
SDS sets the initial width of each soft block to its minimum.

First, we present the experimental results on MCNC bench-
marks. We compare SDS with the two shaping algorithms
in [12] and [13]. All blocks in these circuits are soft blocks.
The source code of [12] and [13] are obtained from the
authors. In fact, these three shaping algorithms cannot be
directly compared, because they have different optimization
objectives:



182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

TABLE III

Comparison with [12] on MCNC Benchmarks

#. Young et al. [12] SDS SDS stops when result
Circuit Soft ws Final Final Shaping ws Final Final Upper-Bound Shaping is better than [12]

Blocks (%) Width Height Time† (s) (%) Width Height Width W Time† (s) ws (%) Time† (s)
apte 9 4.66 195.088 258.647 0.12 0.00 195.0880 246.6147 195.0880 0.26 2.85 0.01

xerox 10 7.69 173.323 120.945 0.08 0.01 173.3229 111.6599 173.3230 0.23 6.46 0.01
hp 11 10.94 83.951 120.604 0.08 1.70 83.9509 109.2605 83.9510 0.10 7.96 0.02

ami33a 33 8.70 126.391 100.202 22.13 0.44 126.3909 91.7830 126.3910 3.97 8.67 0.28
ami49a 49 10.42 144.821 273.19 203.80 1.11 144.8210 247.4727 144.8210 1.86 9.74 0.20

Normalized 393.919 23.351 1.000 1.000 313.980 0.092

† shows the total shaping time of 1000 runs and does not count I/O time.

TABLE IV

Comparison with [13] on MCNC Benchmarks

#. Lin et al. [13] SDS SDS stops when result
Circuit Soft Half Final Final Shaping Half Final Final Upper-Bound Shaping is better than [13]

Blocks Perimeter Width Height Time† (s) Perimeter Width Height Width W Time† (s) Half Peri. Time† (s)
apte 9 439.319 219.814 219.505 0.99 439.3050 219.8139 219.4911 219.8140 0.59 439.1794 0.01

xerox 10 278.502 138.034 140.468 1.24 278.3197 138.0339 140.2858 138.0340 0.30 278.4883 0.12
hp 11 190.3848 95.2213 95.1635 1.51 190.2435 95.2212 95.0223 95.2213 0.17 190.3826 0.10

ami33a 33 215.965 107.993 107.972 34.85 215.7108 107.9930 107.7178 107.9930 1.45 215.9577 0.46
ami49a 49 377.857 193.598 184.259 26.75 377.5254 193.5980 183.9274 193.5980 2.20 377.8242 0.44

Normalized 1.001 10.177 1.000 1.000 1.001 0.304

† shows the total shaping time of 1000 runs and does not count I/O time.

TABLE V

Experimental Results of SDS on HB Benchmarks for Fixed-Outline Floorplanning

Circuit No. of Soft Blocks / No. of Upper-Bound Final Final Convergence Total No. of Iterations when yn+1−Y
Y

becomes
Hard Blocks Width W Width Height (Y ) Time (s) No. of Iterations < 10% < 5% < 1% < 0.1%

ibm01 665 / 246 2161.9005 2161.9003 2150.3366 0.82 2336 54 85 225 629
ibm02 1200 / 271 3057.4816 3056.6026 3050.4862 0.40 485 65 102 230 431
ibm03 999 / 290 3298.2255 3298.2228 3305.6953 0.36 565 62 97 231 456
ibm04 1289 / 295 3204.7658 3204.7656 3179.9406 3.65 3564 53 87 271 1076
ibm05 564 / 0 2222.8426 2222.8424 2104.4136 0.29 1456 102 142 279 522
ibm06 571 / 178 3069.5289 3068.5232 2988.6851 0.14 500 58 105 265 419
ibm07 829 / 291 3615.5698 3615.5696 3599.6710 1.86 3966 63 114 269 1210
ibm08 968 / 301 3855.1451 3855.1449 3822.5919 0.42 690 75 111 232 545
ibm09 860 / 253 4401.0232 4401.0231 4317.0274 1.20 2512 50 82 234 687
ibm10 809 / 786 7247.6365 7246.7511 7221.0778 0.49 472 28 56 162 377
ibm11 1124 / 373 4844.2184 4844.2183 4820.8615 0.60 654 64 96 253 509
ibm12 582 / 651 6391.9946 6388.6978 6383.9537 0.10 157 26 47 91 138
ibm13 530 / 424 5262.6052 5262.6050 5204.0326 1.03 2695 52 78 244 753
ibm14 1021 / 614 5634.2142 5634.2140 5850.1577 2.88 2622 75 109 237 634
ibm15 1019 / 393 6353.8948 6353.8947 6328.6329 2.94 3770 100 152 331 1039
ibm16 633 / 458 7622.8724 7622.8723 7563.6297 0.95 2038 41 65 193 520
ibm17 682 / 760 6827.7756 6827.7754 6870.9049 1.78 2200 46 67 139 389
ibm18 658 / 285 6101.0694 6101.0692 6050.4116 1.35 3544 57 82 185 454

Average 1.18 1901 5.9% 9.6% 22.3% 47.3%

• [12] minimizes the layout area xn+1yn+1;
• [13] minimizes the layout half perimeter xn+1 + yn+1;
• SDS minimizes the layout height yn+1, s.t. xn+1 ≤ W .

Still, to make some meaningful comparisons as best as we
can, we setup the experiment in the following way.

1) We conduct two groups of experiments: a) SDS versus
[12], and b) SDS versus [13].

2) As the circuits are all very small, to do some meaningful
comparison on the runtime, in each group we run both
shaping algorithms 1000 times with the same input data.

3) For group 1, we run [12] first, and use the returned final
width from [12] as the input upper bound width W for
SDS. For group 2, similar procedure is applied.

4) For groups 1 and 2, we compare the final results based
on [12]’s and [13]’s objectives, respectively.

We acknowledge that based on the above setup the runtime
comparison may not be fair for [12] and [13], because SDS
directly makes use of the resulting width value from [12]
and [13] as W . However, as mentioned earlier, due to the
different optimization objectives for these three algorithms,
this is the best we can do. For fixed-outline floorplanning, W

is always set as the width of the predefined fixed outline.
Table III shows the results on group 1. The column “ws(%)”

gives the white space percentage over the total block area in
the final layout. For all five circuits SDS achieves significantly
better results on the floorplan area. On average, SDS achieves
394× smaller white space and 23× faster runtime than [12]. In
the last column, we report the runtime SDS takes to converge
to a solution that is better than [12]. To just get a slightly
better solution than [12], on average SDS takes 253× faster
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Fig. 5. Layout-height convergence graphs for circuits ibm01, ibm02, ibm12, and ibm15 in fixed-outline floorplanning. (x-axis denotes the iteration number
and y-axis denotes the layout height.) (a) ibm01. (b) ibm02. (c) ibm12. (d) ibm15.

runtime. As pointed out by [13], [12] does not transform
the problem into a convex problem before applying La-
grangian relaxation. Hence, it may not converge to an optimal
solution.

Table IV shows the results on group 2. The authors claim the
shaping algorithm in [13] can find the optimal half perimeter
on the floorplan layout. But, for all five circuits SDS gets con-
sistently better half perimeter than [13], with on average 10×
faster runtime. Again, in the last column, we report the runtime
SDS takes to converge to a solution that is better than [13].
To just get a slightly better solution than [13], on average
SDS takes 33× faster runtime. We believe algorithm [13] stops
earlier, before it converges to an optimal solution. The reason
may be because of the numerical error.

From the runtime reported in Tables III and IV, it is clear
that as the circuit size increases, SDS scales much better
than both [12] and [13]. In Table II, we list the runtime
complexities among the three shaping algorithms. As in our
experiments, it is never necessary to apply the geometric
programming method in SDS, we list the runtime complexity
of the basic SDS in Table II. Obviously, the basic SDS has
the best scalability.

Second, we present the experimental results of SDS on HB
benchmarks. As both algorithms [12] and [13] crashed on this
set of circuits, we cannot compare SDS with them. The HB
benchmarks contain both hard and soft blocks ranging from
500 to 2000 (see Table V for details).

For each test case, we set the upper bound width W

as the square root of 110% of the total block area in the
corresponding circuit. Let Y denote the optimal yn+1 SDS
converges to. The results are shown in Table V. The “Con-
vergence Time” column lists the total runtime of the whole
convergence process. The “Total #.Iterations” column shows
the total number of iteration SDS takes to converge to Y . In
the subsequent four columns, we also report the number of
iterations when yn+1−Y

Y
starts to be less than 10%, 5%, 1%

and 0.1%, respectively. The average total convergence time is
1.18 second. SDS takes average 1901 iterations to converge
to Y . The four percentage numbers in the last row shows
that on average after 6%, 10%, 22%, and 47% of the total
number of iterations, SDS converges to the layout height that is
within 10%, 5%, 1% and 0.1% difference from Y , respectively.
This shows that after around 1

5 of the total iterations, the
difference between yn+1 and Y is already quite small, i.e., less
than 1%.

To show the convergence process more intuitively, we plot
out the convergence graphs of the layout height (i.e., yn+1)
for four circuits in Fig. 5(a)–(d). In each figure, the four blue
arrows point to the four points when yn+1 becomes less than
10%, 5%, 1%, and 0.1% difference from Y , respectively. For
the same four circuits, in Fig. 6(a)–(d) we plot out the value
of the layout width (i.e., xn+1+) at each iteration. As we can
see, while the layout height converges, the layout width keeps
bouncing below the width upper bound. In Fig. 7(a) and (b),
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Fig. 6. Layout-width bouncing graphs for circuits ibm01, ibm02, ibm12, and ibm15 in fixed-outline floorplanning. (x-axis denotes the iteration number and
y-axis denotes the layout width.) (a) ibm01. (b) ibm02. (c) ibm12. (d) ibm15.

we show the layouts of ibm01 before and after shaping by
SDS for fixed-outline floorplanning.

B. Experiments on Classical Floorplanning

This section presents the experimental results of SDS on
classical floorplanning. We use the HB benchmarks with
the same input constraint graphs as the ones used in the
experiments on fixed-outline floorplanning. For classical floor-
planning, after the input data is read, SDS will set the initial
shape of each soft block as a square.

The detailed experimental results are shown in Table VI.
The columns “Initial ws (%)” and “Final ws (%)” give the
white space percentages over the total block area in the initial
and final layouts, respectively. Comparing these two columns,
we can see that the area has been reduced significantly after
shaping. In the last column, we also list the white space
percentages from the final layouts obtained by SDS in the
experiments on fixed-outline floorplanning. For 17 out of 18
circuits, the final layout area obtained in classical floorplanning
is better than the one obtained in fixed-outline floorplanning.
On the other hand, this also shows that the solution generated
by SDS in classical floorplanning may not be optimal, because
for ibm16 the resulting layout area in fixed-outline floorplan-
ning is better. On average, the total convergence time over all
circuits is 1.37 s, and it takes SDS 2063 iterations to converge.

In Fig. 8(a)–(d), we plot the corresponding convergence

graphs of both the layout width and height for four circuits.
Different from the ones shown in Figs. 5(a)–(d) and 6(a)–(d),
for classical floorplanning both the layout width and height
are monotonically reducing during the whole shaping process
in SDS. In Fig. 9(a) and (b), we show the layouts of ibm01
before and after shaping by SDS for classical floorplanning
(the fixed outlines are still plot as a reference).

C. Several Remarks

Finally, we have three remarks on SDS.
1) For the experiments on fixed-outline floorplanning, as

SDS sets the initial width of each soft block at its mini-
mal width, such initial floorplan is actually considered as
the worse start point for SDS. This means if any better
initial shape is given, SDS will converge to Y even faster.

2) In our experiments, we never notice that the solution
generated by the basic SDS contains more than one
soft HCP or VCP. So if ignoring the numerical error
mentioned previously, SDS obtains the optimal layout
height for all circuits simply by the basic SDS.

3) Like all other shaping algorithms, SDS is not a
floorplanning algorithm. To implement a fixed-outline
floorplanner based on SDS, for example, we can simply
integrate SDS into a similar annealing-based framework
as the one in [15]. In each annealing loop, the input
constraint graphs are sent to SDS, and SDS stops once
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Fig. 7. Initial and final layouts obtained by SDS for circuit ibm01 in fixed-outline floorplanning. (The hard blocks are marked with “H,” the blue line plots
the fixed outline and the pink line plots the IO pads.) (a) Before shaping. (b) After shaping.

TABLE VI

Experimental Results of SDS on HB Benchmarks for Classical Floorplanning

Circuit No. of Soft Blocks / No. Initial Final Final Final Convergence Total Final ws (%) From
of Hard Blocks ws (%) ws (%) Width Height Time (s) No. of Iterations Fixed-Outline Solution

ibm01 665 / 246 46.47 8.61 2127.1430 2175.7183 0.48 1396 9.02
ibm02 1200 / 271 37.88 8.31 3024.5961 3050.4862 0.77 958 9.27
ibm03 999 / 290 41.01 9.47 3289.6823 3305.6953 0.49 819 9.71
ibm04 1289 / 295 47.27 8.79 3198.0745 3186.5337 3.26 2736 8.80
ibm05 564 / 0 53.87 4.09 2155.9597 2162.4859 0.26 1236 4.41
ibm06 571 / 178 40.42 6.38 3030.5339 3005.3742 0.48 1738 7.02
ibm07 829 / 291 46.84 8.57 3538.6377 3656.3922 0.82 1797 9.10
ibm08 968 / 301 40.59 8.48 3844.7472 3822.5919 1.99 3423 8.73
ibm09 860 / 253 43.30 7.72 4432.7876 4285.0334 1.62 3520 7.74
ibm10 809 / 786 33.45 8.98 7228.2629 7225.5828 2.13 2266 9.16
ibm11 1124 / 373 44.66 8.65 4822.4148 4820.8615 3.57 4329 9.06
ibm12 582 / 651 39.39 9.06 6369.2802 6383.9537 0.19 331 9.34
ibm13 530 / 424 49.55 8.47 5268.7406 5197.3737 0.77 2061 8.48
ibm14 1021 / 614 56.96 12.76 5679.4810 5798.1802 2.37 2290 12.84
ibm15 1019 / 393 53.57 8.74 6254.8367 6400.5495 3.18 3936 9.14
ibm16 633 / 458 46.65 8.87 7545.9852 7646.9865 0.77 1709 8.79
ibm17 682 / 760 55.38 9.96 6950.4712 6741.1355 0.94 1256 10.07
ibm18 658 / 285 58.27 8.47 6205.6832 5930.3135 0.50 1324 8.74

Average 1.37 2063
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Fig. 8. Layout-width-height convergence graphs for circuits ibm01, ibm02, ibm12 and ibm15 in classical floorplanning. (x-axis denotes the iteration number,
the green line plots the layout width and the red line plots the layout height.) (a) ibm01. (b) ibm02. (c) ibm12. (d) ibm15.

Fig. 9. Initial and final layouts obtained by SDS for circuit ibm01 in classical floorplanning. (The hard blocks are marked with “H,” the blue line plots the
fixed outline and the pink line plots the IO pads.) (a) Before shaping. (b) After shaping.
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the solution is within the fixed outline. The annealing
process keeps refining the constraint graphs to optimize
the various floorplanning objectives (e.g., wirelength)
in the cost function.

IX. Conclusion and Future Work

This paper proposed an efficient, scalable, and optimal
SDS algorithm for soft blocks in nonslicing floorplan. We
formulated the problem in such a way that it can be applied for
fixed-outline floorplanning. We also extended SDS to solve the
classical floorplanning. For all cases in our experiments, the
basic SDS was sufficient to obtain an optimal solution in fixed-
outline floorplanning. Both the efficiency and effectiveness of
SDS were validated by comprehensive experimental results
and rigorous theoretical analysis.

As the starting point of VLSI physical design, floorplanning
plays a very critical role in both prototyping and block
implementation. In order to consider multiple cross-domain
factors (e.g., timing, routability, power, etc.) in the early stage
of IC designs, the core engine of the floorplanner has to
be very fast and high quality. The block shaping algorithm
is a key component for the modern floorplanner to meet
such requirements. This is because the shape of each circuit
block determines the top-level spatial structure of a chip,
and has direct impact on the circuit performance, e.g., power
dissipation, timing closure and routability. Due to the ever-
increasing complexity of ICs, the problem of shaping circuit
blocks is very complicated. Previously, researchers proposed
many sophisticated algorithms to conquer this problem. These
algorithms take significant portion of the total runtime inside
a floorplanner. However, SDS is very simple, as the core step
of the shaping process inside SDS only contains two lines
of codes. Yet, the algorithm is able to achieve an optimal
solution with one to two orders of magnitude faster than
previous state-of-the-art algorithms. If this paper is adopted
and implemented in the modern physical optimization tools, it
could potentially improve the circuit performance in various
respects and significantly reduce the turnaround time for
engineers designing new ICs.

In terms of future research direction, we will try to propose
a more scalable algorithm as a substitution of the geometric
programming method in Fig. 4. Also, because of the similarity
between the slack in floorplanning and static timing analysis,
we believe SDS can be modified and applied on buffer/wire
sizing for timing optimization.

Appendix

Lagrangian Duality of Problem 1

In this section, following the similar procedure as in [12]
and [13], we first derive the Lagrange dual problem of
Problem 1. Then we explain how to calculate the value of
the objective function from one set of dual feasible. To make
the presentation easier, we remove dummy vertex 0 and its
outgoing edges in Gh. For the vertices connecting to vertex 0
in Gh, we set their xi = 0. The similar changes are made for
Gv. As a result, Problem 1 can be rewritten as follows:

Problem 2:

Minimize yn+1

subject to xn+1 − W ≤ 0
xi − xj + wi ≤ 0, ∀(i, j) ∈ Gh

yi − yj + Ai

wi
≤ 0, ∀(i, j) ∈ Gv

Wmin
i ≤ wi ≤ Wmax

i , 1 ≤ i ≤ n.

To obtain the Lagrangian subproblem of Problem 2, we
introduce the nonnegative Lagrangian multiplier for the
constraints in Problem 2. Let φ denote the multiplier for
constraint xn+1 − W ≤ 0, λi,j denote the multiplier for
constraint xi − xj + wi ≤ 0, and μi,j denote the multiplier for
constraint yi − yj + Ai

wi
≤ 0. So, we obtain the Lagrangian

subproblem as follows.

Problem 3:

Minimize yn+1 + φ(xn+1 − W)

+
∑

∀(i,j)∈Gh

λi,j(xi − xj + wi)

+
∑

∀(i,j)∈Gv

μi,j(yi − yj +
Ai

wi

)

subject to Wmin
i ≤ wi ≤ Wmax

i , 1 ≤ i ≤ n.

Let F denote the objective function of Problem 3. F can be
rewritten as follows:

F = (φ −
∑

∀(i,n+1)∈Gh

λi,n+1)xn+1

+ (1 −
∑

∀(i,n+1)∈Gv

μi,n+1)yn+1

+
n∑

i=1

(
∑

∀(i,j)∈Gh

λi,j −
∑

∀(j,i)∈Gh

λj,i)xi

+
n∑

i=1

(
∑

∀(i,j)∈Gv

μi,j −
∑

∀(j,i)∈Gv

μj,i)yi

+
n∑

i=1

(wi

∑
∀(i,j)∈Gh

λi,j +
Ai

wi

∑
∀(i,j)∈Gv

μi,j)

− φW.

Because Problem 2 is a convex problem, the Kuhn–Tucker
conditions of Problem 2 can be used to simplify F and
the Lagrange dual problem of Problem 2. After applying
the Kuhn–Tucker conditions, we obtain the Lagrange dual
problem LD of Problem 2 follows:

Maximize
n∑

i=1

(wi

∑
∀(i,j)∈Gh

λi,j +
Ai

wi

∑
∀(i,j)∈Gv

μi,j) − φW

where wi = min
(
Wmax

i , max(Wmin
i ,√

Ai

∑
∀(i,j)∈Gv

μi,j∑
∀(i,j)∈Gh

λi,j
)
)

(10)

subject to
∑

∀(i,j)∈Gh

λi,j =
∑

∀(j,i)∈Gh

λj,i (11)

∑
∀(i,j)∈Gv

μi,j =
∑

∀(j,i)∈Gv

μj,i (12)

∑
∀(i,n+1)∈Gh

λi,n+1 = φ (13)



188 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

∑
∀(i,n+1)∈Gv

μi,n+1 = 1 (14)

λ ≥ 0, μ ≥ 0, φ ≥ 0. (15)

In LD, (10)–(14) are derived from the Kuhn–Tucker condi-
tions.

From (11)–(15), it is not difficult to find one set of fea-
sible Lagrange dual variables (λ, μ, φ) by linear time. Once
(λ, μ, φ) are available, we can get the value d of the objective
function in LD. Note that, because any d yields a lower bound
on the optimal layout height of Problem 1, it is not necessary
to solve LD optimally and find the optimal d.
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