
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Fast and Effective Placement Refinement for Routability

Yanheng Zhang and Chris Chu

Abstract— In this brief, we propose congestion refinement of placement
(CROP) for improving the congestion of mixed-size placement solutions.
CROP consists of a congestion-driven module shifting technique and
a congestion-driven detailed placement (CDDP) technique. The shifting
technique is proposed for better allocation of routing resources. We shift
modules based on the shifting of G-cell boundaries. Shifting in each
direction can be formulated as a linear program (LP) for resizing each
cell in the global routing grid (i.e., G-cell). We degenerate and solve the LP
by a very efficient longest path computation. Then the CDDP technique
is proposed for distributing the routing demands better. Congestion
reduction is realized by weighting the half-perimeter wirelength with
the congestion factor during detailed placement. Theoretically, our
tool is capable of handling most mixed-size placement benchmarks
with movable and/or fixed macro (FM) blocks. In order to better
analyze its performance, the ISPD-GR benchmark suite (ISPD05/06
derived global routing benchmarks) with FM modes is developed. The
experimental results show that CROP effectively alleviates congestion
for unroutable placement solutions in short runtimes for different
placers.

Index Terms— Congestion, physical design, placement, routing.

I. INTRODUCTION

The success of routing is critical in VLSI design flow. With the
ever-decreasing feature size, the routability issue has become more
and more complicated. Nowadays, the mixed-size system-on-chip
contains up to millions of standard cells and thousands of big macros
in one design.

In a typical ASIC design flow, routing and placement are indepen-
dent stages. In the placement stage, the design is optimized for half
perimeter wirelength (HPWL). The congestion and routing shapes
are handled in the following routing stage. However, the HPWL
optimization during the placement stage may lead to a hard-to-route
or even unroutable solution. It is desirable to integrate the routabil-
ity factor into the placement. Placement is a more flexible stage
for improving routability. The shifting and relocating of modules
could effectively alleviate congestion. Therefore, congestion-driven
placement techniques have received much attention from academia
in recent years.

There have been many works proposed for routability-driven place-
ment. In general, previous techniques can be categorized into four
groups. The first group formulates and incorporates the routability
component into a placement optimizing objective. Spindler and
Johannes [1] proposed the RUDY congestion estimation technique
and modified the density term to incorporate both the routing den-
sity and module density. In [2], Jiang et al. applied Lagrangian
relaxation to soften the routability constraints. Similarly, Tosta et al.
[3] integrated the wire density term into the analytical placement
framework. The second group applies the implicit or explicit white
space allocation (WSA) technique inside or after the placement flow.
Yang et al. [4] proposed three WSA methods and integrated one of
them in the detailed placement (DP) flow of Dragon. mPL-R with
WSA [5] distributed the white space by adjusting the cut-lines of

Manuscript received November 10, 2011; revised May 16, 2012; accepted
July 21, 2012.

The authors are with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA 50010 USA (e-mail:
yanhengzhang@gmail.com; cnchu@iastate.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2214408

Fig. 1. Basic idea of CDMS.

hierarchically sliced placement based on the available white space
and congestion. In [6], the authors proposed inflating the cells inside
the congested region, which is an implicit method for allocating
white space. The third group guides placement by global routing.
IPR [7] integrated FastRoute2.0 [8] into FastPlace [9] and performed
full global routing to guide the placement flow. The fourth group
mixes some of the three features above. For instance, ROOSTER [10]
proposed to both optimize RSMT in their global placement objective
and apply WSA in their DP flow.

In this brief, we propose a fast and effective mixed-size placement
refinement tool called congestion refinement of placement (CROP)
for routability improvement. CROP consists of a congestion-driven
module shifting (CDMS) technique and a congestion-driven detailed
placement (CDDP) technique. Both techniques are guided by conges-
tion information obtained by global routing. The first technique works
by adjusting the boundary of each G-cell and shifting the modules
accordingly. Fig. 1 illustrates the basic idea.

CROP is a fast and effective refinement tool for mixed-size
placement solution with several nice properties.

1) CROP is independent of any placer. It can be easily integrated
into various placement tools.

2) CROP shows good performance of improving routability. For
example, CROP is more precise when shifting modules based
on the boundary of each G-cell. Moreover, our congestion shift-
ing model differentiates the vertical and horizontal directions.

3) CROP runs very fast. The runtime overhead is negligible
compared to the original placement runtime.

In summary, our technical contributions include the introduction
of the following:

1) a placement routability refinement flow which is independent
of any placer or router;

2) a better refined and directional module shifting model;
3) a longest path computation method facilitating fast runtime of

module shifting;
4) a congestion-driven global swap technique by weighting HPWL

with congestion.

We apply CROP to refine placement solutions generated by var-
ious placers: FastPlace 3.1 [11], NTUplace3 [12], mPL6 [13], and
R-NTUplace3 [2]. We set up the ISPD-GR benchmarks to verify
the performance of CROP. The results reveal that CROP effectively
reduces congestion within a very short runtime.

The rest of this brief is organized as follows. Section II
presents the preliminaries of global routing and an overview of
our tool. Section III introduces the CDMS technique. Section IV
explains CDDP technique. In Section V, we compare the
results on the ISPD-GR benchmarks. Conclusions are drawn in
Section VI.

1063–8210/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Congestion-Driven
Module Shifting

Congestion-Driven
Detailed Placement

Vertical Shifting

Horizontal Shifting

Vertical Shifting

Horizontal Shifting

Congestion-Driven
Global Swap

Overflow
Improved?

Y

N

Input
Legalized
Placement

Output
Legalized
Placement

Legalization

Vertical Swap

Local Reordering

Fig. 2. Algorithm flow.

II. PRELIMINARIES AND OVERVIEW

A. Preliminaries on Global Routing

The placement region is partitioned into a set of G-cells to perform
global routing. In the global routing grid graph, each G-cell is
represented by a node and each G-cell boundary is abstracted as
the global routing edge. If the usage Ue is over the capacity Ce for
any edge e, the overflow is calculated as Oe = Ue − Ce.

B. CROP Flow

The flow of CROP [14] is illustrated in Fig. 2. The input is any
legalized placement design. The first step is CDMS. Modules are
shifted in X and Y directions iteratively. After a number of rounds
(two rounds in the flow), the post-shifting placement is legalized.
Then CDDP is called to compensate the wirelength loss and further
improve the routability. The shifting–legalization–DP procedure is
repeatedly called until the solution stops improving. Global routing
is applied when design modules are relocated. We use FastRoute 4.0
[15], [16] to perform global routing.

III. CDMS

A. Resizing G-Cells by Linear Programming

We formulate the problem of resizing G-cells to accommodate
routing demands into a linear program (LP). We first assume that
each module (Mk) is a standard cell (with smaller area than the
G-cell).

We first partition the placement region into m ×n G-cells. Let Bi, j
represents each G-cell, where i (i ∈ {1, . . . , m}) denotes the row and
j (j ∈ {1, . . . , n}) denotes the column. xi, j and xi, j+1 denote the
x-coordinate for the left boundary and the right boundary, respec-
tively. Likewise, yi, j and yi+1, j denote the y-coordinate for the
bottom boundary and the top boundary, respectively. There are
m×(n+1) x-variables and (m+1)×n y-variables. We use ul

i, j , ur
i, j ,

ub
i, j , and ut

i, j to represent the global routing usage through left, right,
bottom, and top boundary of Bi, j . H , W , hTile, and wTile represent
the height of placement area, width of placement area, defined height,
and width of the G-cell.

Without loss of generality, we investigate the horizontal shifting
of vertical boundaries. Similar formulation can be derived for the

vertical shifting case

max : σ

s.t.

xi, j+1 − xi, j ≥ σ × MAX
(

f −1
(

ub
i, j

)
, f −1

(
ut

i, j

))
(1)

0 ≤ σ ≤ 1 (2)

xi, j+1 − xi, j ≥
∑

k∈Bi, j
area(Mk)

hTile
(3)

|xi, j − xi+1, j | ≤ C (4)

0 ≤ xi,1 (5)

xi,n+1 ≤ W. (6)

Next, we briefly explain the LP we formulated.

1) Routability Constraints (1) and (2): As shown in Fig. 1,
the routing capacity is proportional to the length of
the G-cell boundary. This constraint designates the
G-cell width (xi, j+1 − xi, j) to be proportional to maximum
wiring demands of top and bottom sides. The function
f −1(u) computes the sufficient width for wiring demand u.
If the placement solution is very congested, the routability
constraints may be too hard to satisfy. We introduce a variable
σ to relax the routability constraints, which can be viewed as
a scaling factor over the original constraint. The value of σ is
bounded between 0 and 1.

2) G-Cell Area Constraints (3): These constraints ensure that each
G-cell has enough space to hold the modules inside.

3) Movement Constraints (4): We introduce movement constraints
to preserve the original placement solution by restricting move-
ment of adjacent G-cell boundaries. In the equations, C is a
constant denoting the degree of flexibility of moving adjacent
G-cell boundaries. Because of the absolute sign, it can be
expanded as follows:

xi+1, j − xi, j ≥ −C ∀ i, j (7)

xi, j − xi+1, j ≥ −C ∀ i, j. (8)

4) Placement Region Constraints (5) and (6): We need to ensure
that all the boundaries are within the placement region ([0, W]).
Note that the other constraints (e.g., G-cell area constraints)
implicitly guarantee that xi, j ≤ xi, j+1 for j ∈ {1, . . . , n}.

B. Longest Path-Based Solution

When σ is fixed, the LP becomes a feasibility check problem (only
contains constraints). The strategy consists in applying an outer loop
which keeps decreasing σ until the LP is feasible. For each iteration
(σ), we check feasibility by longest path computation.

When σ is fixed, we introduce G-cell boundary graph, or B-graph
G(V, E). Each vertex vi, j ∈ V represents a G-cell boundary. Each
difference constraint in the form xd − xs ≥ Q is represented by a
directed edge e ∈ E pointing from vs to vd with a cost ‖e‖ of Q. Er ,
Ea , and Em are the sets of edges incurred by routability constraints,
G-cell area constraints, and movement constraints, respectively. Fig. 3
illustrates an example of B-graph with the three types of edges. The
longest path distance to vi, j from the vertices associated with the
leftmost boundaries of the placement region is the minimum value
of xi, j that satisfies (1), (3), (5), (7), and (8). So the feasibility of
the constraints can be determined by checking whether x j,n+1 ≤ W
for all i (6).

We observe that the proposed B-graph contains directed cycles that
are caused by movement edges (Em). As suggested by [17], it is NP-
complete to find the longest path for a graph with directed cycles.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

Fig. 3. Converting the G-cell boundary into B-graph.

e1

e2

e3

Fig. 4. Replacing movement edges with diagonal edges to facilitate longest
path computation.

We need to convert the graph to an acyclic graph. As illustrated in
Fig. 4, we merge the perpendicular edges (e1 and e2) and replace
them with the diagonal edge (e3). The cost of a diagonal edge is the
total cost of the perpendicular edges (‖e3‖ = ‖e1‖ + ‖e2‖).

Initially, σ is set to 1. If the resulting longest path length L p =
MAXi=1,...,m(xi,n+1) is larger than W , we reduce σ to scale the
current longest path into placement region. Suppose L represents set
of edges along the longest path. We define the edges that cannot be
scaled as hard edges and those scalable as soft edges. For instance,
routability edges can always be reduced in magnitude and they are
thus soft edges. Area edges are hard edges due to their nonscalability.
Diagonal edges (Ed) can be either hard or soft edges depending on
whether hard or soft edges dominate the edge weight. We divide
the edges along the longest path L into two parts: 1) hard edge
E L

h = (Ea ∪ Eh
d) ∩ L and 2) soft edge E L

s = (Er ∪ Es
d) ∩ L .

Lh = ∑
e∈Eh

L
‖e‖ and Ls = ∑

e∈Es
L

‖e‖. To scale L p inside fixed
outline W , we have s × Ls + Lh = W . Therefore s = (W − Lh)/Ls .
Each iteration σ will be scaled by a scaling factor s to configure the
soft edges into fixed outline. But we may not be able to compact all
paths into a fixed outline at the same time. First, other paths may
still be longer than W even after scaling. Second, the current path
may not be scaled correspondingly based on s. Hence the scaling in
the outer loop will be performed iteratively until all the paths fit into
the fixed outline (L p = W). The algorithm terminates in at most
m iterations because at least one more xi (i ∈ {1, . . . , n + 1}) will
become less than or equal to W in each iteration.

We hold (5) as the precondition and use (6) as the feasibility check
condition. The solution (G-cell boundary coordinates) will be aligned
to the left side in the case when longest path is out of the fixed outline
([0, W]). And the cells will be packed to the left side. To avoid this
phenomenon, we solve the counterpart LP which holds (6) as the
precondition and use (5) as the feasibility check condition. It makes
the solution packed to the right. We obtain two sets of solutions for
each G-Cell boundary, say, xl

i, j and xr
i, j . The two sets of solutions

actually define the valid range of the boundary location. Let Xi, j
denotes the original G-cell boundary coordinate (Xi, j = (j − 1) ×
wTile). If Xi, j is within the valid range, (xi, j = Xi, j). Otherwise,
we move the boundaries to the closest of either xl

i, j or xr
i, j .

After adjusting each G-cell boundary, the modules inside each
G-cell will be shifted accordingly. CROP updates the module location
by maintaining the ratio of distance to both boundaries before and
after G-cell resizing.

Fig. 5. Merging of G-cells for macro blocks.

C. Macro Block Handling

1) Movable Macros: In case the macros are movable, they can
be legally relocated to the place of better routability. We apply
a methodology similar to that we use to handle standard cells.
We merge the covered G-cells to become a super G-cell. A macro will
thus be repositioned based on the super G-cell boundary coordinates.
As shown in Fig. 5, CROP merges the G-cells that are covered or
partially covered by the big macro.

2) Fixed Macros: Certain IP cores and FMs are preplaced on
chip, considering area, power, and timing issues. In analog designs,
there are design constraints that need be respected for macros, such
as mirroring constraints (e.g., two blocks are the mutually viewed
images for a fixed axis), alignment constraint, distance constraint,
etc. It is therefore not allowed to move the preplaced big macros,
as they may degrade many design specifications and violate design
constraints.

When there are FMs in the design, we need to make sure
the corresponding super G-cell boundaries unmoved during G-cell
resizing. We mark the super vertices as fixed by a Boolean variable
and record its original position. We monitor the fixed vertices along
the longest path. If any vertice is found to be fixed, we scale the path
accordingly for preventing the violation of this constraint. Note that
we keep the uniform scaling factor over the entire algorithm, which
still seeks the solution to the LP problem we originally proposed.

IV. CDDP

DP is commonly applied after global placement to improve HPWL
for legalized placement solution. We develop a congestion-driven DP
technique to retrieve the netlength during the shifting stage and to
further improve the routability. The flow of our proposed DP is shown
in Fig. 2, which contains congestion-driven global swap, vertical
swap, and local reordering. The whole DP flow is based on FastDP
[18].

Global swap step seeks to swap modules for improving HPWL
based on a greedy pairwise position exchange. In CROP, the swapping
evaluation function incorporates the congestion component; in other
words, the HPWL is weighted by the congestion factor of αn for net
n. Simply put

r H PW Ln = H PW Ln × αn (9)

where αn is computed by averaging congestion of all possible Z paths
inside the bounding box

αn = wtot

E
=

∑
p∈P

∑
e∈p w(e)

E
(10)

where P is the set of all Z routing paths. e represents one global
routing edge along path p. E is the edge set, and w(e) is the
congestion cost of edge e. wtot represents the sum of congestion cost.
To save computational effort, instead of enumerating all Z paths, we
propose a more efficient lookup table-based method to get the sum
of total congestion cost inside the specified bounding box.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE I
CROP RESULTS ON ISPD-GR BENCHMARKS AND FM MODE

Metrics Tools a1 a2 a3 a4 a5 b1 b2 b3 n1 n2 n3 n4 n5 n6

w/o / 1260 4 / / 18 755 769 / / / 9642 / 46 /

FP3.1 w / 0 0 / / 0 0 / / / 9019 / 0 /

FM / 0 0 / / 0 293 / / / 8998 / 0 /

w/o 2885 2369 1621 141 / 15 896 19 793 15 259 / 60 9442 3394 / 8

NTUPlace3 w 0 0 0 0 / 0 0 0 / 0 8480 0 / 0

Routing FM 0 0 19 0 / 0 5928 10 / 0 8416 0 / 0

overflow w/o 20 18 535 22 539 5703 7307 46 995 1736 4678 / 9 8835 5649 12475 4495

mPL6 w 0 11 289 660 0 0 0 0 0 / 0 8405 285 0 0

FM 0 7465 12 225 0 28 0 0 0 / 0 8220 0 10 186 12

w/o 51 2849 94 20 16 12 887 38 616 2264 / 898 10 065 385 / /

R-NTUplace w 0 0 0 0 0 0 0 0 / 0 8551 0 / /

FM 0 0 6 0 0 0 11 670 0 / 0 8392 0 / /

/ 92 200 / / 73 193 / / / 297 / 406 /

FP3.1 FM / 186 480 / / 133 377 / / / 590 / 1056 /

70 98 238 227 / 70 308 453 / 203 270 198 / 487

CROP NTUplace3 FM 169 196 605 446 / 122 416 977 / 456 455 366 / 945

CPU 75 143 374 279 506 92 229 472 / 216 366 272 630 292

(second) mPL6 FM 142 213 491 559 967 165 457 887 / 554 774 466 1306 982

65 97 272 216 301 66 224 690 / 225 256 189 / /

R-NTUplace FM 121 168 456 435 765 111 394 1409 / 390 414 301 / /

/ 2 2 / / 2 2 / / / 2 / 2 /

FP3.1 FM / 4 4 / / 4 4 / / / 4 / 4 /

2 2 2 2 / 2 3 2 / 2 2 2 / 2

CROP NTUplace3 FM 4 4 4 4 / 4 4 5 / 4 4 5 / 4

Iterations 2 2 3 2 3 2 3 2 / 2 2 2 3 2

mPL6 FM 4 4 5 4 5 4 4 4 / 5 4 4 5 4

2 2 2 2 2 2 2 3 / 2 2 2 / /

R-NTUplace FM 4 4 5 4 4 3 5 4 / 3 4 4 / /

w/o / 280 223 / / 1492 1042 / / / 13 331 / 154 /

FP3.1 w / 34 107 / / 39 282 / / / 13 832 / 32 /

FM / 33 215 / / 36 762 / / / 13 328 / 171 /

w/o 2031 311 1096 389 / 1945 2517 2692 / 362 12 726 1271 / 1088

NTUplace3 w 144 20 101 26 / 46 87 80 / 28 13 006 68 / 78

Routing FM 181 20 218 44 / 52 1298 445 / 33 13 114 88 / 729

CPU w/o 420 1478 6795 2859 2927 1941 448 2397 / 131 13 661 2329 5756 6085

(second) mPL6 w 58 974 1066 42 202 75 256 69 / 23 13 554 1581 200 155

FM 63 588 2919 120 732 129 148 94 / 28 13 224 408 2697 964

w/o 642 311 975 248 531 1619 3869 6439 / 933 12 801 515 / /

R-NTUplace w 101 17 108 24 47 41 303 136 / 31 13 079 25 / /

FM 140 18 339 40 782 47 1713 1287 / 58 13 009 29 / /

w/o / 0.31 0.85 / / 0.27 0.47 / / / 0.81 / 1.70 /

FP3.1 w / 0.31 0.85 / / 0.26 0.48 / / / 0.84 / 1.65 /

FM / 0.31 0.89 / / 0.26 0.47 / / / 0.83 / 1.73 /

w/o 0.30 0.30 0.84 0.71 / 0.28 0.47 0.83 / 0.46 0.74 0.81 / 0.95

NTUplace3 w 0.29 0.30 0.82 0.72 / 0.28 0.47 0.79 / 0.45 0.74 0.78 / 0.92

Routed FM 0.29 0.30 0.84 0.75 / 0.28 0.49 0.81 / 0.47 0.74 0.79 / 0.96

wirelength w/o 0.27 0.32 0.89 0.71 0.79 0.27 0.52 0.79 / 0.45 0.77 0.77 1.29 1.0

(×10e7) mPL6 w 0.26 0.32 0.85 0.72 0.77 0.26 0.54 0.77 / 0.45 0.77 0.78 1.40 0.96

FM 0.26 0.32 0.91 0.75 0.80 0.28 0.52 0.79 / 0.46 0.76 0.77 1.34 1.07

w/o 0.30 0.30 0.87 0.74 0.97 0.28 0.51 0.91 / 0.48 0.77 0.83 / /

R-NTUplace w 0.29 0.30 0.83 0.73 0.86 0.27 0.49 0.84 / 0.46 0.76 0.79 / /

FM 0.29 0.30 0.87 0.74 0.96 0.27 0.52 0.92 / 0.48 0.75 0.80 / /

V. EXPERIMENTAL RESULTS

All our experiments are performed on a machine with a
2.4-GHz AMD Opteron processor and 4G of memory. In order to

better analyze the performance of CROP, we propose the ISPD-GR
benchmarks. The benchmark suite is derived from ISPD05/06 [19],
[20] placement contest benchmarks with all macro blocks movable.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

The ISPD-GR benchmarks test routability of the global routing stage.
In order to test the performance of CROP for test cases with FM,
we fix all movable macros in ISPD-GR to become the FM version
of ISPD-GR.

A. ISPD-GR Benchmarks

We show the experimental results on the ISPD-GR benchmarks
derived from ISPD05/06 placement benchmarks. We utilize four
publicly available academic placers to generate the initial legalized
placement solution.

In particular, the initial legalized placement solutions are generated
by FastPlace3.1 [11], NTUplace3 [12], mPL6 [13], and R-NTUplace
[2]. In the experiment, FastRoute 4.0 [15] is utilized to report the
global routing results.

Table I shows the results in detail. For each placer, we show the
routing results before and after applying our tool. The entry with
“/” means the original placement is routable, so we do not apply
CROP. Before applying CROP, there are 6, 11, 13, and 11 unroutable
cases for the solutions of FastPlace3.1, NTUplace3, mPL6 and
R-NTUplace, respectively. The number is reduced to 1, 1, 4, and
1 with CROP. Out of these benchmarks, newblue3 is proved to be
unroutable (more out pins than the capacity in a G-cell). From these
results, we see that CROP is very effecitve in congestion reduction.
We also report the CROP execution runtime in Table I. The runtime
of our tool is trivial compared with the original placement runtime.
Noticeably, the routing runtime is also saved considerably. We
could achieve roughly 6× speedup on average. The routing runtime
improvement suggests the placement solution after applying CROP
becomes easier to route. Additionally, the total wirelengths are 0.5%
better, 1% better, 0.5% worse, and 5% better for FP3.1, NTUplace3,
mPL6, and R-NTUplace, respectively. Generally speaking, the routed
wirelength is similar to that of original design, which indicates the
original placement solution is well maintained in CROP.

B. FM Solutions

In order to better evaluate the performance of placement bench-
marks with FMs, we create the FM mode of the ISPD-GR bench-
marks in which each macro is fixed. We conduct similar experiments
as in Section V-A. In Table I, for each test case, the row marked
with “FM” is the corresponding benchmark in the FM mode. We
could observe that the congestion is consistently improving. For
each experimental benchmark, the overflow is better than the input
placement solution. Second, although the congestion is improving, the
enhancement is usually less compared with the case with movable
macros, and the required runtime is longer. But we can see that the
original placement solution is well maintained.

VI. CONCLUSION

In this brief, we presented CROP to improve routability for
placement solution as a refinement process. Our tool is independent of
any placer or router. The main techniques involve CDMS and CDDP.
ISPD-GR benchmarks with FM modes are utilized to demonstrate
the efficiency and effectiveness of CROP. We propose to continue
working to improve the performance of the tool and apply CROP to
enhance routability for other design stages, such as detailed routing
[21], [22].

REFERENCES

[1] P. Spindler and F. M. Johannes, “Fast and accurate routing demand
estimation for efficient routability-driven placement,” in Proc. Conf.
Design, Autom. Test Eur., 2007, pp. 1226–1231.

[2] Z. Jiang, B. Su, and Y. Chang, “Routability-driven analytical placement
by net overlapping removal for large-scale mixed-size designs,” in Proc.
ACM/IEEE Design Autom. Conf., Jun. 2008, pp. 167–172.

[3] K. Tsota, C. Koh, and V. Balakrishnan, “Guiding global placement with
wire density,” in Proc. Int. Conf. Comput.-Aided Design, 2008, pp. 212–
217.

[4] X. Yang, B. Choi, and M. Sarrafzadeh, “Routability-driven white space
allocation for fixed-die standard-cell placement,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 22, no. 4, pp. 410–419, Apr.
2003.

[5] C. Li, M. Xie, C. Koh, J. Cong, and P. Madden, “Routability-
driven placement and white space allocation,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 26, no. 5, pp. 167–172, May
2008.

[6] U. Brenner and A. Rohe, “An effective congestion-driven placement
framework,” in Proc. ACM/SIGDA Int. Symp. Phys. Design, 2002, pp.
6–11.

[7] M. Pan and C. Chu, “IPR: An integrated placement and routing algo-
rithm,” in Proc. ACM/IEEE Design Autom. Conf., Jun. 2007, pp. 59–62.

[8] M. Pan and C. Chu, “FastRoute 2.0: A high-quality and efficient global
router,” in Proc. Asia South Pacific Design Autom. Conf., 2007, pp. 250–
255.

[9] N. Viswanathan and C. Chu, “FastPlace: Efficient analytical placement
using cell shifting, iterative local refinement, and a hybrid net model,”
in Proc. ACM/SIGDA Int. Symp. Phys. Design, 2004, pp. 26–33.

[10] J. Roy and I. L. Markov, “Seeing the forest and the trees: Steiner
wirelength optimization in placement,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 26, no. 4, pp. 632–644, Apr.
2007.

[11] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. Asia South Pacific Design Autom. Conf., 2007, pp. 135–140.

[12] T. Chen, Z. Jiang, T. Hsu, H. Chen, and Y. Chang, “NTUplace3:
An analytical placer for large-scale mixed-size designs with preplaced
blocks and density constraints,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 27, no. 7, pp. 1228–1240, Jul. 2008.

[13] T. F. Chan, J. Cong, M. Romesis, J. R. Shinnerl, K. Sze, and M. Xie,
“mPL6: A robust multilevel mixed-size placement engine,” in Proc.
ACM/SIGDA Int. Symp. Phys. Design, 2005, pp. 227–229.

[14] Y. Zhang and C. Chu, “CROP: Fast and effective congestion refinement
of placement,” in Proc. Int. Conf. Comput.-Aided Design, 2009, pp. 344–
350.

[15] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: Global router with efficient
via minimization,” in Proc. Asia South Pacific Design Autom. Conf.,
2009, pp. 576–581.

[16] Y. Zhang, Y. Xu, and C. Chu, “FastRoute 3.0: A fast and high quality
global router based on virtual capacity,” in Proc. Int. Conf. Comput.-
Aided Design, 2008, pp. 344–349.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: W.H. Freeman,
1979.

[18] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” in Proc. Int. Conf. Comput.-Aided Design, 2005,
pp. 48–55.

[19] ISPD05 Placement Contest Benchmarks. (2005) [Online]. Available:
http://www.sigda.org/ispd2005/contest.htm

[20] ISPD06 Placement Contest Benchmarks. (2006) [Online]. Available:
http://www.sigda.org/ispd2006/contest.htm

[21] Y. Zhang and C. Chu, “RegularRoute: An efficient detailed router with
regular routing patterns,” in Proc. ACM/SIGDA Int. Symp. Phys. Design,
2011, pp. 45–52.

[22] Y. Zhang and C. Chu, “GDRouter: Interleaved global routing and
detailed routing for ultimate routability,” in Proc. ACM/IEEE Design
Autom. Conf., Jun. 2012, pp. 597–602.

