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In this article we propose an effective algorithm flow to handle modern large-scale mixed-size placement,
both with and without geometry constraints. The basic idea is to use floorplanning to guide the placement of
objects at the global level. The flow consists of four steps: (1) The objects in the original netlist are clustered
into blocks; (2) floorplanning is performed on the blocks; (3) the blocks are shifted within the chip region to
further optimize the wirelength; (4) with large macro-locations fixed, incremental placement is applied to
place the remaining objects. There are several advantages to handling placement at the global level with a
floorplanning technique. First, the problem size can be significantly reduced. Second, exact Half-Perimeter
WireLength (HPWL) can be minimized. Third, better object distribution can be achieved so that legalization
only needs to handle minor overlaps among small objects in a block. Fourth, macro-rotation and various
geometry constraints can be handled. To demonstrate the effectiveness of this new flow, we implement a
high-quality and efficient floorplan-guided placer called FLOP. We also construct the Modern Mixed-Size
(MMS) placement benchmarks that can effectively represent the complexities of modern mixed-size designs
and the challenges faced by modern mixed-size placers. Compared with most state-of-the-art mixed-size
placers and leading macroplacers, experimental results show that FLOP achieves the best HPWL and easily
obtains legal solutions on all circuits with all geometry constraints satisfied.
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1. INTRODUCTION

In the nanometer-scale era, placement has become an extremely challenging stage in
modern Very-Large-Scale Integration (VLSI) designs. Millions of objects need to be
placed legally within a chip region, while both the interconnection and object distri-
bution have to be optimized simultaneously. As an early step of VLSI physical design
flow, placement significantly impacts on both routing and manufacturing. In modern
System-on-Chip (SoC) designs, the usage of Intellectual Property (IP) and embed-
ded memory blocks becomes more and more popular. As a result, a design usually
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Fig. 1. Example of modern mixed-size circuit which contains 2177353 objects and 2228903 nets. The blue
dots represent standard cells, and the white rectangular regions represent macros.

contains tens or even hundreds of large macroblocks (i.e., large macros). A design with
large movable macros and numerous standard cells is known as mixed-size design. An
example of modern mixed-size design is shown in Figure 1.

For mixed-size designs, the placement of large macros plays a key role. Due to the big
size difference between large macros and standard cells, the placement of mixed-size
designs is much more difficult than the standard-cell placement. Existing placement
algorithms perform very poorly on mixed-size designs. They usually cannot generate a
legal solution by themselves, and have to rely on a postplacement legalization process.
However, legalizing large macros with wirelength minimization has been considered
very hard to solve for a long time. Moreover, sometimes the large macros have various
placement geometry constraints, such as preplaced, boundary, distance constraints.
This makes the problem of mixed-size placement even harder. As existing placement
algorithms simply cannot handle such geometry constraints, the designer has to place
these macros manually beforehand.

1.1. Previous Work

Most mixed-size placement algorithms place both the macros and standard cells simul-
taneously. Examples are the annealing-based placer Dragon [Taghavi et al. 2006], the
partitioning-based placer Capo [Roy et al. 2006], and the analytical placers FastPlace3
[Viswanathan et al. 2007], APlace2 [Kahng and Wang 2006], Kraftwerk [Spindler and
Johannes 2006], mPL6 [Chan et al. 2006], and NTUplace3 [Chen et al. 2006]. The
analytical placers are the state-of-the-art placement algorithms. They can produce the
best result in the best runtime. But, the analytical approach has three problems. First,
only an approximation (e.g., by log-sum-exp or quadratic function) of the HPWL is
minimized. Second, the distribution of objects is also approximated and this usually
results in a large amount of overlaps. They have to rely on a legalization step to resolve
the overlaps. For mixed-size designs, such a legalization process is very difficult and
is likely to significantly increase the wirelength, because a small movement of one big
macro can potentially affect the locations of thousands of small standard cells. Third,
traditional analytical placers cannot optimize macro-orientations and handle geometry
constraints. Most recently, Hsu and Chang [2010] improved the traditional analytical
placement algorithm by introducing a rotation force to optimize the macro-orientations.
But their algorithm still cannot handle geometry constraints.
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Fig. 2. Previous two-stage apnproach.

Other researchers apply a two-stage approach as shown in Figure 2 to handle the
mixed-size placement. An initial wirelength-driven placement is first generated. Then
a macroplacement or legalization algorithm is used to place only the macros, without
considering the standard cells. After this, the macros are fixed and the standard cells
are replaced in the remaining whitespace from scratch. As the macroplacement is a
crucial stage in this flow, people propose different techniques to improve the quality of
result (QoR). Based on the multi-packing tree (MPT) representation, Chen et al. [2007]
used a packing-based algorithm to place the macros around the four corners of the
chip region. In Chen et al. [2008], a transitive closure graph (TCG) based technique
was applied to enhance the quality of macroplacement. In Cong and Xie [2006], the
authors applied a combination of constraint graph and linear programming approaches
to obtain a legalized placement on the macros. One main problem with the preceding
three approaches is that the initial placement is produced with a large amount of
overlaps. Thus, the initial solution may not provide good indications on the locations
of objects. However, the following macroplacement stage still determines the macro-
locations by minimizing the displacement from the low-quality initial placement.

Alternatively, after the initial placement is generated by a standard-cell placer,
Adya and Markov [2005] used an annealing-based fixed-outline floorplanner to remove
the overlap between the macros and clustered standard cells at the macroplacement
stage. But, they still have to rely on the illegal placement to determine the initial
locations of macros and clusters. For all of the previous two-stage approaches, after
fixing the macros, the initial positions of standard cells have to be discarded to reduce
the overlaps.

1.2. Our Contributions

In this work, an efficient and high-quality placement tool is presented to effectively
handle the complexities of modern large-scale mixed-size placement. Such a tool is
developed based on a new placement flow that integrates floorplanning and incremental
placement algorithms. The main idea of this flow is to use the fixed-outline floorplanner
to guide the state-of-the-art analytical placer. As floorplanners have a good capability
of handling a small number of objects [Roy et al. 2006, 2009] and various geometry
constraints [Young et al. 2004], we apply a floorplanning algorithm on the clustered
circuit to generate a global overlap-free layout, and use it to guide the subsequent
placement algorithm.

This proposed new algorithm flow for mixed-size placement is as follows (see
Figure 3).

(1) Block Formation. The first step is to cut down the problem size. We define “small
objects” as small macros and standard cells. The small objects are clustered into
soft blocks, while each large macro is treated as a single hard block.

(2) Floorplanning. In this step, a floorplanner is applied on the blocks to directly
minimize the exact HPWL at floorplan level. Simultaneously, the objects are better
distributed across the chip region to guarantee an overlap-free layout.

(3) Wirelength-Driven Shifting. In order to further optimize the HPWL, the blocks are
shifted at the floorplan level. After shifting, large macros are fixed. The remaining
movable objects are assumed to be at the center of the corresponding soft block.
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Fig. 3. New algorithm flow for mixed-size placement.

(4) Incremental Placement. Lastly, the placement algorithm will place the remaining
objects. The initial positions of such objects provided by the previous step are used
to guide the incremental placement.

Generally, there are several advantages to handling mixed-size placement at global
level with a floorplanning technique. First, at the floorplanning stage the problem size
has been significantly reduced, so that the algorithm performs more efficiently and
effectively. Second, the exact HPWL among the blocks can be minimized at floorplan
level. Third, better object distribution can be achieved at the floorplanning stage, so
that the legalization in the placement stage only needs to handle minor overlaps among
small objects. Last but not least, macro-rotation and various geometry constraints on
the macros can be handled at floorplanning stage. Comparing this new methodology
with the state-of-the-art analytical placers, we can see that it is superior in several
aspects: (1) The exact HPWL is optimized in steps 1–3; (2) the objects are better dis-
tributed in step 2; (3) geometry constraints and macro-orientation optimization can
be handled in step 2. Compared with the previous two-stage approaches, instead of
starting from an illegal initial placement, we use the floorplanner to directly generate
a global overlap-free layout among the large macros, as well as between large macros
and small objects. In addition, the problem size has been significantly reduced by clus-
tering. A good floorplanner should be able to produce a high-quality global layout for the
subsequent incremental placer. Furthermore, the initial positions of the small objects
are not discarded. We keep such information as a starting point of incremental place-
ment. Since the large macros have already been fixed, the placer avoids the difficulty
of legalizing the large macros.

Based on the new algorithm flow, we implement a robust, efficient, and high-quality
floorplan-guided placement tool called FLOP1. FLOP has two operation modes. In the
default mode, FLOP optimizes mixed-size placement with all movable objects (includ-
ing both macros and standard cells) without geometry constraints. FLOP also deter-
mines the macro-orientation with respect to packing and wirelength optimization. In
order to handle the design with geometry constraints, we developed the FLOP-C mode.
To implement such a mode, we proposed several new techniques, of which the main
focus is to enable an enhanced annealing-based floorplanning framework to handle
various geometry constraints.

To show the effectiveness of FLOP, based on ISPD05/06 placement benchmarks we
derive the Modern Mixed-Size (MMS) placement benchmarks and MMS-C benchmarks
(a version of MMS benchmarks with geometry constraints). These new circuits can
represent the challenges of modern large-scale mixed-size placement.

1A preliminary version of FLOP was presented in Yan et al. [2009a].
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The rest of this article is organized as follows. Section 2 describes the overview of
FLOP. Section 3 presents the block formation step in FLOP. Section 4 introduces the
floorplanning algorithm applied in the default mode. Section 5 describes the annealing-
based floorplanner in the FLOP-C mode. Section 6 presents the wirelength-driven
shifting technique. Section 7 describes the incremental placement algorithm. Section 8
describes the construction of MMS and MMS-C benchmarks. Section 9 presents the
experimental results. Finally, this article ends with the conclusion.

2. OVERVIEW OF FLOP

FLOP follows the algorithm flow in Figure 3. It has two operation modes: the default
and FLOP-C modes. The only difference between the two modes is in the floorplanning
step.

In FLOP, the block formation is done by a combination of the clustering and recursive
partitioning. We first apply a high-quality clustering algorithm SafeChoice [Yan et al.
2011] to initially generate some small clusters, and then we perform partitioning using
hMetis2.0 [Karypis and Kumar 1999] on the clustered netlist to further cut down the
problem size. After partitioning, small objects in each partition are grouped into a soft
block and each large macro becomes a single hard block.

In the default mode, the subsequent floorplanning step adopts a min-cut-based fixed-
outline floorplanner DeFer [Yan and Chu 2010]. In DeFer, a hierarchy of the blocks
needs to be derived using recursive partitioning. Because such a hierarchy has already
been generated during the block formation step, it will be passed down and will not
be generated again. Another way to look at this is that the block formation step in the
default mode is merged into the floorplanning step as the first stage of DeFer.

Different from the floorplanning algorithm used in the default mode, an enhanced
annealing-based floorplanner is proposed to handle the geometry constraints in
FLOP-C mode. Due to the inherent slowness of annealing, we are not completely rely-
ing on the annealing process to produce a high-quality floorplan. Instead, we first apply
DeFer to generate a floorplan containing only the blocks without geometry constraints,
namely, nonconstraint blocks. Second, we physically insert the constraint blocks into
this floorplan and obtain an initial overlap-free floorplan containing all blocks in the
design. After such insertion, the constraint blocks are close to their locations speci-
fied in the geometry constraints, and most nonconstraint blocks also maintain their
previous locations generated by DeFer. Thus, this initial floorplan gives the annealing-
based floorplanner a good start point. At the end, we apply the annealing process to
further optimize the complete block-level netlist with geometry constraint awareness,
and output a final legal floorplan.

In FLOP, the problem of wirelength-driven shifting is formulated as a min-cost flow
problem. So, we can efficiently find the optimal block position in terms of the HPWL
minimization among the blocks.

Because analytical placers have the best capability in placing a large number of
small objects, we use an analytical placer as the engine in the incremental placement
step.

Comparing FLOP with the previous work in Adya and Markov [2005], both algo-
rithms use floorplanning-, clustering-, and annealing-based methods for mixed-size
placement. But besides the flow-wise differences as mentioned previously, they are dif-
ferent in the following aspects: (1) The floorplanner in FLOP does not rely on any initial
placement generated by the standard-cell placer. (2) The clustering method in FLOP is
used to generate the initial small clusters, and the final soft blocks (i.e., clustered small
objects) are generated by partitioning. (3) FLOP uses an annealing-based floorplanner
to handle various geometry constraints. For the design without such constraints, FLOP
uses the nonstochastic floorplanner DeFer.
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3. BLOCK FORMATION

A high-quality hypergraph clustering algorithm called SafeChoice was proposed in
Yan et al. [2011]. SafeChoice maintains a global priority queue based on the safeness
and area of potential clusters. Iteratively, a new cluster at the top of the queue is
formed. The objective of SafeChoice is to cut down the problem size by clustering small
objects without loss of placement quality. It has been shown that, compared with other
clustering algorithms, SafeChoice generates the best clusters for wirelength-driven
placement.

In the block formation step of FLOP, we first apply SafeChoice on the original netlist
to generate a clustered netlist. The clusters generated by SafeChoice are usually small
in size. As the cluster becomes bigger, the quality of each cluster degrades. In order to
further reduce the problem size, we perform recursive bipartitioning on the clustered
netlist. At the end, a block-level netlist is generated for the subsequent floorplanning
step. Note that the stand-alone clustering algorithm applied before partitioning not
only cuts down the runtime of partitioning, but also improves its QoR.

As mentioned earlier, the main purpose of the block formation step is to cut down the
problem size. For a typical placement problem with millions of objects in the original
netlist, we need to cut down to thousands of blocks for the block-level netlist. So we
propose a stopping criterion for the partitioning process. Let Ao be the total area of all
objects in the design. In one partition there are Np objects of which the total area is
Ap, and α is the area bound (α = 0.15% by default). We will stop cutting this partition
if either one of the following conditions is satisfied: (1) Ap

Ao
≤ α; (2) N p ≤ 10.

At the end of the partitioning process, inside each partition a large macro is treated
as a hard block and all small objects are grouped into a soft block.

4. FLOORPLANNING ALGORITHM IN DEFAULT MODE

A high-quality and nonstochastic fixed-outline floorplanner DeFer was presented in Yan
and Chu [2010]. It has been shown that, compared with other fixed-outline floorplan-
ners, DeFer achieves the best success rate, the best wirelength, and the best runtime
on average.

Here is a brief description of the algorithm flow of DeFer: First the original circuit
is partitioned into several subcircuits. After that, a high-level slicing tree structure is
built up. Second, for each subcircuit an associated shape curve is generated to represent
all possible slicing layouts within the subcircuit. Third, the shape curves are combined
from bottom-up following the high-level slicing tree. In the final shape curve at the
root, the points within the fixed outline are chosen for further HPWL optimization. At
the end DeFer outputs a final layout.

In the default mode of FLOP, we use DeFer in the floorplanning step. To make it
more robust and efficient for mixed-size placement, we propose some new techniques
and strategies that are described in the following two sections.

4.1. Usage of Exact Net Model

We use the exact net model in Chen et al. [2005] to improve the HPWL in partitioning.
By applying this net model in partitioning, the cut value becomes exactly the same as
the placed HPWL, so that the partitioner can directly minimize the HPWL instead of
interconnections between two partitions. Note that, in the exact net model, the HPWL
is calculated based on the assumption that the objects inside each subpartition are
located at the corresponding center of that subpartition. In FLOP at the first β levels
of the high-level slicing tree, we apply two cuts on the original partition. One is a
horizontal cut, and another is a vertical cut. We compare these two cuts and pick the
one with less cost, namely, HPWL.
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However, for a vertical/horizontal cut, the cut value returned by the net model is
only equal the horizontal/vertical component of HPWL. So for two cuts with different
directions, it is incorrect to decide a better cut direction based on the two cut values
generated by these two cuts. The authors in Chen et al. [2005] avoided such comparison
by fixing the cut direction based on the dimension of the partition region. Nevertheless,
this may potentially lose the better cut direction. Here we propose a simple heuristic
to solve the cut value comparison between the cuts from two different directions.

Suppose K is the total number of nets in one partition that we are going to cut. For
the horizontal cut (H-cut), Lx

Hi
and Ly

Hi
are the horizontal and vertical components of

the HPWL of net i, respectively. Similarly, Lx
Vi

and Ly
Vi

are the horizontal and vertical
components of the HPWL of net i for the vertical cut (V-cut), respectively. So the total
HPWL of the K nets in this partition are as follows.

for H-cut : LH =
K∑

i=1

Lx
Hi

+
K∑

i=1

Ly
Hi

for V-cut : LV =
K∑

i=1

Lx
Vi

+
K∑

i=1

Ly
Vi

Thus, the correct way to make the comparison between H-cut and V-cut should be

if LH ≥ LV ⇒ V-cut is better
if LH < LV ⇒ H-cut is better.

As the net model only returns
∑K

i=1 Ly
Hi

for the H-cut and
∑K

i=1 Lx
Vi

for V-cut, we need

find a way to estimate
∑K

i=1 Lx
Hi

and
∑K

i=1 Ly
Vi

. Let the aspect ratio2 of the partition
region be γ . When K is very big, based on statistics we can have

K∑

i=1

Ly
Hi

K∑

i=1

Lx
Hi

≈

K∑

i=1

Ly
Vi

K∑

i=1

Lx
Vi

≈ γ.

Thus,

if Ly
H ≥ Lx

V · γ ⇒ V-cut is better
if Ly

H < Lx
V · γ ⇒ H-cut is better.

Two reasons prevent us from applying the net model in lower levels (i.e., when it is
more than β levels): (1) As partitioning goes on, K becomes smaller and smaller, which
makes the approximation of

∑K
i=1 Lx

Hi
and

∑K
i=1 Ly

Vi
inaccurate; (2) using the net model,

we restrict the combine direction in the generalized slicing tree [Yan and Chu 2010],
which hurts the packing quality. To make a trade-off we only apply the net model in the
first β levels (β = 3 by default). After the first β levels, we use the traditional min-cut
cost, and let DeFer decide the best cut direction for packing. In the experiments, we
found that β = 3 gives us the best result. If β is set smaller than 3, the HPWL degrades.
If β is set bigger than 3, some designs with large movable macros cannot fit into the
fixed outline.

2In this article, aspect ratio is defined as the ratio of height to width.
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Fig. 4. Generation of shape curves for blocks.

4.2. Generation of Shape Curve for Blocks

To capture the shape of the blocks, we generate an associated shape curve for each block.
For the hard block if a macro cannot be rotated, only one point representing the user-
specified orientation is generated (see Figure 4(a)). Otherwise two points representing
two different rotations are generated (see Figure 4(b)). For the soft block we bound its
aspect ratio from 1/3 to 3, and sample multiple points on the shape curve to represent
its shape (see Figure 4(c)). The details of the sampling process are described in Yan
and Chu [2010]. Considering the target density constraint in the placement, we add
extra whitespace in each soft block. In some sense, we “inflate” the soft block based on
the target density.

A′
si

= Asi

TD
× (max((TD − 0.93), 0) × 0.5 + 1) (1)

In Eq. (1), for soft block i, A′
si

is the “inflated area”, Asi is the total area of objects within
soft block i, and TD is the target density. Based on this formula, if the target density
is more than 93%, we add extra whitespace into the soft block. The purpose is to leave
more space for the analytical placer to place the small objects.

5. FLOORPLANNING ALGORITHM IN FLOP-C MODE

This section presents the enhanced annealing-based floorplanning algorithm applied
in the floorplanning step in the FLOP-C mode.

In Kahng and Wang [2005], the authors extended the analytic placer to handle
geometry constraints by adding the penalty terms into the objective function. In Kim
and Markov [2012], the authors applied the technique of global feasibility projection to
handle various constraints. However, for both of these two approaches, the geometry
constraints were only added on the standard cells. Several previous works [Young
et al. 2004; Tam et al. 2006; Ma et al. 2011] have demonstrated the idea of using the
annealing-based framework to handle various geometry constraints on the macros.
But there are two common drawbacks in their annealing processes: (1) They all start
with a random initial floorplan so it takes a long time to search for a high-quality
solution; (2) at each annealing iteration, the shapes of the soft blocks are randomly
determined by annealing to improve the packing. Such a shaping strategy has no
optimality guarantee. Due to these two reasons, most of the moves in annealing may
not be made effectively towards the global optimum, and consequently the annealing
takes a long time to converge. This degrades both the effectiveness and efficiency
of the annealing-based floorplanners. As shown in Young et al. [2004], Tam et al.
[2006], and Ma et al. [2011], their floorplanners were only applied on the small-scale
circuits (e.g., at most 300 blocks). But for modern SoC designs the circuit usually
contains more than 1000 mixed of hard and soft blocks. The complexity would even
increase dramatically if some geometry constraints are involved. Obviously, completely
relying on the traditional annealing process to obtain a good solution is not practical
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Fig. 5. Flow of generating initial floorplan linit.

anymore. The focus of this section is to present two main techniques used to generate
a high-quality initial floorplan as a starting point for the subsequent annealing
process. Furthermore, in the FLOP-C mode we adopt an optimal and fast shaping
algorithm called SDS [Yan and Chu 2012] to shape the soft blocks in each annealing
iteration.

First of all, we introduce notation and definitions. The sequence pair [Murata et al.
1996] S(S+, S−) is used to represent a floorplan layout in the annealing-based frame-
work, where S+ is the positive sequence and S− is the negative sequence. To model
the geometry relationship among the blocks in a floorplan, the horizontal and vertical
constraint graphs are derived from a given sequence pair. In the constraint graph, the
vertex represents the block and the edge between two vertices represents the nonover-
lapping constraints between the two corresponding blocks. Using the longest path
algorithm, the block locations can be calculated from the given constraint graphs.

In FLOP-C mode, we consider the following three geometry constraints.

—Preplaced Constraint. This constraint is imposed when some block has to be preplaced
and fixed at some location in the chip region.

—Range Constraint. This constraint specifies that some block has to be within a certain
coordinates range in either the horizontal or vertical direction. If both horizontal and
vertical range constraints are imposed on the same block, then this constraint is the
same as the region constraint.

—Boundary Constraint. This constraint specifies that some block has to be placed along
either one of the four boundaries of the chip region.

The preceding three geometry constraints are the most commonly considered ones in
modern mixed-size placement. Based on the framework proposed in Young et al. [2004],
we can extend our tool to handle other constraints defined in Young et al. [2004].

Because of the slowness of the annealing process, we cannot completely rely on it to
generate a high-quality floorplan from scratch, with all geometry constraints satisfied.
Therefore, rather than starting from a random initial floorplan, which the traditional
approach does, we start the annealing process based on an initial floorplan linit gen-
erated from a high-quality sequence pair, namely, Sinit. As shown in Figure 5, Sinit
is produced by inserting the sequence pair containing only constraint blocks (i.e., Sc)

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 29, Pub. date: June 2014.



29:10 J. Z. Yan et al.

into the sequence pair containing only nonconstraint blocks (i.e., Sc). It is a high-quality
sequence pair in the following two aspects.

—In linit, the constraint blocks are placed close to the locations specified in the geometry
constraints. Note that Sc is generated from a legal floorplan where the locations of
the constraint blocks are set accordingly to satisfy their geometry constraints.

—The initial locations of nonconstraint blocks are generated by the high-quality floor-
planner DeFer with both wirelength and packing awareness. In linit, most noncon-
straint blocks can hold their initial positions.

Compared with previous approaches, the initial floorplan linit gives the annealing pro-
cess a much better solution to start with. This significantly improves both the efficiency
and quality of the annealing-based floorplanner. To obtain Sinit, we propose the follow-
ing two key techniques.

(1) A simple sequence pair generation algorithm produces a sequence pair from a given
legal layout. In Figure 5 this algorithm is applied to generate Sc and Sc.

(2) A location-aware sequence pair insertion algorithm inserts one sequence pair into
another while maintaining the block physical locations as much as possible. In
Figure 5 this algorithm is applied to insert Sc into Sc.

The aforesaid two techniques are described in the following two sections.

5.1. Sequence Pair Generation from Given Layout

Since the sequence pair representation was introduced in Murata et al. [1996], many
works have focused on efficiently generating a legal layout from a given sequence pair.
But, only a few algorithms [Murata et al. 1996; Egeblad 2003; Kodama et al. 2004]
were proposed to solve the reversed problem, that is, how to generate a sequence pair
from a given legal layout. Murata et al. [1996] used the gridding method via drawing
the up-right and down-left step-lines to derive a sequence pair from a layout. However,
this method is not intuitive and quite complicated for implementation. Egeblad [2003]
extended the step-line idea, so that the sequence pair can be derived from an illegal
layout. In Kodama et al. [2004], using a more sophisticated data structure, namely,
Q-sequence [Sakanushi et al. 2003], the authors proposed a linear-time algorithm to
generate the sequence pair from a legal layout. In this section, we propose a very simple
O(n2) algorithm to solve this problem.

To generate a sequence pair S(S+, S−) from a given legal layout, we apply the fol-
lowing consecutive three steps.

(1) The relative orders of every two blocks in S+ and S− are determined based on the
block locations in the layout.

(2) Two directed acyclic graphs G+ and G− are built based on the relative orders
determined in step 1.

(3) S+ and S− are generated by applying topological sort on G+ and G−, respectively.

In step 1, we first determine the location relations between every two blocks in a
layout. Then, based on the location relations, we can determine their relative orders
in S+ and S−. For example, given any legal layout and a pair of blocks a and b, we can
always divide the chip region that is not occupied by b into eight subregions: left (L),
right (R), upper (U ), bottom (B), upper-left (UL), upper-right (UR), bottom-left (BL),
and bottom-right (BR) subregions (see Figure 6). Depending on the location of block a,

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 29, Pub. date: June 2014.



Effective Floorplan-Guided Placement Algorithm for Large-Scale Designs 29:11

Fig. 6. Divided eight sub-regions based on block b.

there are only eight3 possible location relations between a and b, and they can be
determined as follows.

(1) a is on the left of b, iff a overlaps with L subregion.
(2) a is on the right of b, iff a overlaps with R subregion.
(3) a is above b, iff a overlaps with U subregion.
(4) a is below b, iff a overlaps with B subregion.
(5) a is on the left of and above b, iff a only overlaps with UL subregion.
(6) a is on the right of and above b, iff a only overlaps with UR subregion.
(7) a is on the left of and below b, iff a only overlaps with BL subregion.
(8) a is on the right of and below b, iff a only overlaps with BR subregion.

Once the location relation between a and b is available, based on the horizontal and
vertical constraints [Murata et al. 1996] imposed by the sequence pair, the relative
order between a and b in S+ and S− is determined as follows.

(1) If a is on the left of b, a is before b in S+ and before b in S−.
(2) If a is on the right of b, a is after b in S+ and after b in S−.
(3) If a is above b, a is before b in S+ and after b in S−.
(4) If a is below b, a is after b in S+ and before b in S−.
(5) If a is on the left of and above b, a is before b in S+.
(6) If a is on the right of and above b, a is after b in S−.
(7) If a is on the left of and below b, a is before b in S−.
(8) If a is on the right of and below b, a is after b in S+.

The preceding cases (5)–(8) are derived based on the cases (1)–(4). For example, if
both cases (1) and (3) are satisfied, we know that a is definitely before b in S+, which
is case (5). But their relative order in S− is undetermined.

In step 2, two directed acyclic graphs G+ and G− are built to capture the relative
orders determined in step 1. For example, G+ is built up in the following manner. Each
vertex in G+ represents a block. Given any two blocks a and b:

—if a is before b in S+, then a direct edge from a to b is added;
—if a is after b in S+, then a direct edge from b to a is added;
—otherwise, no edge is added between a and b.

In step 3, topological sort is applied on G+ and G−. After sorting, the resulting two
sequences from G+ and G− are S+ and S−, respectively.

Note that, because the set of all sequence pairs is P-admissible [Murata et al. 1996],
there could be multiple sequence pairs mapped to the same layout. Our proposed
algorithm will only generate one sequence pair solution. The whole process of sequence
pair generation takes O(n2) time, as we traverse every pair of blocks in the design. If a
more sophisticated data structure is used, the algorithm complexity can be improved

3Since the given layout is legal, a and b would not overlap with each other.
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Fig. 7. Calculation of insertion range in S+
c .

further. In the algorithm flow shown in Figure 5, we apply the sequence pair generation
technique when generating both Sc and Sc.

5.2. Sequence Pair Insertion with Location Awareness

In this section, we propose a location-aware sequence pair insertion technique that
inserts Sc(S+

c , S−
c ) into Sc(S+

c , S−
c ). The resulting sequence pair after the insertion is

Sinit.
To maintain the original block locations, after insertion the relative orders of blocks

in both Sc and Sc should not be changed. For each constraint block to be inserted, we
define an insertion range that specifies the leftmost and rightmost possible insertion
points in Sc(S+

c , S−
c ). The main idea of the insertion technique is to use block packing to

determine the insertion range for each constraint block. For example, given a constraint
block i, we want to find its rightmost possible insertion point in S−

c . Based on the
horizontal and vertical relations imposed by the sequence pair, any block before i in
S−

c should be either on the left of or below i in the layout. Thus, we traverse the blocks
from the head to the rear in S−

c , and pack them one by one to the bottom-left corner
of the chip region, until we find any block in S−

c , say block j, is neither on the left nor
below i. This means block j has to be after block i in S−

c . Thus, we set the rightmost
possible insertion point for block i as before block j in S−

c .
Before we present the detailed algorithm of calculating the insertion range in S+

c
and S−

c , we first introduce notation. Let Cul, Cur, Cbl, and Cbr denote the upper-left,
upper-right, bottom-left, and bottom-right corners of the chip region, respectively. As-
suming there are m nonconstraint blocks and n constraint blocks, the position index
in a sequence is ordered from the head to the rear. Let S+[i] denote the block at the
ith position in S+; similarly we can define S−[i]. We define (L+

i , R+
i ) as the insertion

range in S+
c for block i, where L+

i and R+
i denote the leftmost and rightmost possible

insertion points, respectively. Similarly, the insertion range in S−
c for block i is defined

as (L−
i , R−

i ).
The pseudocodes of calculating the insertion range in S+

c and S−
c are shown in

Figures 7 and 8, respectively. The insertion range for each constraint block is first
initialized as spanning from the head to the rear of Sc. This initial range is considered
to be loose, which implies that the constraint block can be inserted at any point in the
sequence. As the algorithm moves forward, a tighter range will be determined based on
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Fig. 8. Calculation of insertion range in S−
c .

the packing. Finally, after the insertion range is available, we choose the middle point
in the range as the final insertion position for the corresponding constraint block. The
runtime complexity of the insertion technique is O(mn).

5.3. Geometry Constraint Handling and Annealing Schedule

We adopt a similar annealing-based method as in Young et al. [2004] to handle the three
types of geometry constraints, namely, preplaced, range, and boundary constraints.
Using the initial floorplan linit generated in Figure 5 as a start point, we apply the
annealing process to optimize both the total HPWL and packing among the blocks at
the floorplan step while satisfying the geometry constraints. The following cost function
is used to evaluate a floorplan in annealing:

C = WL + μ × Po + ν × Pc,

where WL is the term of average HPWL over all nets in the block-level netlist, Po is the
penalty term if the blocks are placed outside of the chip region, and Pc is the penalty
term for the unsatisfied geometry constraints. μ and ν are the weight among the three
terms (by default, μ = 2 and ν = 4). Po is calculated as follows:

Po = max(0, (w − W)) + max(0, (h − H)),

where w and h are the width and height of a given floorplan, respectively, and W and
H are the width and height of the chip region, respectively. If one constraint is not
satisfied, we will move the corresponding constraint block to the closest location in
order to satisfy the geometry constraint. This may create some overlap in the resulting
floorplan, therefore we use the total amount of such overlapping area as the penalty
term Pc.

In each annealing iteration, we apply one of the following four moves to change the
current floorplan:

—switch two random blocks in one sequence pair;
—rotate random hard blocks;
—switch two random blocks on the horizontal or vertical critical path;
—rotate random hard bocks on the horizontal or vertical critical path.

As mentioned previously, at the floorplan step the blocks contain both hard and soft
ones, where the soft blocks are clusters of standard cells and small hard macros. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 29, Pub. date: June 2014.



29:14 J. Z. Yan et al.

shaping of such soft blocks is critical for improving the packing quality of a floorplan. A
fast and optimal soft-block shaping algorithm called SDS was proposed in Yan and Chu
[2012]. In SDS, soft blocks are shaped iteratively. During the whole shaping process,
the layout height is monotonically reducing and eventually converges to an optimal
solution. In our annealing process, after the move is made at each annealing iteration,
we apply SDS to shape the soft blocks, however, to stop the shaping process, it is not
necessary to wait until the layout height converges to the optimal solution. We stop the
shaping process as soon as the floorplan layout is within the chip region.

6. WIRELENGTH-DRIVEN SHIFTING

In FLOP, for both default and FLOP-C modes, the wirelength-driven shifting process
is formulated as a min-cost flow problem, which is the same as in Tang et al. [2006].
The authors in Tang et al. [2006] show that such a min-cost flow problem can be easily
extended to consider various geometry constraints. We use the contour structure [Guo
et al. 1999] to derive the horizontal and vertical nonoverlapping constraints among the
blocks.

The wirelength-driven shifting is an essential step in FLOP. In terms of the HPWL
minimization, it can find the optimal position for each block and provides a globally
optimized layout for the analytical placer. Since the shifting step optimizes the HPWL
at the floorplan level, it only ignores the local nets among the small objects within
each soft block. The smaller the soft block, the fewer nets it ignores, and the better
the HPWL we will get at last. However, if the soft blocks become too small, numerous
nets will be considered in the shifting. This would slow down the whole algorithm.
Because of this, in the partition stopping criteria we set an area bound α, so that the
soft blocks would not become too small. On the other hand, we only need the shifting
step to generate a globally good layout. Regarding the local nets within the soft blocks,
the following analytical placer can handle them very efficiently and effectively.

7. INCREMENTAL PLACEMENT

As mentioned before, the output of the wirelength-driven shifting step is a layout
with legal, nonoverlapping locations for the large macros. These large macros are then
fixed in place to prevent further movement during any subsequent steps. But, there are
multiple “soft blocks” in the layout, each containing numerous “small objects” (i.e., small
macros and standard cells). The shifting step assigns these small objects to the center of
the corresponding soft block. The incremental placement step uses the initial locations
of the small objects as obtained by in previous step and spreads the small objects over
the whole chip region to obtain a final overlap-free placement among all objects.

In FLOP, we adopt a similar analytical placement algorithm as FastPlace
[Viswanathan et al. 2007]. The detailed algorithm flow for this step is presented in
Algorithm 1.

8. MMS AND MMS-C BENCHMARKS

The only publicly available benchmarks for mixed-size designs are ISPD02 and IC-
CAD04 IBM-MS [Adya and Markov 2005; Adya et al. 2004] that are derived from
ISPD98 placement benchmarks. As pointed out in Nam et al. [2005], these circuits
can no longer be representative of modern VLSI physical design. To continue driving
the progress of physical design for the academic community, two suites of placement
benchmarks [Nam et al. 2005; Nam 2006] have been recently released. They are di-
rectly derived from modern industrial ASICs design. However, in the original circuits
most macros have been fixed due to the difficulty of handling movable macros for the ex-
isting placers. The authors in Chen et al. [2007, 2008] freed all fixed objects in ISPD06
benchmarks and created new mixed-size placement circuits. But seven out of eight
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ALGORITHM 1: Analytical Incremental Placement
1: Phase 0: Physical and Netlist based clustering
2: initial objects ← number of small objects
3: set locations of small objects to center of their soft blocks
4: while number of clusters > target number of clusters do
5: cluster netlist using Best-choice clustering [Nam et al. 2006]
6: use physical locations of small objects in clustering score
7: set cluster location ← center of gravity of the objects within cluster
8: end while
9: end

10: Phase 1: Coarse global placement
11: generate “fixing forces” for clusters based on their initial locations
12: solve initial quadratic program (QP)
13: repeat
14: perform Cell Shifting [Viswanathan et al. 2007] on coarse-grain clusters
15: add spreading forces to QP formulation
16: solve the quadratic program
17: until placement is roughly even
18: repeat
19: perform Iterative Local Refinement [Viswanathan et al. 2007] on coarse-grain clusters
20: until placement is quite even
21: uncluster movable macro-blocks
22: legalize and fix movable macro-blocks
23: end
24: Phase 2: Refinement of fine-grain clusters
25: while number of clusters < 0.5*number of small objects do
26: uncluster netlist
27: end while
28: perform Iterative Local Refinement on fine-grain clusters
29: end
30: Phase 3: Refinement of flat netlist
31: while number of clusters < number of small objects do
32: uncluster netlist
33: end while
34: perform Iterative Local Refinement on flat netlist
35: end
36: Phase 4: Legalization and detailed placement
37: Legalize the standard cells in the presence of fixed macros
38: Perform detailed placement [Pan et al. 2005] to further improve wirelength
39: end

circuits do not have any fixed I/O objects, which is not realistic in the real designs.
In order to recover the complexities of modern mixed-size designs, we modify the
original ISPD05/06 benchmarks and derive the Modern Mixed-Size (MMS) placement
benchmarks (see Table I). Essentially, we make the following changes on the original
circuits.

(i) All macros are freed from the original positions. In the GSRC bookshelf format
that the original benchmarks use, both fixed macros and fixed I/O objects are treated
as fixed objects; there is no extra specification to differentiate them. So we have to
distinguish them only based on the size differences. Basically, if the area of one fixed
object is more than λ× the average area of the whole circuit, we will recognize it as
a macro. Otherwise, it is a fixed I/O object. Because for each circuit the average area
is different, we need to use a different λ (see the last column in Table I) to decide a
reasonable number and suitable threshold size for the macros. There is one exception:
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Table I. Statistics of the Modern Mixed-Size (MMS) Placement Benchmarks

#.Movable #.Standard #.Fixed #.Net Target
Circuit #.Objects Objects Cells #.Macros I/O Objects #.Net Pins Density% λ

adaptec1 211447 210967 210904 63 480 221142 944053 100 70
adaptec2 255023 254584 254457 127 439 266009 1069482 100 160
adaptec3 451650 450985 450927 58 665 466758 1875039 100 650
adaptec4 496054 494785 494716 69 1260 515951 1912420 100 460
bigblue1 278164 277636 277604 32 528 284479 1144691 100 120
bigblue2 557866 535741 534782 959 22125 577235 2122282 100 30
bigblue3 1096812 1095583 1093034 2549 1229 1123170 3833218 100 470
bigblue4 2177353 2169382 2169183 199 7970 2229886 8900078 100 550
adaptec5 843128 842558 842482 76 570 867798 3493147 50 440
newblue1 330474 330137 330073 64 337 338901 1244342 80 2000
newblue2 441516 440264 436516 3748 1252 465219 1773855 90 190
newblue3 494011 482884 482833 51 11127 552199 1929892 80 170
newblue4 646139 642798 642717 81 3341 637051 2499178 50 400
newblue5 1233058 1228268 1228177 91 4790 1284251 4957843 50 570
newblue6 1255039 1248224 1248150 74 6815 1288443 5307594 80 650
newblue7 2507954 2481533 2481372 161 26421 2636820 10104920 80 650

in both circuits bigblue2 and bigblue4, there is one macro that does not connect with
any other objects. If this macro is freed, it may cause some trouble for quadratic-based
analytical placers, so we keep it fixed. Since this macro is also very small compared
with other macros, it would not affect the circuit property.

(ii) The sizes of all I/O objects are set to zero. In MMS benchmarks there are two types
of I/Os: perimeter I/Os around the chip boundary and area-array I/Os spreading across
the chip region. Generally, the area-array I/Os are allowed to be overlapped with other
movable objects in the design. But existing placers treat all fixed I/Os as fixed objects,
so that their algorithms internally do not allow such overlaps during the legalization.
Since the macros have already been freed in MMS benchmarks, the placers should
ignore the overlaps between fixed I/O objects and movable objects, and concentrate on
the legalization of movable objects. As we cannot change the code of other placers, one
simple way to enforce this is to set the sizes of all I/O objects to zero.

The target density constraints are the same as the original circuits. The same scoring
function4 is used to calculate the scaled HPWL. However, since the macros are movable
in the MMS circuits, we need to modify the script used in Nam [2006] to get the correct
“scaled overflow factor”. The modification is that any movable macro that has a width
or height greater than the bin dimension used for scaled overflow calculation is now
treated as a fixed macro during scaled overflow calculation. Note that this was the
method employed by the original script on newblue1, which is the only design that
has large movable macros in the original circuits. It is required to treat large movable
macros as fixed, otherwise we will get an incorrect picture of the placement density.

We have discussed the MMS benchmarks setup with the authors in Nam et al.
[2005] and Nam [2006]. To retain the original circuit properties as much as possible,
the preceding changes are the best we can do without accessing the original industrial
data of the circuits. The MMS benchmarks are publicly available at Yan et al. [2009b].

In MMS benchmarks, all macros are movable and there is no geometry constraint
in any circuit. In order to test FLOP in FLOP-C mode, we add three types of geometry
constraints, namely, preplaced, range, and boundary constraints, into existing MMS

4scaled HPWL = HPWL * (1 + scaled overflow factor).
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Table II. List of Geometry Constraints in MMS-C Benchmarks

Geometry Constraints #. non-
#.Preplaced #.Range #.Boundary Total #. constraint

Circuit Constraints Constraints Constraints Constraints macros

adaptec1 4 - - 4 59
adaptec2 2 1 - 3 134
adaptec3 6 - - 6 52
adaptec4 1 1 1 3 66
bigblue1 2 5 3 10 22
bigblue2 4 - - 4 955
bigblue3 2 6 - 8 2541
bigblue4 4 - - 4 195
adaptec5 2 - - 2 74
newblue1 1 2 - 3 61
newblue2 - - 8 8 3740
newblue3 - - 18 18 33
newblue4 2 4 4 10 71
newblue5 4 - - 4 87
newblue6 - 8 - 8 66
newblue7 - 8 - 8 153

benchmarks. This new set of benchmarks with geometry constraints is called MMS-C
benchmarks. Basically, in each circuit we add the constraints on the larger macros,
which is similar to what the designers intend to do in real designs. Still, we keep
the nonconstraint macros movable. The detailed constraints information and number
of nonconstraint macros in MMS-C benchmarks is shown in Table II. MMS-C bench-
marks is the first set of large-scale mixed-size placement benchmarks with various
geometry constraints. Compared with both ISPD05/06 and MMS benchmarks, MMS-C
benchmarks is much harder for placers to handle, not only because the macros in the
circuits are movable, but also because some of them have various geometry constraints.

9. EXPERIMENTAL RESULTS

All experiments were performed on a Linux machine with AMD Opteron 2.6GHz CPU
and 8GB memory. The seed of hMetis2.0 is set to 5.

9.1. Experiments on Benchmarks without Geometry Constraints

This section presents the experimental results of FLOP in default mode on the circuits
without any geometry constraint. We set up three sets of experiments.

(i) To test the capability of handling the large-scale mixed-size placement, we com-
pare FLOP with five state-of-the-art mixed-size placers APlace2, NTUplace3, mPL6,
Capo10.5, and Kraftwerk on MMS benchmarks. Before the experiments, we have con-
tacted the authors of each placer mentioned and they provided us their best-available
binary for MMS circuits. In Table III, for the ISPD06 circuits (adaptec5 – newblue7)
the reported HPWL is the scaled HPWL. APlace2 crashed on every circuit, so we do
not report its results. For the default mode, FLOP generates 10%, 4%, 47%, and 29%
better HPWL compared with NTUplace3, mPL6, Capo10.5, and Kraftwerk, respec-
tively. Regarding the runtime, FLOP is 11×, 5×, and 16% faster than Capo10.5, mPL6,
and NTUplace3. Also FLOP achieves a legal solution on all circuits. We also compare
FLOP with the most recent mixed-size placer MRT [Hsu and Chang 2010]. We did
not run the binary of MRT on the same local machine; instead, we directly cited their
experimental results on MMS benchmarks from Hsu and Chang [2010]. On average,
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Table IV. Comparison among Various Versions of FLOP

FLOP-NR-NC FLOP-NI-NC FLOP-NC FLOP
Circuit HPWL Time(s) HPWL Time(s) HPWL Time(s) HPWL Time(s)

adaptec1 77.18 568 85.27 741 76.83 634 73.09 470
adaptec2 87.17 976 86.72 1153 84.14 974 82.54 708
adaptec3 182.21 1635 173.07 2004 175.99 1767 170.51 1172
adaptec4 166.55 1791 175.67 2148 161.68 1886 166.18 1385
bigblue1 95.45 1179 98.91 1385 94.92 1218 93.53 1492
bigblue2 150.66 1713 162.40 2341 153.02 1828 146.41 1956
bigblue3 372.79 5973 394.75 5377 346.24 4283 343.85 2869
bigblue4 807.53 10450 839.53 12773 777.84 10516 768.54 11562

adaptec5* 381.83 4621 385.07 3522 357.83 2933 333.72 2849
newblue1* 73.36 1214 71.69 1156 67.97 889 66.01 831
newblue2* 231.94 2153 190.50 1957 187.40 1541 185.01 1572
newblue3* 344.71 1427 355.07 1998 345.99 1518 343.34 2548
newblue4* 256.91 1852 268.46 2614 256.54 1786 237.42 2272
newblue5* 516.71 5147 536.38 6669 510.83 5287 452.04 5728
newblue6* 502.24 6211 506.99 7524 493.64 6348 492.52 4966
newblue7* 1113.07 10168 1101.07 13053 1078.18 11298 1057.15 12567

Norm 1.07 1.17 1.09 1.32 1.02 1.08 1 1

(* comparison of scaled HPWL), HPWL(×10e6).

under the default mode FLOP generates 2% worse wirelength than MRT. Note that
MRT was developed after the preliminary version of FLOP was published in Yan et al.
[2009a]. Among the placers listed in Table III, only MRT and FLOP can optimize the
macro-orientations.

(ii) In order to show the individual contribution of the main techniques in FLOP,
we turn on/off three features in FLOP, namely, clustering process, macro-rotation, and
incremental placement. The experimental results are presented in Table IV. FLOP-
NC turns off the stand-alone clustering process in the block formation step. Based
on FLOP-NC, FLOP-NR-NC also restricts the rotation on all macros, and FLOP-NI-
NC also discards the initial positions of small objects in the incremental placement
step. Compared with FLOP-NR-NC, FLOP-NC generates 5% better HPWL by rotating
the macros. By doing nonincremental placement, FLOP-NI-NC produces 7% worse
HPWL and is 24% slower than FLOP. By employing SafeChoice clustering in the block
formation step, on average FLOP generates 2% better HPWL with 8% faster runtime
than FLOP-NC.

(iii) We compare FLOP with previous mixed-size placement algorithms that use the
two-stage approach. In this experiment, three leading macroplacers CG, MPT, and XDP
are used to place the macros and optimize their orientations, followed by NTUplace3
to place the remaining standard cells. Due to the IP issues, their binaries are not
available, but the authors sent us the benchmarks used in Chen et al. [2008]. So in
Table V the other placers’ results are cited from Chen et al. [2008]. These benchmarks
allow the rotation of macros and do not consider the target density. As shown in Ta-
ble V, FLOP achieves 1%, 12%, and 7% better HPWL compared with CG+NTUplace3,
MPT+NTUplace3, and XDP+NTUplace3, respectively. In the table, as a reference we
also list the stand-alone NTUplace3’s results.

9.2. Experiments on Benchmarks with Geometry Constraints

This section presents the experimental results of FLOP in the FLOP-C mode on MMS-C
benchmarks. In the current implementation, none of the state-of-the-art mixed-size
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Table V. Comparison with Macroplacers on Modified ISPD06 Benchmarks [Chen et al. 2008]
with Default Chip Utilization

CG MPT XDP
[Chen et al. 2008] [Chen et al. 2007] [Cong and Xie 2006]

+NTUplace3 +NTUplace3 +NTUplace3 NTUplace3 FLOP
Circuit HPWL(×10e7) HPWL(×10e7) HPWL(×10e7) HPWL(×10e7) HPWL(×10e7)

adaptec5 29.46 31.01 31.08 29.03 27.36
newblue1 6.23 6.50 6.32 6.06 7.32
newblue2 18.89 22.60 18.90 28.09 23.79
newblue3 30.18 37.57 37.64 53.48 33.61
newblue4 21.38 23.77 22.01 22.83 19.72
newblue5 42.92 43.71 45.41 39.91 36.66
newblue6 44.93 50.50 46.43 44.24 41.87
newblue7 99.03 108.06 102.21 100.06 86.96

Norm 1.01 1.12 1.07 1.14 1

Table VI. Comparison with Mixed-Size Placers on MMS-C Benchmarks with Geometry Constraints

NTUplace3 mPL6 Capo10.5
[Chen et al. 2006] [Chan et al. 2006] [Roy et al. 2006] FLOP-C

Circuit HPWL (×10e6) Time (s) HPWL (×10e6) Time (s) HPWL (×10e6) Time (s) HPWL (×10e6) Time (s)

adaptec1† 98.36 804 99.28 2410 100.13 4988 98.11 2267
adaptec2 × – × – × – 159.38 1021
adaptec3† 187.90 1268 illegal – 252.64 15322 207.56 2093
adaptec4 × – × – × – 195.14 1572
bigblue1 × – × – × – 103.37 1209
bigblue2† 180.33 1760 illegal – illegal – 167.80 4360
bigblue3 × – × – × – 540.14 8101
bigblue4† 936.34 13348 illegal – 912.72 102460 901.64 16519
adaptec5† illegal – illegal – 385.86 34277 355.05 4170
newblue1 × – × – × – 80.75 1862
newblue2 × – × – × – 342.25 5887
newblue3 × – × – × – 552.90 3482
newblue4 × – × – × – 250.33 2501
newblue5† illegal – illegal – 550.69 66594 546.80 7454
newblue6 × – × – × – 531.02 13177
newblue7 × – × – × – 2178.60 9075

Norm 1.01 0.54 1.01 1.06 1.07 6.58 1 1

† circuit has only preplaced constraints; × circuit has constraints that cannot be handled.

placement algorithms supports the geometry constraints. But, they can handle the
preplaced constraint indirectly by simply treating those constraint macros as place-
ment blockages. So we can only compare FLOP-C with other mixed-size placers on the
six circuits that only have preplaced constraints in MMS-C benchmarks.

The experimental results on MMS-C benchmarks are shown in Table VI. We compare
FLOP-C with NTUplace3, mPL6, and Capo10.5. It is clear that FLOP-C is able to
successfully satisfy all geometry constraints on all 16 circuits. Even for the six circuits
with only preplaced constraints, it is still very difficult for NTUplace3, mPL6, and
Capo10.5 to produce a legal solution. For example, mPL6 failed to generate a legal
solution on five circuits. On average, FLOP-C generates 1%, 1%, and 7% of better
HPWL than NTUplace3, mPL6, and Capo10.5, respectively. Regarding the runtime,
FLOP-C is 7× and 6% faster than Capo10.5 and mPL6, respectively. Figure 9(a)–9(p)
show the layouts with only constraint macros that are generated by FLOP-C for each
circuit.
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Fig. 9. Layouts containing only constraint macros generated by FLOP-C in MMS-C benchmarks. (Preplaced,
range, and boundary constraint macros are marked with F, R, and B, respectively. Green dot denotes I/O
object and red line denotes chip boundary.)

Note that in MMS-C benchmarks the nonconstraint macros are all movable. The
problem of simultaneously handling both movable and constraint macros is inherently
much harder than either the one of handling all preplaced macros (e.g., in ISPD05/06
benchmarks) or the one of handling all movable macros (e.g., in MMC benchmarks).
For example, for the design with prefixed constraint in MMS-C benchmarks, the placer
needs to place the nonconstraint large movable macros into the remaining whitespace
that is not occupied by the preplaced macros, which is not trivial. This is the main
reason why some placers can find a legal placement in ISPD05/06 or MMS benchmarks,
but not in MMS-C benchmarks.
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Table VII. Circuit Data at Floorplan Level after Block Formation Step
in FLOP

Circuit #.Hard Block #.Soft Block #.Net #.Net Pins

adaptec1 63 632 19997 61638
adaptec2 127 324 19611 60572
adaptec3 58 372 21956 65285
adaptec4 69 681 27283 77157
bigblue1 32 987 32261 110710
bigblue2 959 612 35650 120656
bigblue3 2549 348 41020 140266
bigblue4 199 683 75676 282380
adaptec5 76 485 30213 89283
newblue1 64 685 19771 57853
newblue2 3748 429 37200 144564
newblue3 51 101 33291 115417
newblue4 81 823 39645 118958
newblue5 91 713 47208 188379
newblue6 74 1078 59705 211887
newblue7 161 578 96103 387367

Table VIII. Comparison of HPWL at Floorplan Level before and after
Wirelength-Driven Shifting Step in FLOP

Circuit Before shifting After shifting Relative Change

adaptec1 85488288 83179008 −2.7%
adaptec2 93557648 88376584 −5.5%
adaptec3 213671392 202221584 −5.4%
adaptec4 186671440 180954848 −3.1%
bigblue1 114924416 113103560 −1.6%
bigblue2 222146784 209748384 −5.6%
bigblue3 361922528 350726656 −3.1%
bigblue4 918914752 891681408 −3.0%
adaptec5 423175552 410239008 −3.1%
newblue1 71667856 69801384 −2.6%
newblue2 266253680 244399568 −8.2%
newblue3 616148800 573167808 −7.0%
newblue4 295049824 289260544 −2.0%
newblue5 576941952 560006976 −3.0%
newblue6 644556608 599088960 −7.0%
newblue7 1441669888 1353312128 −6.1%

9.3. Data Analysis of FLOP

In FLOP, the circuit size will be reduced for floorplanning at the block formation step.
Table VII shows the detailed circuit data information at the floorplan level for FLOP.
Comparing Table I with Table VII, one can see that the circuit size has been cut down
significantly from millions to thousands of objects.

In order to show the effectiveness of the wirelength-driven shifting step, in Table VIII
we compare the floorplan-level HPWL before and after applying the shifting process.
The data shows that wirelength-driven shifting significantly reduces the wirelength.
For example, for newblue2, the HPWL has been improved 8.2% after the shifting
process.
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Table IX. Runtime Breakdown of FLOP in Two Operation Modes

Mode Block Formation Floorplanning Wirelength-driven Shifting Incremental Placement

Default Mode 42.44% 8.97% 0.50% 48.09%
FLOP-C Mode 39.06% 27.79% 0.67% 32.48%

Table IX shows the runtime breakdown of FLOP in the default and FLOP-C modes.
For both operation modes, FLOP’s runtime is dominated by two steps, namely, block
formation and incremental placement, which together contribute 70% to 90% of the
total runtime, while the wirelength-driven shifting step only takes a very small por-
tion (i.e., less than 1%). Because we add the annealing process into the floorplanning
step in the FLOP-C mode, the portion of the floorplanning step’s runtime increases
from 8.97% to 27.79%. Even so, the bottleneck of the total runtime in the FLOP-C
mode is not the annealing-based floorplanner. This demonstrates the efficiency of the
enhanced annealing process we propose. The runtime of FLOP can be further improved
by refining the clustering strategy in the block formation step.

10. CONCLUSION AND FUTURE WORK

This article presents a new algorithm flow for modern large-scale mixed-size placement,
both with and without geometry constraints. To show the effectiveness of such flow,
we implemented a high-quality and efficient mixed-size placer FLOP, and constructed
two new sets of benchmarks, MMS and MMS-C. Compared with most state-of-the-art
mixed-size placers and leading macroplacers, FLOP achieves the best HPWL and easily
produces the legal layout for every circuit with all geometry constraints satisfied.

Due to the ever-increasing complexity of ICs, sometimes the real design could be
much more complex than the one addressed in this work. For example, hundreds or
even thousands of movable macros may be subject to multiple constraints. In this
case, the annealing-based framework may no longer be sufficient. So one future work
will still be based on the proposed new floorplan-guided placement flow, but focusing on
developing a more scalable and robust nonstochastic floorplanning algorithm to handle
a very great number of geometry constraints. Moreover, as the routability becomes more
and more critical as the design goes to 20nm and below, another future work is to model
the routing cost as early as the floorplanning step in the new flow.
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