
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010 367

DeFer: Deferred Decision Making Enabled
Fixed-Outline Floorplanning Algorithm

Jackey Z. Yan and Chris Chu

Abstract—In this paper, we present DeFer—a fast, high-quality,
scalable, and nonstochastic fixed-outline floorplanning algorithm.
DeFer generates a nonslicing floorplan by compacting a slicing
floorplan. To find a good slicing floorplan, instead of searching
through numerous slicing trees by simulated annealing as in
traditional approaches, DeFer considers only one single slicing
tree. However, we generalize the notion of slicing tree based
on the principle of deferred decision making (DDM). When
two subfloorplans are combined at each node of the generalized
slicing tree, DeFer does not specify their orientations, the left–
right/top–bottom order between them, and the slice line direction.
DeFer even does not specify the slicing tree structure for small
subfloorplan. In other words, we are deferring the decisions on
these factors, which are specified arbitrarily at an early step in
traditional approaches. Because of DDM, one slicing tree actually
corresponds to a large number of slicing floorplan solutions, all of
which are efficiently maintained in one single shape curve. With
the final shape curve, it is straightforward to choose a good
floorplan fitting into the fixed outline. Several techniques are
also proposed to further optimize the wirelength. For both fixed-
outline and classical floorplanning problems, experimental results
show that DeFer achieves the best success rate, the best wirelength,
the best runtime, and the best area on average compared with
all other state-of-the-art floorplanners.

Index Terms—Deferred decision making, fixed outline, floor-
planning, layout optimization.

I. Introduction

FLOORPLANNING has become a very crucial step in
modern very large scale integration (VLSI) designs. As

the start of physical design flow, floorplanning not only deter-
mines the top-level spatial structure of a chip, but also initially
optimizes the interconnections. Thus, a good floorplan solution
among circuit modules definitely has a positive impact on the
placement, routing, and even manufacturing. In the nanometer
scale era, the ever-increasing complexity of integrated circuits
(ICs) promotes the prevalence of hierarchical design. However,
as pointed out by Kahng [1], classical outline-free floorplan-
ning [2] cannot satisfy such requirements of modern designs.
In contrast with this, fixed-outline floorplanning enabling the

Manuscript received January 31, 2009; revised May 31, 2009 and October
7, 2009. Current version published February 24, 2010. This work was partially
supported by International Business Machines, Faculty Award, and National
Science Foundation under Grant CCF-0540998. This paper was recommended
by Associate Editor L. Scheffer.

The authors are with the Department of Electrical and Computer Engi-
neering, Iowa State University, Ames, IA 50010 USA (e-mail: zijunyan@
iastate.edu; cnchu@iastate.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2041850

hierarchical framework is preferred by modern application-
specific integrated circuit designs. Nevertheless, fixed-outline
floorplanning has been shown to be much more difficult, com-
pared with classical outline-free floorplanning, even without
considering wirelength optimization [3].

A. Previous Work

Simulated annealing has been the most popular method of
exploring good solutions on the fixed-outline floorplanning
problem. Using sequence pair representation, Adya et al. [4]
modified the objective function, and proposed a few new
moves based on slack computation to guide a better local
search. To improve the floorplanning scalability and initially
optimize the interconnections, in [5] the original circuit is
first cut into multiple partitions by a min-cut partitioner.
Simultaneously, the chip region is split into small bins. After
that, the annealing-based floorplanner [4] performs fixed-
outline floorplanning on each partition within its associated
bin. In [6], Chen et al. adopted the B*-tree [7] representation
to describe the geometric relationships among modules, and
performed a novel three-stage cooling schedule to speed up
the annealing process. In [8] a multilevel partitioning step
is performed beforehand on the original circuit. Different
from [5], the annealing-based fixed-outline floorplanner is
performed iteratively at each level of the multilevel framework.
By enumerating the positions in sequence pairs, Chen et al. [9]
applied insertion after remove (IAR) to accelerate the simu-
lated annealing. As a result, both the runtime and success rate1

are enhanced dramatically. Recently, using Ordered Quadtree
representation, He et al. [10] adopted quadratic equations to
solve the fixed-outline floorplanning problem.

All of the above techniques are based on simulated anneal-
ing. Generally, the authors tried various approaches to improve
the algorithm efficiency. But one common drawback is that
these techniques do not have a good scalability. They become
quite slow when the size of circuits grows large, e.g., 100
modules. Additionally, the annealing-based techniques always
have a hard time handling circuits with soft modules, because
they need to search a large solution space, which can be time-
consuming.

Some researchers have adopted nonstochastic methods.
In [11], a slicing tree is first built up by recursively partitioning
the original circuit until each leaf node contains at most

1Success rate is defined as the ratio of the number of runs resulting a layout
within fixed die, to the total number of runs.

0278-0070/$26.00 c© 2010 IEEE

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

368 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

two modules. Then the authors rely on various heuristics to
determine the geometry relationships among the modules and
output a final floorplan solution. Sassone et al. [12] proposed
an algorithm containing two phases. First the modules are
grouped together only based on connectivity. Second the mod-
ules are packed physically by a row-oriented block packing
(ROB) technique which organizes the modules by rows based
on their dimensions. But this technique cannot handle soft
modules. In [13], Zhan et al. applied a quadratic analytical
approach similar to those used for placement problems. To
generate a nonoverlapping floorplan, the quadratic approach
relies on a legalization process. However, this legalization
is very difficult for circuits with big hard macros. Cong
et al. [14] presented an area-driven look-ahead floorplanner
in a hierarchical framework. Two main techniques are used
in their algorithm: the ROB and zero-dead space (ZDS). To
handle both hard and soft modules, ROB is extended from
[12]. ZDS is used to pack soft modules. But, ROB may
generate a layout with large whitespace when the module sizes
in a subfloorplan are quite different from each other, e.g., a
design with big hard macros.

B. Our Contributions

This paper presents a fast, high-quality, scalable, and non-
stochastic fixed-outline floorplanner called DeFer.2 It can
efficiently handle both hard and soft modules.

DeFer generates a final nonslicing floorplan by compacting
a slicing floorplan. It has been proved in [16] that any
nonslicing floorplan can be generated by compacting a slicing
floorplan. In traditional annealing-based approaches, obtaining
a good slicing floorplan usually takes a long time, because the
algorithms have to search many slicing trees. By comparison,
DeFer considers only one single slicing tree generated by
recursive partitioning. However, to guarantee that a large
solution space is explored, we generalize the notion of slicing
tree [2] based on the principle of deferred decision making
(DDM). When two subfloorplans are combined at each node
of the generalized slicing tree, DeFer does not specify their
orientations, the left–right/top–bottom order between them,
and the slice line direction. For small subfloorplan, DeFer
even does not specify its slicing tree structure, i.e., the skeletal
structure (not including tree nodes) in the slicing tree. In other
words, we are deferring the decisions on these four factors
correspondingly: 1) subfloorplan orientation; 2) subfloorplan
order; 3) slice line direction; and 4) slicing tree structure.
Because of DDM, one slicing tree actually represents a large
number of slicing floorplan solutions. In DeFer, all of these so-
lutions are efficiently maintained in a single shape curve [17].
With the final shape curve, it is straightforward to choose a
good slicing floorplan fitting into the fixed outline. To realize
the DDM idea, we propose the following techniques.

• Generalized Slicing Tree: To defer the decisions on these
three factors: 1) subfloorplan orientation; 2) subfloorplan
order; and 3) slice line direction, we generalize the
original slicing tree. In the generalized slicing tree, one
tree node can represent both orientations of its two child

2A preliminary version of DeFer was presented in [15].

nodes, both orders between them, and both horizontal and
vertical slice lines. Note that the work in [17] and [18]
only generalized the orientation for individual module
and the slice line direction, respectively. In order to carry
out the combination of generalized slicing trees, we also
extend original shape curve operation to curve Flipping
and curve Merging.3

• Enumerative Packing: To defer the decision on the slicing
tree structure within small subfloorplan, we develop the
enumerative packing (EP) technique. It enumerates all
possible slicing structures, and builds up one shape curve
capturing all slicing layouts among the modules of small
subfloorplan. The naive enumeration is very expensive
in terms of CPU time and memory usage. But using the
technique of dynamic programming, EP can be efficiently
applied to up to 10 modules.

• Block Swapping and Mirroring: To make the decision
on the subfloorplan order (left–right/top–bottom), we
adopt three techniques: Rough Swapping, Detailed Swap-
ping [11], and Mirroring. The motivation is to greedily
optimize the wirelength. As far as we know, we are
the first proposing the Rough Swapping technique and
showing that without Rough Swapping Detailed Swapping
may degrade the wirelength.

Additionally, we adopt the following three methods to
enhance the robustness and quality of DeFer.

• Terminal Propagation (TP): DeFer accounts for fixed pins
by using TP [19] during partitioning process.

• Whitespace-Aware Pruning (WAP): A pruning method is
proposed to systematically control the number of points
on each shape curve.

• High-Level EP: Based on EP, we propose the high-level
EP technique to further improve the packing quality.

By switching the strategy of selecting the points on the final
shape curve, we extend DeFer to handle other floorplanning
problems, e.g., classical outline-free floorplanning,

For fixed-outline floorplanning, experimental results on Gi-
gaScale Systems Research Center (GSRC) Hard-Block, GSRC
Soft-Block, hybrid blocks (HB) (containing both hard and soft
modules), and HB+ (a hard version of HB) benchmarks show
that DeFer achieves the best success rate, the best wirelength,
and the best runtime on average, compared with all other state-
of-the-art floorplanners. The runtime difference between small
and large circuits shows DeFer’s good scalability. For classical
outline-free floorplanning, using a linear combination of area
and wirelength as the objective, DeFer achieves 12% better
cost value than Parquet 4.5 with 76× faster runtime.

The rest of this paper is organized as follows. Section II
describes the algorithm flow. Section III introduces the Gen-
eralized Slicing Tree. Section IV describes the Whitespace-
Aware Pruning. Section V describes the Enumerative Pack-
ing technique. Section VI illustrates the Block Swapping
and Mirroring. Section VII introduces the extension of
DeFer on other floorplanning problems. Section VIII ad-
dresses the implementation details. Experimental results are

3In this paper, all slicing trees and shape curve operation stand for the
generalized version by default.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

YAN AND CHU: DEFER: DEFERRED DECISION MAKING ENABLED FIXED-OUTLINE FLOORPLANNING ALGORITHM 369

Fig. 1. Pseudocode on algorithm flow of DeFer.

Fig. 2. High-level slicing tree.

presented in Section IX. Finally, this paper ends with a
conclusion.

II. Algorithm Flow of DeFer

Essentially, DeFer has six steps as shown in Fig. 1. The
details of each step are as follows.

1) Partitioning Step: As the number of modules in one de-
sign becomes large, exploring all slicing layout solutions
among them is very expensive. Thus, the purpose of this
step is to divide the original circuit into several small
subcircuits, and initially minimize the interconnections
among them. hMetis [20], the state-of-the-art hypergraph
partitioner, is called to perform a recursive bisectioning
on the circuit, until every partition contains less than or
equal to maxN modules (maxN = 10 by default). TP
is used in this step. Theoretically TP can be applied at
any cut. But as using TP degrades the packing quality
(see Section III-C), we apply it only at the first cut
on the original circuit. During partitioning, a high-level
slicing tree structure is built up where each leaf node
is a subcircuit, and each tree node is a subpartition
(see Fig. 2). Due to the generalized notion of slicing
tree, the whole high-level slicing tree not only sets
up a hierarchical framework, but also represents many
possible packing solutions among the subcircuits.

2) Combining Step: In this step, we first defer the decision
on the slicing tree structure of each subcircuit, by ap-
plying the Enumerative Packing technique to explore all
slicing packing layouts within the subcircuit. After that,
an associated shape curve representing these possible
layouts for each subcircuit is produced. Then, based on

Fig. 3. Final shape curve with fixed outline and candidate points.

the hierarchical framework in Step 1, DeFer traverses
from bottom-up constructing a shape curve for every
tree node. The final shape curve at the root will main-
tain all explored slicing floorplan layouts of the whole
circuit.

3) Back-Tracing Step: Once the final shape curve is avail-
able, it is fairly straightforward to select the points fitting
into the fixed outline (see Fig. 3). For each of the
points we select, a back-tracing4 process is applied. As
every point in the parent curve is generated by adding
two points from two child curves, basically the back-
tracing is to trace the selected point on each shape curve
from top-down. During this process, DeFer makes the
decisions on every subfloorplan orientation, slice line
direction, and slicing tree structure of each subcircuit.

4) Swapping Step: The fourth step is to make decisions on
the subfloorplan order (left–right/top–bottom), by greed-
ily swapping every two child subfloorplans. Basically we
perform three wirelength refinement processes through
the hierarchical framework. First, Rough Swapping is
applied from top-down, followed by Detailed Swapping.
Finally, we apply Mirroring.

5) Compacting Step: After fixing the slicing floorplan, this
step is to compact all modules to the center of the fixed
outline. The compaction puts modules closer to each
other, such that the wirelength is further reduced. If the
slicing floorplan is outside of the fixed outline, DeFer
compacts them to the lower-left corner rather than the
center, so that potentially there is a higher chance to find
a valid layout within the fixed outline.

6) Shifting Step: In Step 5, some modules may be over-
compacted. So we greedily shift such modules to-
ward the optimal positions [21] regarding wirelength
minimization. At the end, DeFer outputs the final
floorplan.

From the algorithm flow, we can see that by initially
deferring the decisions in Steps 1 and 2, DeFer explores a
large collection of slicing layouts, all of which are efficiently
maintained in one final shape curve at the top; by finally mak-
ing the decisions in Steps 3 and 4, DeFer chooses good slicing
layouts fitting into the fixed outline. The main techniques are
discussed in detail in Sections III–VII.

4Back-tracing is different from back-tracking [5] which traverses from
bottom-up to determine legal solutions.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

370 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

Fig. 4. Generalized slicing tree and sixteen different layouts.

III. Generalized Slicing Tree

In this section, we introduce the generalized slicing tree,
which enables the deferred decisions on these three factors:
1) subfloorplan orientation; 2) subfloorplan order; and 3) slice
line direction.

A. Notion of Generalized Slicing Tree

In an ordinary slicing tree, the parent tree node of two child
subfloorplans A and B is labeled “H”/“V” to specify that A

and B are separated by a horizontal/vertical slice line, and the
order between the two child nodes in the slicing tree specifies
the top–bottom/left–right order of A and B in the layout. For
example, if in the ordinary slicing tree the left child is A, the
right child is B, and the parent node is labeled “V,” then in
the corresponding layout A is on the left of B. If we want to
switch to other layouts between A and B, then the slicing tree
has to be changed as well.

Now we generalize the ordinary slicing tree, such that one
generalized slicing tree represents multiple slicing layouts.
Here, we introduce a new operator—“⊕” to incorporate both
“H” and “V” slice line directions. Moreover, we do not
differentiate the “top–bottom” or “left–right” order between
the two child subfloorplans any more, which means even
though we put A at the left child, it can be switched to the
right later on. We even do not specify the orientation for each
subfloorplan. As a result, the decisions on slice line direction,
subfloorplan order, and subfloorplan orientation are deferred.
Now each parent node in the slicing tree represents all sixteen
slicing layouts between two child subfloorplans (see Fig. 4).

B. Extended Shape Curve Operation

To actualize the slicing tree combination we use the shape
curve operation. The shape of each subfloorplan is captured
by its associated shape curve. In order to derive a compatible
operation for the new operator “⊕,” we develop three steps to
combine two child curves A and B into one parent curve C.

1) Addition: Firstly, we add two curves A and B horizon-
tally to get curve Ch, on which each point corresponds
to a horizontal combination of two subfloorplan layouts
from A and B, respectively [see Fig. 5(a)].

2) Flipping: Next, we flip curve Ch symmetrically based
on the W = H line to derive curve Cv. The purpose
of doing this is to generate the curve that contains the
corresponding vertical combination cases from the two
subfloorplan layouts [see Fig. 5(b)].

3) Merging: The final step is to merge Ch and Cv into the
parent curve C. Since the curve function is a bijection

Fig. 5. Extended shape curve operation. (a) Addition. (b) Flipping.
(c) Merging.

from set W to set H , for a given height only one point
can be kept. We choose the point with a smaller width
out of Ch and Cv, e.g., point k in Fig. 5(c), because such
point corresponds to smaller floorplan area.

As a result, we have derived three steps to actualize the
operator “⊕” in the slicing tree combination. Now given two
child curves corresponding to two child subfloorplans in the
slicing tree, these three steps are applied to combine the two
curves into one parent curve, in which the entire slicing layouts
between the two child subfloorplans are captured.

C. Decision of Slice Line Direction for Terminal Propagation

Because all cut line directions in the high-level slicing tree
are undetermined, we cannot apply TP during partitioning. In
order to enable TP, we pre-decide the cut line direction based
on the aspect ratio5 τp of the subpartition region. That is, if
τp > 1, the subpartition will be cut “horizontally;” otherwise,
it will be cut “vertically.” In principle, we can use such strategy
on all cut lines in the high-level slicing tree. However, by doing
this we restrict the combine direction in the generalized slicing
tree, which degrades the packing quality. To make a trade-off,
we only apply TP at the root, i.e., the first cut on the original
circuit.

IV. Whitespace-Aware Pruning

In this section, we present the WAP technique, which
systematically prunes the points on the shape curve with
whitespace awareness.

A. Motivation on WAP

In Fig. 6, two subfloorplans A and B are combined into
subfloorplan C. Shape curves Ca, Cb, and Cc contain various
floorplan solutions of A, B, and C, respectively. Because Cb

has a gap between points P2 and P3, during the combining
process point P1 cannot find any point from Cb with the
matched height, and is forced to combined with P2. Due to the
height difference between P1 and P2, the resulted point P4 on
curve Cc represents a layout with extra whitesapce. The bigger
the gap is, the more the whitespace is generated.

It is only an ideal situation that each point always had a
matched point on another curve. Therefore, in the hierarchical
framework during the curve combining process, the whitespace
will be generated and accumulated to the top level. For a fixed-
outline floorplanning problem, we have a budget/maximum

5In this paper, aspect ratio is defined as the ratio of height to width.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

YAN AND CHU: DEFER: DEFERRED DECISION MAKING ENABLED FIXED-OUTLINE FLOORPLANNING ALGORITHM 371

Fig. 6. Generation of whitespace during curve combination.

whitespace amount Wb. In order to avoid exceeding Wb, the
whitespace generated in the curve combination needs to be
minimized. One direct way to achieve this is to increase the
number of points, such that the sizes of gaps among the points
are minimized. However, the more points we keep, the slower
the algorithm runs. This rises the question WAP is trying to
solve: How can we minimize the number of points on the shape
curve, while guaranteeing that the total whitespace would not
exceed Wb?

B. Problem Formulation of WAP

WAP is to prune the points on the shape curve, while making
sure that the gaps among the points are small enough, such
that we can guarantee the total whitespace would not exceed
the budget Wb. WAP is formulated as follows:

Minimize
M∑
i=1

ki

subject to
M∑
i=1

Wpi
+

N∑
j=1

Wcj
+ Wo ≤ Wb.

(1)

In (1), suppose there are M subpartitions and N subcircuits in
the high-level slicing tree (see Fig. 2). Before pruning, there
are ki points on shape curve i of subpartition i. During the
combine process of generating shape curve i, the introduced
whitespace in subpartition i is Wpi

. The whitespace inside
subcircuit j is Wcj

. At the root, the whitespace between the
floorplan outline and the fixed outline is Wo.

To do pruning, we calculate a pruning parameter βi for
shape curve i. In subpartition i, let the corresponding width
and height of point p (1 ≤ p ≤ ki) be wi

p and hi
p. On each

shape curve, the points are sorted based on the ascending order
of the height. �Hp is defined for point p as follows:

�Hp = βi · hi
p. (2)

Within the distance of �Hp above point p, only the point that
is the closest to hi

p +�Hp is kept, and other points are pruned
away. The intuition is that the gap within �Hp is small enough
to guarantee that no large whitespace will be generated. Such
pruning method is applied only on every pair of child curves
of subpartitions in the high-level slicing tree, before they are
combined into a parent curve. We do not prune any point on
the shape curves of subcircuits.

Now we rewrite (1) into a form related with βi, such that
by solving WAP we can get the value of βi. Based on the

Fig. 7. Calculation of Wpi
and Wo.

above pruning, we have hi
p+1 ≤ (1 +βi) ·hi

p. So approximately
hi

p+2 ≥ (1+βi)hi
p. Thus, the relationship between the first point

and point ki is

hi
ki

≥ (1 + βi)
ki−1

2 hi
1 ⇒ ki ≤ 2 ·

(
ln(hi

ki
/hi

1)

ln(1 + βi)

)
+ 1. (3)

Because of the Flipping [see Fig. 5(b)], each shape curve is
symmetrical based on W = H line. So in the implementation
we only keep the lower half curve. In this case, the last point
ki is actually very close6 to W = H line, so we have

wi
ki

≈ hi
ki

⇒ hi
ki

≈
√

Ai (4)

where Ai is the area of subpartition i. It equals to the sum
of total module area in subpartition i and the accumulated
whitesapce from the subcircuits at lower level. In (3), hi

1 is
actually the minimum height of the outlines on shape curve
i. Suppose subpartition i contains Vi modules. The width and
height of module m are xi

m and yi
m

hi
1 = max(min(xi

1, y
i
1), . . . , min(xi

Vi
, yi

Vi
)). (5)

In the following part, we explain the calculation of other
terms in (1).

• Calculation of Wpi
: Suppose two child subpartitions Si

1
and Si

2 are combined into parent subpartition Si, where
the area of Si

1, Si
2 and Si are Ai

1, Ai
2 and Ai. The

pruning parameter of Si is βi. As shown in Fig. 7(a),
the whitespace produced in the combining process is

Wpi
= Ai · Ai

2 · βi

Ai
1 + Ai

2 + Ai
2 · βi

. (6)

Since the partitioner tries to balance the area of Si
1 and

Si
2, we can assume Ai

1 ≈ Ai
2. Typically βi � 2, so Ai

1 +
Ai

2 + Ai
2 · βi ≈ Ai. Thus

Wpi
= Ai

1 · βi = Ai
2 · βi = Ai · βi

2
. (7)

• Calculation of Wcj
: Before pruning, the shape curves of

subcircuits have already been generated by EP. We choose
the minimum whitespace among all layouts of subcircuit
j as the value of Wcj

, so that
∑N

j=1 Wcj
≥ Wb can be

prevented.
• Calculation of Wo: At the root, there is extra whitespace

Wo between the floorplan outline and the fixed outline.
DeFer picks at most δ points (δ = 21 by default) for back-
tracing step. So we assume there are δ points enclosed

6If ki represents a outline of a square, it is on W = H line.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

372 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

into the fixed outline, and the first and last points P1, Pd

out of δ are on the right and top boundary of the fixed
outline [see Fig. 7(b)]. For various points/layouts, Wo is
different. We use the one of P1 to approximate Wo. As
in pruning we always keep the point that is the closest to
(1 + βi)hi

p, here we can assume h1
p+1 = (1 + β1)h1

p. So we
have

Wo = A1 · ((1 + β1)δ−1 − 1). (8)

From (3), (4), (7), and (8), (1) can be rewritten as

Minimize
M∑
i=1

ln(
√

Ai/h
i
1)

ln(1 + βi)

subject to
M∑
i=1

Ai · βi

2
+

N∑
j=1

Wcj
+ Wo ≤ Wb

Wo = A1 · ((1 + β1)δ−1 − 1)

βi ≥ 0 i = 1, . . . , M.

(9)

C. Solving WAP

To solve WAP (9), we relax the constraint related with Wb

by Lagrangian relaxation. Let λ be the nonnegative Lagrange
multiplier, and W ′ = Wb −∑N

j=1 Wcj
− Wo

Lλ(βi) =
M∑
i=1

ln(
√

Ai/h
i
1)

ln(1 + βi)
+ λ · (

M∑
i=1

Ai · βi

2
− W ′)

LRS : Minimize Lλ(βi)
subject to βi ≥ 0 i = 1, . . . , M.

LRS is the Lagrangian relaxation subproblem associated with
λ. Let the function Q(λ) be the optimal value of LRS. The
Lagrangian dual problem (LDP) is defined as

LDP : Maximize Q(λ)
subject to λ ≥ 0.

As WAP is a convex problem, if λ is the optimal solution
of LDP, then the optimal solution of LRS also optimizes WAP.
We differentiate Lλ(βi) based on βi and λ, respectively

∂L

∂β1
= λA1

(
1

2
+ (δ − 1) · ((1 + β1)δ−2)

)
− ln(

√
A1/h

1
1)

(1+β1) · ln2(1 + β1)
.

∂L

∂βi

=
λAi

2
− ln(

√
Ai/h

i
1)

(1 + βi) · ln2(1 + βi)
, i = 2, . . . , M.

∂L

∂λ
=

M∑
i=1

Ai · βi

2
− W ′.

To find the “saddle point” between LRS and LDP, we first
set an arbitrary λ. Once λ is fixed, ∂L

∂βi
(1 ≤ i ≤ M) is a

univariate function that can be solved by Bisection Method
to get βi. Then βi is used to get the value of function ∂L

∂λ
. If

∂L
∂λ

	= 0, we adjust λ accordingly based on Bisection Method
and do another iteration of the above calculation, until ∂L

∂λ
= 0.

Fig. 8. List of different slicing tree structures.

Eventually, the pruning parameters βi returned by WAP are
used to systematically prune the points on the shape curve of
each subpartition i. Best of all, we do not need to worry about
the over-pruning and degradation of the packing quality.

V. Enumerative Packing

In order to defer the decision on the slicing tree structure,
we propose the EP technique that can efficiently enumerate all
possible slicing layouts among a set of modules, and finally
keep all of them into one shape curve.

A. Naive Approach of Enumeration

In this section, we plot out a naive way to enumerate
all slicing packing solutions among n modules. We first
enumerate all slicing tree structures and then enumerate all
permutations of the modules. Let L(n) be the number of
different slicing tree structures for n modules. So we have

L(n) =

 n
2 �∑

i=1

L(n − i) · L(i). (10)

All slicing tree structures for 3–6 modules are listed in Fig. 8.
Note that we are using the generalized slicing tree which
does not differentiate the left–right order between two child
subtrees. As we can see the number of different slicing tree
structures is actually very limited.

To completely explore all slicing packing solutions among n

modules, for each slicing tree structure, different permutations
of the modules should also be considered. For example in
Fig. 8, in tree T4a four modules A, B, C, and D can be
mapped to leaves “1–2–3–4” by the order “A–B–C–D” or
“A–C–B–D.” Obviously these two orders derive two different
layouts. However, again because the generalized slicing tree
does not differentiate the left–right order between two child
subtrees which share the same parent node, for example,
orders “A–C–B–D” and “B–A–C–D” are exactly the same
in T4a. After pruning such redundancy, we have 4!

2 = 12
nonredundant permutations for mapping four modules to the
four leaves in T4a. Therefore, for each slicing tree structure of
n modules, we first enumerate all nonredundant permutations,
for each one of which a shape curve is produced. And then
we merge these curves into one curve associated with each

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

YAN AND CHU: DEFER: DEFERRED DECISION MAKING ENABLED FIXED-OUTLINE FLOORPLANNING ALGORITHM 373

TABLE I

Comparison on # of ‘‘⊕’’ Operation

n # of ⊕ # of ⊕
by Naive Approach With DP

2 1 1
3 6 6
4 45 25
5 400 90
6 4155 301
7 49 686 966
8 674 877 3025
9 10 295 316 9330
10 174 729 015 28 501

slicing tree structure. Finally, these curves from all slicing tree
structures are merged into one curve that captures all possible
slicing layouts among these n modules. To show the amount
of computations in this process, we list the number of “⊕”
operations for different numbers of modules in the second
column of Table I.

B. Enumeration by Dynamic Programming

Table I shows that the naive approach can be very expensive
in both runtime and memory usage. Alternatively, we notice
that the shape curve for a set of modules (M) can be defined
recursively as follows:

S(M) = MERGE
A⊂B,B= M−A

(S(A) ⊕ S(B)). (11)

S(M) is the shape curve capturing all slicing layouts among
modules in M, MERGE() is similar to the Merging in Fig. 5(c),
but operates on shape curves from different sets.

Based on (11), we can use dynamical programming (DP) to
implement the shape curve generation. First of all, we generate
the shape curve representing the outline(s) of each module.
For hard modules, there are two points7 in each curve. For
soft modules, only several points from each original curve are
evenly sampled.8 And then starting from the smallest subset of
modules, we proceed to build up the shape curves for the larger
subsets step by step, until the shape curve S(M) is generated.
Since in this process the previously generated curves can be
reused for building up the curves of larger subsets of modules,
many redundant computations are eliminated. After applying
DP, the resulted numbers of “⊕” operations are listed in the
third column of Table I.

C. Impact of EP on Packing

To control the quality of packing in EP, we can adjust
the number of modules in the set. Consequently the impact
on packing is: The more modules a set contains, the more
different slicing tree structures we explore, the more slicing
layout possibilities we have, and thus the better quality of
packing we will gain at the top level.

7One point if the hard module is a square.
8The number of sampled points on the whole curve is determined by

 Ai
A0

ρ� + 4, where Ai is the area of soft block i, A0 is the total block area,
and ρ is a constant (ρ = 10 000 by default).

Fig. 9. Illustration of high-level EP.

However, if the set contains too many modules, two prob-
lems appear in EP: 1) the memory to store results from subsets
can be expensive; and 2) since the interconnections among the
modules are not considered, the wirelength may be increased.
Due to these two concerns, in the first step of DeFer, we
apply hMetis to recursively cut the original circuit into multiple
smaller subcircuits. This process not only helps us to cut
down the number of modules in each subcircuit, but initially
optimizes the wirelength as well. Later on as applying EP
on each subcircuit, the wirelength would not become a big
concern, because this is only a locally packing exploration
among a small number of modules. In other words, in the
spirit of DDM, instead of deferring the decision on the slicing
tree structure among all modules in the original circuit, first we
fix the high-level slicing tree structure among the subcircuits
by partitioning, and then defer the decision on the slicing tree
structure among the modules within each subcircuit.

D. High-Level EP

In the modern system-on-a-chip design, the usage of intel-
lectual property becomes more and more popular. As a result,
a circuit usually contains numbers of big hard macros. Due
to the big size differences from other small modules, they
may produce some large whitespace. For example in Fig. 9(a),
after partitioning, the original circuit has been cut into four
subcircuits A, B, C, and D. A contains a big hard macro.
Respecting the slicing tree structure of T4b, you may find that
no matter how hard EP explores various packing layouts within
A or B, there is always a large whitespace, such as Q, in the
parent subfloorplan. This is because the high-level slicing tree
structure among subcircuits has been fixed by partitioning, so
that some small subcircuit is forced to combine with some big
subcircuit. Thus, to solve this problem, we need to explore
other slicing tree structures among the subcircuits.

To do so, we apply EP on a set of subfloorplans, instead
of a set of modules. As the input of EP is actually a set of
shape curves, and shape curves can represent the shape of
both subfloorplans and modules, it is capable of using EP to
explore the layouts among subfloorplans. In Fig. 9(b), EP is
applied on the four shape curves coming from subfloorplans
A, B, C, and D, respectively. So all slicing tree structures (T4a

and T4b) and permutations among these subfloorplans can be
completely explored. Eventually one tightly-packed layout can
be chosen during back-tracing step [see Fig. 9(c)].

Before we describe the criteria of triggering high-level EP,
some concepts are introduced here as follows.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

374 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

Fig. 10. One exception of identifying hTree.

• Big gap: Based on the definition of �Hp in Section IV,
if hi

p+1 − hi
p > ω · �Hp (ω is “Gap Ratio,” ω = 5 by

default), then we say there is a “big gap” between points
p and p + 1. Intuitively, if there is a big gap, most likely
it would cause serious packing problem at upper level.

• hNode: In the high-level slicing tree, the tree node or leaf
node that contains big gap(s).

• hTree: A subtree of the high-level slicing tree, where the
high-level EP is applied. For example, T4b is a hTree [see
Fig. 9(a)].

• hRoot: The root node of hTree.
High-level EP is to solve the packing problem caused by big

gaps, so we need to identify the hTree that contains big gap.
First we search for the big gap through the high-level slicing
tree. If any shape curve has a big gap, then the corresponding
node becomes an hNode. After identifying all hNodes, each
hNode becomes an hRoot, and the subtree whose root node
is hRoot becomes an hTree. But there is one exception: as
shown in Fig. 10, if one hTree T2 is a subtree of another
hTree T1, then T2 will not become an hTree. Eventually, each
hTree contains at least one big gap, which implies critical
packing problems. Thus, for every hTree we use high-level
EP to further explore the various packing layouts among the
subfloorplans, i.e., leaves of hTree. If an hTree has more than
10 leaves, we will combine them from bottom-up until the
number of leaves becomes 10.

As mentioned in Section V-C, EP only solves the packing
issue, which may degrade the wirelength. Therefore, to make
a trade-off we apply high-level EP only if there is no point
enclosed into the fixed outline after combining step. If that
is the case, then we will use the above criteria to trigger the
high-level EP, and reconstruct the final shape curve.

VI. Block Swapping and Mirroring

After back-tracing step, the decision on subfloorplan order
(left–right/top–bottom) has not been made yet. Using such
property, this section focuses on optimizing the wirelength.

In slicing structures switching the order (left–right/top–
bottom) of two child subfloorplans would not change the
dimension of their parent floorplan outline, but it may actu-
ally improve the wirelength. Basically, we adopt three tech-
niques here: 1) Rough Swapping; 2) Detailed Swapping; and
3) Mirroring. Each of them is trying to switch the positions
of two subfloorplans to improve the half-perimeter wirelength
(HPWL). Fig. 11 illustrates the differences between Swapping
and Mirroring. In Swapping, we try to switch the left and

Fig. 11. Swapping and Mirroring.

Fig. 12. Motivation on Rough Swapping.

right subfloorplans, inside of which the relative positions
among the modules are unchanged. In Mirroring, instead
of simply swapping two subfloorplans, we first figure out
the symmetrical axis of the outline at their parent floorplan,
and then attempt to mirror them based on this axis. When
calculating the HPWL, in Rough Swapping we treat all internal
modules to be at the center of their subfloorplan outline. In
Detailed Swapping, we use the actual center coordinates of
each module in calculating the HPWL.

Rough Swapping is an essential step before Detailed Swap-
ping. Without it, the results produced by Detailed Swapping
could degrade the wirelength. For example in Fig. 12, when
we try to swap two subfloorplans A and B, two types of nets
need to be considered: internal nets neti between A and B, and
external nets neto between the modules inside A or B and other
outside modules or fixed pads. Let C and D be two modules
inside A and B, respectively. C and D are highly connected
by netcd . After back-tracing step, the coordinates of C and D

are still unknown. If we randomly specify the positions of C

and D as shown in Fig. 12(a), then we may swap A and B to
gain better wirelength. Alternatively, if C and D are specified
in the positions in Fig. 12(b), then we may not swap them.
As we can see, the randomly specified module position may
mislead us to make the wrong decision. To avoid such “noise”
generated by neti in the swapping process, the best thing to do
is to assume C, D and all modules inside subfloorplans A and
B are at the centers of A and B, such that the right decision
can be made based on neto.

Essentially, we first apply Rough Swapping from top-down,
followed by Detailed Swapping. Finally, Mirroring is used.
Note that the order between Detailed Swapping and Mirroring
can be changed, and both of them can be applied from either
top-down or bottom-up.

VII. Extension of DeFer

This section presents the different strategies of selecting the
points from the final shape curve, such that DeFer is capable
of handling floorplanning problems with various objectives.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

YAN AND CHU: DEFER: DEFERRED DECISION MAKING ENABLED FIXED-OUTLINE FLOORPLANNING ALGORITHM 375

Fig. 13. Compact invalid points into fixed outline.

1) Fixed-Outline Floorplanning: Given the final shape
curve, it is very straightforward to select the valid points
enclosed into the fixed outline. Let P be the number
of such valid points. As for each selected point the
swapping process is applied to optimize the HPWL, to
make a trade-off between runtime and solution quality
DeFer chooses at most δ points (δ = 21 by default) for
the back-tracing. So we have three cases.

a) P > δ: Based on the geometric observation
between aspect ratio and HPWL in [9], DeFer
chooses δ points where the outline aspect ratio is
closed to 1.

b) 0 < P ≤ δ: All P points are chosen.
c) P = 0: DeFer still chooses at most δ points near

the upper-right corner of the fixed outline (see
Fig. 13), in that we attempt to compact them into
the fixed outline in compacting step.

2) Min-Area Floorplanning: For min-area floorplanning,
DeFer just needs to go through each points on the final
shape curve and find out the one with the minimum area.
Because the area minimization is the only objective here,
we can even skip swapping step and shifting step to gain
fast runtime. This problem considers to be very easy for
DeFer.

3) Min-Area and Wirelength Floorplanning: This problem
uses a linear combination of area and wirelength as
the cost function. Compared with the strategy of fixed-
outline floorplanning, the only difference is that we just
need to choose the δ points with the minimum area,
rather than within the fixed outline.

As shown above, DeFer is very easy to be switched to
handle other floorplanning problems. Because once the final
shape curve is available, DeFer has provided a large amount
of floorplan candidates. Given any objective function, e.g.,
that used in simulated annealing, we just need to evaluate the
candidates, and pick the one that gives the minimum cost.

VIII. Implementation Details

Sometimes DeFer cannot pack all modules into the fixed
outline. This may occur because hMetis generates a hard-to-
pack partition result, or the packing strength is not strong
enough. To enhance the robustness of DeFer, we adaptively
tune some parameters and try another run.

One effective way to improve the packing quality of DeFer
is to enhance the packing strength in the high-level EP, e.g., by

Fig. 14. Two strategies of identifying hRoot.

Fig. 15. Tuned parameters at each run.

decreasing the gap ratio ω. Also, we can use different strategies
to identify hRoot (see Fig. 14).

1) Each hNode becomes an hRoot.
2) Each hNode’s grandparent tree node becomes an hRoot.

Strategy 1 is the one we mentioned in Section V-D. Appar-
ently, if we adopt strategy 1, more hTrees will be generated,
and thus the high-level EP is used more often, which leads
better packing. However, this takes longer runtime.

Another way to improve the packing quality is to balance
both the area and number of modules, rather than only the
area in each partition at partitioning step. Thus, we have two
methods to set the weight for the module.

1) Wgt = Am.
2) Wgt = Am + 0.6 · Ap.

Here, Wgt and Am are the weight and area for module m,
Ap is the average module area in partition p. In experiments,
we observe that method 2, which considers both the area
and number of modules, generates better packing results, yet
sacrifices the wirelength.

Essentially, DeFer starts with the defaulted parameters for
the first run. If failing to pack all modules into the fixed
outline, it will internally enhance the packing strength and
try another run. By default DeFer will try at most eight runs.
The tuned parameters for each run is listed in Fig. 15. For
Runs 3–5, because they share the same partition result with
Run 2, DeFer skips the partitioning step in those runs.

Even though DeFer internally executes multiple runs, it still
achieves the best runtime compared with all other floorplan-
ners. There are two reasons: 1) DeFer is so fast. Even it runs
multiple times, it is still much faster than other floorplanners;
and 2) DeFer has better packing quality. For most circuits,
DeFer can satisfy the fixed-outline constraint within Run 1.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

376 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

Fig. 16. Circuit n300 layouts generated by DeFer. (a) n300 hard block γ = 10%. (b) n300 hard block γ = 10%. (c) n300 hard block γ = 10%. (d) n300
soft block γ = 1%.

TABLE II

Comparison on GSRC Hard-Block Benchmarks [22] (γ = 10%)

Circuit n100 n200 n300 Normallized
Aspect Ratio 1 2 3 1 2 3 1 2 3

Parquet 4.5 42% 43% 33% 26% 19% 17% 16% 16% 14% 0.25
FSA 100% 0% 0% 100% 0% 0% 0% 0% 0% 0.22
IMF 100% 100% 100% 100% 100% 100% 100% 100% 100% 1.00

Suc% IARFP 99% 100% 99% 100% 99% 63% 100% 100% 46% 0.90
PATOMA 0% 0% 0% 0% 100% 0% 100% 100% 100% 0.44
Capo 10.5 17% 17% 15% 0% 0% 2% 0% 1% 0% 0.06

DeFer 100% 100% 100% 100% 100% 100% 100% 100% 100% 1
Parquet 4.5 248 652 269 191 289 963 467 627 506 946 544 621 686 588 725 833 781 556 1.27

FSA 243 823 – – 414 777 – – – – – 1.14
IMF 250 680 251 418 257 935 438 467 454 231 482 651 584 578 617 510 666 245 1.14

HPWL IARFP 220 269 230 553 247 283 386 537 409 208 433 631 535 850 567 496 600 438 1.03
PATOMA – – – – 483 110 – 653 711 697 740 680 671 1.25
Capo 10.5 227 046 241 789 261 334 – – 444 079 – 566 998 – 1.05

DeFer 208 650 229 603 248 567 372 546 402 155 431 552 498 909 538 515 577 209 1
Parquet 4.5 10.85 10.58 10.27 44.43 44.47 41.96 95.02 87.03 86.31 181.49

FSA 39.78 – – 202.13 – – – – – 557.74
IMF 7.65 10.82 9.29 41.21 43.59 38.71 74.74 71.48 71.72 157.91

Time (s) IARFP 4.44 4.50 4.52 16.51 15.48 14.22 29.30 29.48 30.03 64.33
PATOMA – – – – 0.25 – 0.36 0.34 0.48 1.15
Capo 10.5 122.64 125.18 160.07 – – 3054 – 8661 – 222.39

DeFer 0.13 0.11 0.11 0.25 0.23 0.22 0.35 0.33 0.33 1
#Valid Point/#Total Point 3/617 4/621 3/621 3/670 2/672 2/672 6/869 5/869 4/869

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

YAN AND CHU: DEFER: DEFERRED DECISION MAKING ENABLED FIXED-OUTLINE FLOORPLANNING ALGORITHM 377

TABLE III

Comparison on GSRC Soft-Block Benchmarks [22] (γ = 1%)

Circuit n100 n200 n300 Normallized
Aspect Ratio 1 2 3 1 2 3 1 2 3

Parquet 4.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
Suc% Capo 10.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0

PATOMA 100% 100% 100% 100% 100% 100% 100% 100% 100% 1.00
DeFer 100% 100% 100% 100% 100% 100% 100% 100% 100% 1

Parquet 4.5 – – – – – – – – – —
HPWL Capo 10.5 – – – – – – – – – —

PATOMA 215 455 213 561 230 759 383 330 367 565 404 574 524 774 486 351 518 204 1.01
DeFer 196 457 217 686 235 702 354 885 380 470 410 464 476 508 514 764 551 610 1

Parquet 4.5 – – – – – – – – – —
Time (s) Capo 10.5 – – – – – – – – – —

PATOMA 0.39 0.40 0.38 0.92 0.93 0.83 1.28 1.28 1.37 3.50
DeFer 0.09 0.09 0.09 0.18 0.19 0.19 0.78 0.96 0.97 1

#Valid Point/#Total Point 28/20 392 30/20 469 30/20 469 16/25 513 18/25 493 17/25 493 9/30 613 10/30 598 10/30 603

IX. Experimental Results

In this section, we present the experimental results. All
experiments were performed on a Linux machine with Intel
Core Duo9 1.86 GHz CPU and 2 GB memory. The wirelength
is measured by HPWL. We compare DeFer with all the best
publicly available state-of-the-art floorplanners, of which the
binaries are the latest version. For the hMetis 1.5 parameters in
DeFer, NRuns = 1, UBfactor = 10, and others are defaulted.

A. Experiments on Fixed-Outline Floorplanning
In this section, we compare DeFer with other fixed-outline

floorplanners. On GSRC and HB benchmarks, for each circuit
we choose three different fixed-outline aspect ratios: τ =
1, 2, 3. All input/output (I/O) pads are scaled to the according
boundary. On HB+ benchmarks, we use the defaulted fixed
outlines and I/O pad locations. By default every floorplanner
runs 100 times for each test case, and the results are averaged
over all successful runs. As PATOMA has internally fixed the
hMetis seed, and produces the same result no matter how many
times it runs, we run it only once. For other floorplanners,
the initial seed is the same as the index of each run. Parquet
4.5 runs in wirelength minimization mode. The parameters for
other floorplanners are defaulted. For each type of benchmarks,
we finally normalize all results to DeFer’s results.

1) GSRC Hard-Block Benchmarks: These circuits contain
100, 200, and 300 hard modules. DeFer compares with six
floorplanners: Parquet 4.5 [4], FSA [6], IMF [8], IARFP [9],
PATOMA [14], and Capo 10.5 [5]. The maximum whitespace
percentage γ = 10%. The results are summarized in Table II.
For every test case DeFer reaches 100% success rate. DeFer
generates 27%, 14%, 14%, 3%, 25%, and 5% better HPWL
in 181×, 558×, 158×, 64×, 15%, and 222× faster runtime
than Parquet 4.5, FSA, IMF, IARFP, PATOMA, and Capo 10.5,
respectively. DeFer consistently achieves the best HPWL and
best runtime on all 9 test cases, except for only one case (n100,
τ = 3) DeFer generates 0.5% worse HPWL than IARFP. But
for that one DeFer is 41× faster than IARFP with 100%
success rate. Fig. 16(a)–(c) shows the layouts produced by
DeFer on circuit n300 with τ = 1, 2, 3.

9In the experiments, only one core was used.

2) GSRC Soft-Block Benchmarks: These circuits con-
tain 100, 200, and 300 soft modules. DeFer compares with
Parquet 4.5, Capo 10.5, and PATOMA, as only these floorplan-
ners can handle soft modules. We add “-soft” to Parquet 4.5
command line. The maximum whitespace percentage γ = 1%,
which is almost zero whitespace requirements. As we can see
from Table III, after 100 runs both Parquet 4.5 and Capo 10.5
cannot pack all modules within the fixed outline. PATOMA and
DeFer reach 100% success rate on every test case. Compared
with PATOMA, DeFer generates 1% better wirelength with
4× faster runtime. Fig. 16(d) is the final layout generated by
DeFer on circuit n300 with τ = 1, which shows almost 0%
whitespace is reached.

3) HB Benchmarks: We compare DeFer with PATOMA
and Capo 10.5 on HB benchmarks. These circuits are gen-
erated from the IBM/ISPD98 suite containing both hard and
soft modules ranging from 500 to 2000, some of which are
big hard macros. Detailed statistics are listed in the second
column of Table IV. To get better runtime, wirelength and
success rate, we run Capo 10.5 in “-SCAMPI” [23] mode.
However, Capo 10.5 still takes a long time to finish one run for
each test case, so we only run it once with the defaulted seed.
To show its slowness, we also list the reported runtime for the
unsuccessful runs. From Table IV, we can see that DeFer does
not achieve 100% success rate for only one test case, and the
success rate is 2.33× and 8.33× higher than PATOMA and
Capo 10.5. Capo 10.5 crashes on four test cases, and takes
more than two days to finish one test case. Compared with
PATOMA, DeFer is 28% better on average in HPWL, and 3×
faster. Compared with Capo 10.5, DeFer generates as much as
72% better HPWL with even 790× faster runtime. We also run
Parquet 4.5 on these circuits. However, it is so slow that even
running one test case once takes thousands of seconds. So for
each test case, we only run it once instead of 100 times, but
none of the results fits into the fixed outline. Fig. 17(a)–(c)
shows the layouts generated by PATOMA, Capo 10.5, and
DeFer on circuit ibm03 with τ = 2.

4) HB+ Benchmarks: DeFer compares with PATOMA and
Capo 10.5 on HB+ benchmarks. These circuits are generated
from HB benchmarks, while the biggest hard macro is inflated

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

378 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

TABLE IV

Comparison on HB Benchmarks [24] (γ = 10%)

Circuit #Soft./#Hard. Aspect PATOMA [14] Capo 10.5 [5] DeFer #Valid Point
/#Net. Ratio Suc% WL (e+06) Time (s) Suc% WL (e+06) Time (s) Suc% WL (e+06) Time (s) /#Total Point
665 1 100% 2.84 7.04 0% – 183 100% 2.66 1.44 16/1571

ibm01 /246 2 0% – – 0% – 977 100% 2.70 1.28 11/1482
/4236 3 100% 5.60 1.66 0% – 696 100% 2.82 1.30 12/1490
1200 1 0% – – 0% – 456 85% 6.55 14.48 6/2348

ibm02 /271 2 0% – – – – > 2 days 100% 6.21 3.33 7/1161
/7652 3 0% – – 0% – 3726 100% 6.29 3.52 10/1144
999 1 100% 12.59 5.42 100% 10.70 566 100% 8.77 3.60 59/2684

ibm03 /290 2 100% 12.94 5.58 100% 12.01 1874 100% 8.89 3.49 40/2503
/7956 3 0% – – 0% – 2028 100% 8.99 3.59 44/2630
1289 1 0% – – 0% – 2752 100% 8.94 3.04 4/1492

ibm04 /295 2 0% – – 100% 17.77 5253 100% 8.96 3.12 9/1514
/10 055 3 0% – – 100% 16.32 2262 100% 9.64 6.31 12/2685

564 1 100% 12.27 14.21 0% – 458 100% 12.61 3.55 46/3369
ibm05 /0 2 100% 12.60 13.68 0% – 358 100% 12.73 3.52 46/3371

/7887 3 100% 13.19 13.85 0% – 411 100% 13.45 3.53 46/3371
571 1 0% – – 0% – 235 100% 7.87 3.66 53/2187

ibm06 /178 2 0% – – 0% – 592 100% 7.76 3.66 41/2235
/7211 3 0% – — 0% – 2831 100% 8.91 3.60 36/2196
829 1 0% – – 0% – 1094 100% 13.81 3.87 12/1527

ibm07 /291 2 100% 24.64 7.85 0% – 1270 100% 13.91 4.48 22/1625
/11 109 3 100% 24.34 8.68 0% – 2274 100% 14.32 4.26 18/1590

968 1 0% – – 0% – 2527 100% 13.95 5.44 15/1333
ibm08 /301 2 0% – – 0% – 1110 100% 14.16 5.40 17/1290

/11 536 3 0% – – 0% – 1958 100% 14.43 5.55 19/1309
860 1 0% – – 0% – 2273 100% 12.85 2.60 3/1495

ibm09 /253 2 0% – – 0% – 2670 100% 12.57 3.77 17/1486
/11 008 3 0% – – 100% 34.48 6652 100% 12.98 3.54 14/1486

809 1 100% 48.47 21.71 0% – 2353 100% 33.25 11.63 9/2576
ibm10 /786 2 0% – – Crashed Crashed Crashed 100% 34.23 18.00 14/2897

/16 334 3 0% – – 100% 53.64 2014 100% 36.59 16.52 9/2725
1124 1 100% 20.87 33.87 0% – 8070 100% 21.99 4.84 12/2218

ibm11 /373 2 0% – – 0% – 4732 100% 22.13 4.96 8/2207
/16 985 3 0% – – 0% – 2245 100% 22.83 4.67 7/2174

582 1 0% – – 0% – 3085 100% 29.72 10.95 20/2909
ibm12 /651 2 0% – – 0% – 864 100% 31.53 7.71 18/3011

/11 873 3 0% – – 0% – 19 952 100% 32.16 4.59 8/1957
530 1 0% – – 0% – 3401 100% 25.92 6.03 12/2553

ibm13 /424 2 100% 43.81 9.84 0% – 3662 100% 25.46 3.79 10/2048
/14 202 3 0% – – 0% – 3201 100% 26.47 3.83 8/2095
1021 1 100% 71.87 23.59 0% – 4253 100% 50.83 9.69 30/2976

ibm14 /614 2 100% 55.99 35.65 0% – 10 373 100% 51.67 9.70 34/2971
/26 675 3 100% 61.65 35.12 0% – 4976 100% 53.71 9.70 36/2971
1019 1 0% – – 0% – 3634 100% 64.18 9.71 25/1651

ibm15 /393 2 0% – – 0% – 6827 100% 63.17 9.13 19/1580
/28 270 3 0% – – 0% – 2902 100% 66.06 9.46 20/1623

633 1 0% – – Crashed Crashed Crashed 100% 56.88 16.79 18/3823
ibm16 /458 2 100% 88.33 16.55 0% – 8928 100% 58.55 14.55 24/4833

/21 013 3 100% 98.77 22.94 0% – 11 675 100% 59.91 12.84 18/4093
682 1 100% 102.45 41.75 Crashed Crashed Crashed 100% 95.92 10.43 32/3253

ibm17 /760 2 100% 96.46 46.63 0% – 2250 100% 95.48 10.41 27/3252
/30 556 3 100% 98.18 42.45 Crashed Crashed Crashed 100% 100.82 10.42 29/3252

658 1 100% 50.28 38.24 0% – 1083 100% 49.12 7.93 42/3106
ibm18 /285 2 100% 49.74 39.15 0% – 4630 100% 49.29 7.97 41/3128

/21 191 3 100% 52.26 36.97 0% – 5262 100% 51.39 7.97 41/3128
Normalized 0.43 1.28 3.28 0.12 1.72 789.79 1 1 1

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

YAN AND CHU: DEFER: DEFERRED DECISION MAKING ENABLED FIXED-OUTLINE FLOORPLANNING ALGORITHM 379

Fig. 17. Circuit ibm03 layouts generated by PATOMA, Capo 10.5, and DeFer (γ = 10% and τ = 2). (a) By PATOMA. (b) By Capo 10.5. (c) By DeFer.

TABLE V

Comparison on HB+ Benchmarks [23]

Circuit White- Aspect PATOMA [14] Capo 10.5 [5] DeFer #Valid Point
space γ Ratio Suc% WL (e+06) Time (s) Suc% WL (e+06) Time (s) Suc% WL (e+06) Time (s) /#Total Point

ibm01 26% 1 100% 4.67 4.44 – – > 2 days 100% 3.09 1.84 120/10 860
ibm02 25% 1 0% – – 100% 7.86 124 100% 6.17 15.28 45/3380
ibm03 30% 1 0% – – 100% 12.75 343 100% 9.19 4.01 102/5020
ibm04 25% 1 0% – – 100% 12.03 147 100% 10.26 14.15 63/5170
ibm06 25% 1 0% – – 100% 10.09 155 100% 8.78 5.01 84/3560
ibm07 25% 1 100% 16.38 23.41 100% 16.41 99 100% 15.48 4.55 12/3780
ibm08 26% 1 0% – – 100% 18.29 284 100% 18.73 19.25 106/5070
ibm09 25% 1 100% 16.62 25.45 100% 17.85 100 100% 16.66 4.22 12/3070
ibm10 20% 1 0% – – 100% 81.27 1685 100% 45.12 6.32 27/6880
ibm11 25% 1 100% 25.86 38.72 100% 28.26 149 100% 26.99 7.07 19/4150
ibm12 26% 1 0% – – 100% 52.46 126 100% 50.17 5.54 69/6880
ibm13 25% 1 100% 36.74 29.08 100% 40.22 299 100% 35.51 5.85 15/3860
ibm14 25% 1 100% 68.30 51.79 100% 73.89 410 100% 64.50 12.01 36/7870
ibm15 25% 1 0% – – 100% 92.79 474 100% 84.29 14.66 182/9900
ibm16 25% 1 100% 95.97 47.14 100% 153.02 595 100% 98.66 8.08 10/5770
ibm17 25% 1 100% 142.41 65.06 100% 146.03 440 100% 144.56 14.70 41/9540
ibm18 25% 1 100% 73.76 47.71 100% 75.92 224 100% 71.86 11.30 44/9160

Normalized 0.53 1.07 4.76 1.00 1.19 46.66 1 1 1

TABLE VI

Comparison on Linear Combination of HPWL and Area

Circuit Parquet 4.5 [4] DeFer
Area Whitespace% HPWL Area + HPWL Time (s) Area Whitespace% HPWL Area + HPWL Time (s)

n100 194 425 8.31% 235 070 429 495 13.66 191 164 6.50% 209 785 400 949 0.33
n200 191 191 8.82% 438 584 629 775 54.84 187 734 6.85% 374 676 562 410 0.74
n300 298 540 9.29% 628 422 926 962 108.70 291 385 6.67% 503 311 794 696 0.96

Normalized 1.02 1.32 1.18 1.12 76.24 1 1 1 1 1

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

380 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 3, MARCH 2010

TABLE VII

Estimation on Contributions of Main Techniques and Runtime Breakdown in DeFer

Algorithm Step Partitioning Combining Back-tracing Swapping Compacting Shifting
Main Technique Min-Cut TP EP Combination – Rough Detailed Mirroring Compaction Shifting

Wirelength Improvement Major Minor – – – Major Minor Minor Minor Minor
Packing Improvement Minor – Major Minor – – – – Minor —

GSRC Hard 29% 63% 0% 8% 0% 0%
Runtime GSRC Soft 35% 37% 0% 28% 0% 0%
Breakdown HB 52% 4% 0% 44% 0% 0%

HB+ 46% 3% 0% 51% 0% 0%

by 100% and the area of remaining soft macros are reduced
to preserve the total cell area. As a result, the circuits become
even harder to handle. Due to the same reason, we set
Capo 10.5 to “-SCAMPI” mode, and run it only once. The
results are shown in Table V. DeFer achieves the 100% success
rate on all circuits, which is 1.89× better than PATOMA.
Capo 10.5 also achieves 100% success rate, expect for one
circuit it takes more than two days to finish. In terms of
the HPWL comparison, DeFer is 7% and 19% better than
PATOMA and Capo 10.5. DeFer is also 5× and 47× faster
than PATOMA and Capo 10.5.

Both HB and HB+ benchmarks are considered to be very
hard to handle, because these circuits not only contain both
hard and soft modules, but also big hard macros. As far as we
know, only the above floorplanners can handle these circuits.
Obviously, DeFer reaches the best result. We also monitor
the memory usage of DeFer on such large-scale circuits, and
observe that the peak memory usage in DeFer is only 53 MB.

5) Analysis of Points in DeFer: In Tables II–V, for each
test case we list the number of valid points (#VP) within
the fixed outline and the total number of points (#FP) in the
final shape curve. Both #VP and #FP are averaged over all
successful runs. We have three observations as follows.

• As the circuit size grows, #FP increases.
• For the same circuit with various τ, ideally #FP should

be the same. But they are actually different in some test
cases. It is because high-level EP reconstructed the final
shape curve for some hard-to-pack instances. As you can
see high-level EP can significantly increase #FP, e.g.,
ibm12 in Table IV, which means it improves packing
quite effectively.

• Sometimes while other algorithms cannot satisfy the
fixed-outline constraint, #VP of DeFer is more than 100,
e.g., ibm15 in Table V. This shows DeFer’s superior
packing ability.

B. Experiments on Classical Outline-Free Floorplanning

For the classical outline-free floorplanning problem, as far
as we know, only Parquet 4.5 can handle GSRC benchmarks,
so we compare it with DeFer on GSRC Hard-Block bench-
marks. The results are averaged over 100 runs. The objective
function is a linear combination of the HPWL and area, which
are equally weighted. We add “-minWL” to the Parquet 4.5
command line. As shown in Table VI, DeFer produces 32%
less whitespace than Parquet 4.5, with 18% less wirelength.
Overall, DeFer is 12% better in the total cost, and 76× faster
than Parquet 4.5.

X. Conclusion

As the earliest stage of VLSI physical design, floorplanning
has numerous impacts on the final performance of ICs. In
this paper, we have proposed a fast, high-quality, scalable and
nonstochastic fixed-outline floorplanner DeFer.

Based on the principle of Deferred Decision Making, DeFer
outperforms all other state-of-the-art floorplanners in every
aspect. It is hard to accurately calculate how much each
technique in DeFer contributes to the overall significant im-
provement. But we do have a rough estimation in Table VII,
in which we also show the runtime breakdown of DeFer for
each set of benchmarks. Note that, the DDM idea is the soul
of DeFer. Without it, those techniques cannot be integrated in
such a nice manner and produce promising results.

Such a high-quality and efficient floorplanner is expected
to handle the increasing complexity of modern designs. The
source code of DeFer and all benchmarks are publicly avail-
able at [25]. In the future, we will integrate DeFer into
placement tools to handle large-scale mixed-size designs.

Acknowledgment

The authors would like to thank Dr. I. Markov, S. Chen,
T.-C. Chen, and the University of California, Los Angeles
Computer-Aided Design group, for their help with Capo 10.5,
IARFP, IMF, and PATOMA, respectively. They are also grate-
ful to Dr. T.-C. Wang and the anonymous reviewers for their
helpful suggestions and comments on this paper.

References

[1] A. B. Kahng, “Classical floorplanning harmful?,” in Proc. Int. Symp.
Phys. Design, 2000, pp. 207–213.

[2] R. H. J. M. Otten, “Efficient floorplan optimization,” in Proc. Int. Conf.
Comput. Design, 1983, pp. 499–502.

[3] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning through better
local search,” in Proc. Int. Conf. Comput. Design, 2001, pp. 328–334.

[4] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling
hierarchical design,” IEEE Trans. Very Large Scale Integrat. Syst.,
vol. 11, no. 6, pp. 1120–1135, Dec. 2003.

[5] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov, “Min-cut
floorplacement,” IEEE Trans. Comput.-Aided Design Integrat. Circuits
Syst., vol. 25, no. 7, pp. 1313–1326, Jul. 2006.

[6] T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on B*-
trees and fast simulated annealing,” IEEE Trans. Comput.-Aided Design
Integrat. Circuits Syst., vol. 25, no. 4, pp. 637–650, Apr. 2006.

[7] Y. C. Wang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B*-Tree: A
new representation for nonslicing floorplans,” in Proc. Design Automat.
Conf., 2000, pp. 458–463.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

YAN AND CHU: DEFER: DEFERRED DECISION MAKING ENABLED FIXED-OUTLINE FLOORPLANNING ALGORITHM 381

[8] T.-C. Chen, Y.-W. Chang, and S.-C. Lin, “A new multilevel framework
for large-scale interconnect-driven floorplanning,” IEEE Trans. Comput.-
Aided Design Integrat. Circuits Syst., vol. 27, no. 2, pp. 286–294, Feb.
2008.

[9] S. Chen and T. Yoshimura, “Fixed-outline floorplanning: Enumerating
block positions and a new objective function for calculating area costs,”
IEEE Trans. Comput.-Aided Design Integrat. Circuits Syst., vol. 27, no.
5, pp. 858–871, May 2008.

[10] O. He, S. Dong, J. Bian, S. Goto, and C.-K. Cheng, “A novel fixed-
outline floorplanner with zero deadspace for hierarchical design,” in
Proc. Int. Conf. Comput. Aided Design, 2008, pp. 16–23.

[11] A. Ranjan, K. Bazargan, S. Ogrenci, and M. Sarrafzadeh, “Fast floor-
planning for effective prediction and construction,” IEEE Trans. Very
Large Scale Integrat. Syst., vol. 9, no. 2, pp. 341–352, Apr. 2001.

[12] P. G. Sassone and S. K. Lim, “A novel geometric algorithm for fast wire-
optimized floorplanning,” in Proc. Int. Conf. Comput. Aided Design,
2003, pp. 74–80.

[13] Y. Zhan, Y. Feng, and S. S. Sapatnekar, “A fixed-die floorplanning
algorithm using an analytical approach,” in Proc. Asia South Pacific-
Design Automat. Conf., 2006, pp. 771–776.

[14] J. Cong, M. Romesis, and J. R. Shinnerl, “Fast floorplanning by look-
ahead enabled recursive bipartitioning,” IEEE Trans. Comput.-Aided
Design Integrat. Circuits Syst., vol. 25, no. 9, pp. 1719–1732, Sep. 2006.

[15] J. Z. Yan and C. Chu, “DeFer: Deferred decision making enabled fixed-
outline floorplanner,” in Proc. Design Automat. Conf., 2008, pp. 161–
166.

[16] M. Lai and D. F. Wong, “Slicing tree is a complete floorplan represen-
tation,” in Proc. Design, Automat. Test Eur., 2001, pp. 228–232.

[17] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan de-
signs,” Informat. Control, vol. 57, pp. 91–101, May–Jun. 1983.

[18] G. Zimmerman, “A new area and shape function estimation technique
for very large scale integration layouts,” in Proc. Design Automat. Conf.,
1988, pp. 60–65.

[19] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of
standard-cell very large scale integration circuits,” IEEE Trans. Comput.-
Aided Design Integrat. Circuits Syst., vol. 4, no. 1, pp. 92–98, Jan. 1985.

[20] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
in Proc. Design Automat. Conf., 1999, pp. 343–348.

[21] S. Goto, “An efficient algorithm for the 2-D placement problem in
electrical circuit layout,” IEEE Trans. Circuits Syst., vol. 28, no. 1, pp.
12–18, Jan. 1981.

[22] GSRC Floorplan Benchmarks [Online]. Available: http://vlsicad.eecs.
umich.edu/BK/GSRCbench/

[23] A. Ng, I. L. Markov, R. Aggarwai, and V. Ramachandran, “Solving hard
instances of floorplacement,” in Proc. Int. Symp. Phys. Design, 2006,
pp. 170–177.

[24] HB Floorplan Benchmarks [Online]. Available: http://cadlab.cs.ucla.edu/
cpmo/HBsuite.html

[25] DeFer Source Code [Online]. Available: http://www.public.iastate.edu/∼
zijunyan/

Jackey Z. Yan received the B.S. degree in automa-
tion from the Huazhong University of Science and
Technology, Wuhan, China, in 2006. He is currently
pursing the Ph.D. degree in computer engineering
at the Department of Electrical and Computer Engi-
neering, Iowa State University, Ames.

His research interests include very large scale
integration physical designs, specifically in algo-
rithms for floorplanning and placement, and physical
synthesis integrated system-on-a-chip designs.

Mr. Yan’s work on fixed-outline floorplanning was
nominated for the Best Paper Award at the Design Automation Conference
in 2008. He received the Ultra-Excellent Student Award from Renesas
Technology Corp., Tokyo, Japan, in 2005.

Chris Chu received the B.S. degree from the Uni-
versity of Hong Kong, Hong Kong, in 1993, and
the M.S. and Ph.D. degrees from the University of
Texas, Austin, in 1994 and 1999, respectively, all in
computer science.

Since 1999, Chu has been a Faculty with Iowa
State University, Ames. He is currently an Associate
Professor with the Department of Electrical and
Computer Engineering, Iowa State University. His
research interests include computer-aided design of
very large scale integration physical designs, and

design and analysis of algorithms.
Dr. Chu received the IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems Best Paper Award in 1999 for
his work in performance-driven interconnect optimization. He received the
International Symposium on Physical Design (ISPD) Best Paper Award in
2004 for his work in efficient placement algorithm. He received the Bert Kay
Best Dissertation Award in 1998–1999 from the Department of Computer
Sciences, University of Texas. He has served on the technical program
committees of several major conferences including the Design Automation
Conference, the International Conference on Computer-Aided Design, the
ISPD, the International Symposium on Circuits and Systems, the Design,
Automation and Test in Europe, the Asia and South Pacific Design Automation
Conference, and the system level interconnect prediction.

Authorized licensed use limited to: Iowa State University. Downloaded on April 29,2010 at 19:31:34 UTC from IEEE Xplore. Restrictions apply.

